/** * \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This file is part of mbed TLS (https://tls.mbed.org) */ /* * The HAVEGE RNG was designed by Andre Seznec in 2002. * * http://www.irisa.fr/caps/projects/hipsor/publi.php * * Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_HAVEGE_C) #include "mbedtls/havege.h" #include "mbedtls/timing.h" #include "mbedtls/platform_util.h" #include <string.h> /* ------------------------------------------------------------------------ * On average, one iteration accesses two 8-word blocks in the havege WALK * table, and generates 16 words in the RES array. * * The data read in the WALK table is updated and permuted after each use. * The result of the hardware clock counter read is used for this update. * * 25 conditional tests are present. The conditional tests are grouped in * two nested groups of 12 conditional tests and 1 test that controls the * permutation; on average, there should be 6 tests executed and 3 of them * should be mispredicted. * ------------------------------------------------------------------------ */ #define SWAP(X,Y) { int *T = X; X = Y; Y = T; } #define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1; #define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1; #define TST1_LEAVE U1++; } #define TST2_LEAVE U2++; } #define ONE_ITERATION \ \ PTEST = PT1 >> 20; \ \ TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \ \ TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \ \ PTX = (PT1 >> 18) & 7; \ PT1 &= 0x1FFF; \ PT2 &= 0x1FFF; \ CLK = (int) mbedtls_timing_hardclock(); \ \ i = 0; \ A = &WALK[PT1 ]; RES[i++] ^= *A; \ B = &WALK[PT2 ]; RES[i++] ^= *B; \ C = &WALK[PT1 ^ 1]; RES[i++] ^= *C; \ D = &WALK[PT2 ^ 4]; RES[i++] ^= *D; \ \ IN = (*A >> (1)) ^ (*A << (31)) ^ CLK; \ *A = (*B >> (2)) ^ (*B << (30)) ^ CLK; \ *B = IN ^ U1; \ *C = (*C >> (3)) ^ (*C << (29)) ^ CLK; \ *D = (*D >> (4)) ^ (*D << (28)) ^ CLK; \ \ A = &WALK[PT1 ^ 2]; RES[i++] ^= *A; \ B = &WALK[PT2 ^ 2]; RES[i++] ^= *B; \ C = &WALK[PT1 ^ 3]; RES[i++] ^= *C; \ D = &WALK[PT2 ^ 6]; RES[i++] ^= *D; \ \ if( PTEST & 1 ) SWAP( A, C ); \ \ IN = (*A >> (5)) ^ (*A << (27)) ^ CLK; \ *A = (*B >> (6)) ^ (*B << (26)) ^ CLK; \ *B = IN; CLK = (int) mbedtls_timing_hardclock(); \ *C = (*C >> (7)) ^ (*C << (25)) ^ CLK; \ *D = (*D >> (8)) ^ (*D << (24)) ^ CLK; \ \ A = &WALK[PT1 ^ 4]; \ B = &WALK[PT2 ^ 1]; \ \ PTEST = PT2 >> 1; \ \ PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]); \ PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8); \ PTY = (PT2 >> 10) & 7; \ \ TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \ \ TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \ \ C = &WALK[PT1 ^ 5]; \ D = &WALK[PT2 ^ 5]; \ \ RES[i++] ^= *A; \ RES[i++] ^= *B; \ RES[i++] ^= *C; \ RES[i++] ^= *D; \ \ IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK; \ *A = (*B >> (10)) ^ (*B << (22)) ^ CLK; \ *B = IN ^ U2; \ *C = (*C >> (11)) ^ (*C << (21)) ^ CLK; \ *D = (*D >> (12)) ^ (*D << (20)) ^ CLK; \ \ A = &WALK[PT1 ^ 6]; RES[i++] ^= *A; \ B = &WALK[PT2 ^ 3]; RES[i++] ^= *B; \ C = &WALK[PT1 ^ 7]; RES[i++] ^= *C; \ D = &WALK[PT2 ^ 7]; RES[i++] ^= *D; \ \ IN = (*A >> (13)) ^ (*A << (19)) ^ CLK; \ *A = (*B >> (14)) ^ (*B << (18)) ^ CLK; \ *B = IN; \ *C = (*C >> (15)) ^ (*C << (17)) ^ CLK; \ *D = (*D >> (16)) ^ (*D << (16)) ^ CLK; \ \ PT1 = ( RES[( i - 8 ) ^ PTX] ^ \ WALK[PT1 ^ PTX ^ 7] ) & (~1); \ PT1 ^= (PT2 ^ 0x10) & 0x10; \ \ for( n++, i = 0; i < 16; i++ ) \ hs->pool[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i]; /* * Entropy gathering function */ static void havege_fill( mbedtls_havege_state *hs ) { int i, n = 0; int U1, U2, *A, *B, *C, *D; int PT1, PT2, *WALK, RES[16]; int PTX, PTY, CLK, PTEST, IN; WALK = hs->WALK; PT1 = hs->PT1; PT2 = hs->PT2; PTX = U1 = 0; PTY = U2 = 0; (void)PTX; memset( RES, 0, sizeof( RES ) ); while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 ) { ONE_ITERATION ONE_ITERATION ONE_ITERATION ONE_ITERATION } hs->PT1 = PT1; hs->PT2 = PT2; hs->offset[0] = 0; hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2; } /* * HAVEGE initialization */ void mbedtls_havege_init( mbedtls_havege_state *hs ) { memset( hs, 0, sizeof( mbedtls_havege_state ) ); havege_fill( hs ); } void mbedtls_havege_free( mbedtls_havege_state *hs ) { if( hs == NULL ) return; mbedtls_platform_zeroize( hs, sizeof( mbedtls_havege_state ) ); } /* * HAVEGE rand function */ int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len ) { int val; size_t use_len; mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng; unsigned char *p = buf; while( len > 0 ) { use_len = len; if( use_len > sizeof(int) ) use_len = sizeof(int); if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE ) havege_fill( hs ); val = hs->pool[hs->offset[0]++]; val ^= hs->pool[hs->offset[1]++]; memcpy( p, &val, use_len ); len -= use_len; p += use_len; } return( 0 ); } #endif /* MBEDTLS_HAVEGE_C */