/* * Elliptic curve DSA * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later * * This file is provided under the Apache License 2.0, or the * GNU General Public License v2.0 or later. * * ********** * Apache License 2.0: * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ********** * * ********** * GNU General Public License v2.0 or later: * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * ********** */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_ECDSA_C) #include "mbedtls/ecdsa.h" #include "mbedtls/asn1write.h" #include <string.h> #if defined(MBEDTLS_ECDSA_DETERMINISTIC) #include "mbedtls/hmac_drbg.h" #endif #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include <stdlib.h> #define mbedtls_calloc calloc #define mbedtls_free free #endif #include "mbedtls/platform_util.h" /* Parameter validation macros based on platform_util.h */ #define ECDSA_VALIDATE_RET( cond ) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA ) #define ECDSA_VALIDATE( cond ) \ MBEDTLS_INTERNAL_VALIDATE( cond ) #if defined(MBEDTLS_ECP_RESTARTABLE) /* * Sub-context for ecdsa_verify() */ struct mbedtls_ecdsa_restart_ver { mbedtls_mpi u1, u2; /* intermediate values */ enum { /* what to do next? */ ecdsa_ver_init = 0, /* getting started */ ecdsa_ver_muladd, /* muladd step */ } state; }; /* * Init verify restart sub-context */ static void ecdsa_restart_ver_init( mbedtls_ecdsa_restart_ver_ctx *ctx ) { mbedtls_mpi_init( &ctx->u1 ); mbedtls_mpi_init( &ctx->u2 ); ctx->state = ecdsa_ver_init; } /* * Free the components of a verify restart sub-context */ static void ecdsa_restart_ver_free( mbedtls_ecdsa_restart_ver_ctx *ctx ) { if( ctx == NULL ) return; mbedtls_mpi_free( &ctx->u1 ); mbedtls_mpi_free( &ctx->u2 ); ecdsa_restart_ver_init( ctx ); } /* * Sub-context for ecdsa_sign() */ struct mbedtls_ecdsa_restart_sig { int sign_tries; int key_tries; mbedtls_mpi k; /* per-signature random */ mbedtls_mpi r; /* r value */ enum { /* what to do next? */ ecdsa_sig_init = 0, /* getting started */ ecdsa_sig_mul, /* doing ecp_mul() */ ecdsa_sig_modn, /* mod N computations */ } state; }; /* * Init verify sign sub-context */ static void ecdsa_restart_sig_init( mbedtls_ecdsa_restart_sig_ctx *ctx ) { ctx->sign_tries = 0; ctx->key_tries = 0; mbedtls_mpi_init( &ctx->k ); mbedtls_mpi_init( &ctx->r ); ctx->state = ecdsa_sig_init; } /* * Free the components of a sign restart sub-context */ static void ecdsa_restart_sig_free( mbedtls_ecdsa_restart_sig_ctx *ctx ) { if( ctx == NULL ) return; mbedtls_mpi_free( &ctx->k ); mbedtls_mpi_free( &ctx->r ); } #if defined(MBEDTLS_ECDSA_DETERMINISTIC) /* * Sub-context for ecdsa_sign_det() */ struct mbedtls_ecdsa_restart_det { mbedtls_hmac_drbg_context rng_ctx; /* DRBG state */ enum { /* what to do next? */ ecdsa_det_init = 0, /* getting started */ ecdsa_det_sign, /* make signature */ } state; }; /* * Init verify sign_det sub-context */ static void ecdsa_restart_det_init( mbedtls_ecdsa_restart_det_ctx *ctx ) { mbedtls_hmac_drbg_init( &ctx->rng_ctx ); ctx->state = ecdsa_det_init; } /* * Free the components of a sign_det restart sub-context */ static void ecdsa_restart_det_free( mbedtls_ecdsa_restart_det_ctx *ctx ) { if( ctx == NULL ) return; mbedtls_hmac_drbg_free( &ctx->rng_ctx ); ecdsa_restart_det_init( ctx ); } #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ #define ECDSA_RS_ECP ( rs_ctx == NULL ? NULL : &rs_ctx->ecp ) /* Utility macro for checking and updating ops budget */ #define ECDSA_BUDGET( ops ) \ MBEDTLS_MPI_CHK( mbedtls_ecp_check_budget( grp, ECDSA_RS_ECP, ops ) ); /* Call this when entering a function that needs its own sub-context */ #define ECDSA_RS_ENTER( SUB ) do { \ /* reset ops count for this call if top-level */ \ if( rs_ctx != NULL && rs_ctx->ecp.depth++ == 0 ) \ rs_ctx->ecp.ops_done = 0; \ \ /* set up our own sub-context if needed */ \ if( mbedtls_ecp_restart_is_enabled() && \ rs_ctx != NULL && rs_ctx->SUB == NULL ) \ { \ rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \ if( rs_ctx->SUB == NULL ) \ return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \ \ ecdsa_restart_## SUB ##_init( rs_ctx->SUB ); \ } \ } while( 0 ) /* Call this when leaving a function that needs its own sub-context */ #define ECDSA_RS_LEAVE( SUB ) do { \ /* clear our sub-context when not in progress (done or error) */ \ if( rs_ctx != NULL && rs_ctx->SUB != NULL && \ ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \ { \ ecdsa_restart_## SUB ##_free( rs_ctx->SUB ); \ mbedtls_free( rs_ctx->SUB ); \ rs_ctx->SUB = NULL; \ } \ \ if( rs_ctx != NULL ) \ rs_ctx->ecp.depth--; \ } while( 0 ) #else /* MBEDTLS_ECP_RESTARTABLE */ #define ECDSA_RS_ECP NULL #define ECDSA_BUDGET( ops ) /* no-op; for compatibility */ #define ECDSA_RS_ENTER( SUB ) (void) rs_ctx #define ECDSA_RS_LEAVE( SUB ) (void) rs_ctx #endif /* MBEDTLS_ECP_RESTARTABLE */ /* * Derive a suitable integer for group grp from a buffer of length len * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3 */ static int derive_mpi( const mbedtls_ecp_group *grp, mbedtls_mpi *x, const unsigned char *buf, size_t blen ) { int ret; size_t n_size = ( grp->nbits + 7 ) / 8; size_t use_size = blen > n_size ? n_size : blen; MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( x, buf, use_size ) ); if( use_size * 8 > grp->nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( x, use_size * 8 - grp->nbits ) ); /* While at it, reduce modulo N */ if( mbedtls_mpi_cmp_mpi( x, &grp->N ) >= 0 ) MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( x, x, &grp->N ) ); cleanup: return( ret ); } #if !defined(MBEDTLS_ECDSA_SIGN_ALT) /* * Compute ECDSA signature of a hashed message (SEC1 4.1.3) * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message) */ static int ecdsa_sign_restartable( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, const mbedtls_mpi *d, const unsigned char *buf, size_t blen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind, mbedtls_ecdsa_restart_ctx *rs_ctx ) { int ret, key_tries, sign_tries; int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries; mbedtls_ecp_point R; mbedtls_mpi k, e, t; mbedtls_mpi *pk = &k, *pr = r; /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); /* Make sure d is in range 1..n-1 */ if( mbedtls_mpi_cmp_int( d, 1 ) < 0 || mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 ) return( MBEDTLS_ERR_ECP_INVALID_KEY ); mbedtls_ecp_point_init( &R ); mbedtls_mpi_init( &k ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &t ); ECDSA_RS_ENTER( sig ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->sig != NULL ) { /* redirect to our context */ p_sign_tries = &rs_ctx->sig->sign_tries; p_key_tries = &rs_ctx->sig->key_tries; pk = &rs_ctx->sig->k; pr = &rs_ctx->sig->r; /* jump to current step */ if( rs_ctx->sig->state == ecdsa_sig_mul ) goto mul; if( rs_ctx->sig->state == ecdsa_sig_modn ) goto modn; } #endif /* MBEDTLS_ECP_RESTARTABLE */ *p_sign_tries = 0; do { if( (*p_sign_tries)++ > 10 ) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } /* * Steps 1-3: generate a suitable ephemeral keypair * and set r = xR mod n */ *p_key_tries = 0; do { if( (*p_key_tries)++ > 10 ) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, pk, f_rng, p_rng ) ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->sig != NULL ) rs_ctx->sig->state = ecdsa_sig_mul; mul: #endif MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, &R, pk, &grp->G, f_rng_blind, p_rng_blind, ECDSA_RS_ECP ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pr, &R.X, &grp->N ) ); } while( mbedtls_mpi_cmp_int( pr, 0 ) == 0 ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->sig != NULL ) rs_ctx->sig->state = ecdsa_sig_modn; modn: #endif /* * Accounting for everything up to the end of the loop * (step 6, but checking now avoids saving e and t) */ ECDSA_BUDGET( MBEDTLS_ECP_OPS_INV + 4 ); /* * Step 5: derive MPI from hashed message */ MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Generate a random value to blind inv_mod in next step, * avoiding a potential timing leak. */ MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, &t, f_rng_blind, p_rng_blind ) ); /* * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n */ MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, pr, d ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &e, &e, s ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &e, &e, &t ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pk, pk, &t ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pk, pk, &grp->N ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( s, pk, &grp->N ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( s, s, &e ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( s, s, &grp->N ) ); } while( mbedtls_mpi_cmp_int( s, 0 ) == 0 ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->sig != NULL ) mbedtls_mpi_copy( r, pr ); #endif cleanup: mbedtls_ecp_point_free( &R ); mbedtls_mpi_free( &k ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &t ); ECDSA_RS_LEAVE( sig ); return( ret ); } /* * Compute ECDSA signature of a hashed message */ int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, const mbedtls_mpi *d, const unsigned char *buf, size_t blen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { ECDSA_VALIDATE_RET( grp != NULL ); ECDSA_VALIDATE_RET( r != NULL ); ECDSA_VALIDATE_RET( s != NULL ); ECDSA_VALIDATE_RET( d != NULL ); ECDSA_VALIDATE_RET( f_rng != NULL ); ECDSA_VALIDATE_RET( buf != NULL || blen == 0 ); /* Use the same RNG for both blinding and ephemeral key generation */ return( ecdsa_sign_restartable( grp, r, s, d, buf, blen, f_rng, p_rng, f_rng, p_rng, NULL ) ); } #endif /* !MBEDTLS_ECDSA_SIGN_ALT */ #if defined(MBEDTLS_ECDSA_DETERMINISTIC) /* * Deterministic signature wrapper */ static int ecdsa_sign_det_restartable( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, const mbedtls_mpi *d, const unsigned char *buf, size_t blen, mbedtls_md_type_t md_alg, int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind, mbedtls_ecdsa_restart_ctx *rs_ctx ) { int ret; mbedtls_hmac_drbg_context rng_ctx; mbedtls_hmac_drbg_context *p_rng = &rng_ctx; unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES]; size_t grp_len = ( grp->nbits + 7 ) / 8; const mbedtls_md_info_t *md_info; mbedtls_mpi h; if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) == NULL ) return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); mbedtls_mpi_init( &h ); mbedtls_hmac_drbg_init( &rng_ctx ); ECDSA_RS_ENTER( det ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->det != NULL ) { /* redirect to our context */ p_rng = &rs_ctx->det->rng_ctx; /* jump to current step */ if( rs_ctx->det->state == ecdsa_det_sign ) goto sign; } #endif /* MBEDTLS_ECP_RESTARTABLE */ /* Use private key and message hash (reduced) to initialize HMAC_DRBG */ MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( d, data, grp_len ) ); MBEDTLS_MPI_CHK( derive_mpi( grp, &h, buf, blen ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &h, data + grp_len, grp_len ) ); mbedtls_hmac_drbg_seed_buf( p_rng, md_info, data, 2 * grp_len ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->det != NULL ) rs_ctx->det->state = ecdsa_det_sign; sign: #endif #if defined(MBEDTLS_ECDSA_SIGN_ALT) ret = mbedtls_ecdsa_sign( grp, r, s, d, buf, blen, mbedtls_hmac_drbg_random, p_rng ); #else if( f_rng_blind != NULL ) ret = ecdsa_sign_restartable( grp, r, s, d, buf, blen, mbedtls_hmac_drbg_random, p_rng, f_rng_blind, p_rng_blind, rs_ctx ); else { mbedtls_hmac_drbg_context *p_rng_blind_det; #if !defined(MBEDTLS_ECP_RESTARTABLE) /* * To avoid reusing rng_ctx and risking incorrect behavior we seed a * second HMAC-DRBG with the same seed. We also apply a label to avoid * reusing the bits of the ephemeral key for blinding and eliminate the * risk that they leak this way. */ const char* blind_label = "BLINDING CONTEXT"; mbedtls_hmac_drbg_context rng_ctx_blind; mbedtls_hmac_drbg_init( &rng_ctx_blind ); p_rng_blind_det = &rng_ctx_blind; mbedtls_hmac_drbg_seed_buf( p_rng_blind_det, md_info, data, 2 * grp_len ); ret = mbedtls_hmac_drbg_update_ret( p_rng_blind_det, (const unsigned char*) blind_label, strlen( blind_label ) ); if( ret != 0 ) { mbedtls_hmac_drbg_free( &rng_ctx_blind ); goto cleanup; } #else /* * In the case of restartable computations we would either need to store * the second RNG in the restart context too or set it up at every * restart. The first option would penalize the correct application of * the function and the second would defeat the purpose of the * restartable feature. * * Therefore in this case we reuse the original RNG. This comes with the * price that the resulting signature might not be a valid deterministic * ECDSA signature with a very low probability (same magnitude as * successfully guessing the private key). However even then it is still * a valid ECDSA signature. */ p_rng_blind_det = p_rng; #endif /* MBEDTLS_ECP_RESTARTABLE */ /* * Since the output of the RNGs is always the same for the same key and * message, this limits the efficiency of blinding and leaks information * through side channels. After mbedtls_ecdsa_sign_det() is removed NULL * won't be a valid value for f_rng_blind anymore. Therefore it should * be checked by the caller and this branch and check can be removed. */ ret = ecdsa_sign_restartable( grp, r, s, d, buf, blen, mbedtls_hmac_drbg_random, p_rng, mbedtls_hmac_drbg_random, p_rng_blind_det, rs_ctx ); #if !defined(MBEDTLS_ECP_RESTARTABLE) mbedtls_hmac_drbg_free( &rng_ctx_blind ); #endif } #endif /* MBEDTLS_ECDSA_SIGN_ALT */ cleanup: mbedtls_hmac_drbg_free( &rng_ctx ); mbedtls_mpi_free( &h ); ECDSA_RS_LEAVE( det ); return( ret ); } /* * Deterministic signature wrappers */ int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, const mbedtls_mpi *d, const unsigned char *buf, size_t blen, mbedtls_md_type_t md_alg ) { ECDSA_VALIDATE_RET( grp != NULL ); ECDSA_VALIDATE_RET( r != NULL ); ECDSA_VALIDATE_RET( s != NULL ); ECDSA_VALIDATE_RET( d != NULL ); ECDSA_VALIDATE_RET( buf != NULL || blen == 0 ); return( ecdsa_sign_det_restartable( grp, r, s, d, buf, blen, md_alg, NULL, NULL, NULL ) ); } int mbedtls_ecdsa_sign_det_ext( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, const mbedtls_mpi *d, const unsigned char *buf, size_t blen, mbedtls_md_type_t md_alg, int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind ) { ECDSA_VALIDATE_RET( grp != NULL ); ECDSA_VALIDATE_RET( r != NULL ); ECDSA_VALIDATE_RET( s != NULL ); ECDSA_VALIDATE_RET( d != NULL ); ECDSA_VALIDATE_RET( buf != NULL || blen == 0 ); ECDSA_VALIDATE_RET( f_rng_blind != NULL ); return( ecdsa_sign_det_restartable( grp, r, s, d, buf, blen, md_alg, f_rng_blind, p_rng_blind, NULL ) ); } #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ #if !defined(MBEDTLS_ECDSA_VERIFY_ALT) /* * Verify ECDSA signature of hashed message (SEC1 4.1.4) * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message) */ static int ecdsa_verify_restartable( mbedtls_ecp_group *grp, const unsigned char *buf, size_t blen, const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s, mbedtls_ecdsa_restart_ctx *rs_ctx ) { int ret; mbedtls_mpi e, s_inv, u1, u2; mbedtls_ecp_point R; mbedtls_mpi *pu1 = &u1, *pu2 = &u2; mbedtls_ecp_point_init( &R ); mbedtls_mpi_init( &e ); mbedtls_mpi_init( &s_inv ); mbedtls_mpi_init( &u1 ); mbedtls_mpi_init( &u2 ); /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */ if( grp->N.p == NULL ) return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA ); ECDSA_RS_ENTER( ver ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->ver != NULL ) { /* redirect to our context */ pu1 = &rs_ctx->ver->u1; pu2 = &rs_ctx->ver->u2; /* jump to current step */ if( rs_ctx->ver->state == ecdsa_ver_muladd ) goto muladd; } #endif /* MBEDTLS_ECP_RESTARTABLE */ /* * Step 1: make sure r and s are in range 1..n-1 */ if( mbedtls_mpi_cmp_int( r, 1 ) < 0 || mbedtls_mpi_cmp_mpi( r, &grp->N ) >= 0 || mbedtls_mpi_cmp_int( s, 1 ) < 0 || mbedtls_mpi_cmp_mpi( s, &grp->N ) >= 0 ) { ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Step 3: derive MPI from hashed message */ MBEDTLS_MPI_CHK( derive_mpi( grp, &e, buf, blen ) ); /* * Step 4: u1 = e / s mod n, u2 = r / s mod n */ ECDSA_BUDGET( MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2 ); MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &s_inv, s, &grp->N ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu1, &e, &s_inv ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu1, pu1, &grp->N ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( pu2, r, &s_inv ) ); MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( pu2, pu2, &grp->N ) ); #if defined(MBEDTLS_ECP_RESTARTABLE) if( rs_ctx != NULL && rs_ctx->ver != NULL ) rs_ctx->ver->state = ecdsa_ver_muladd; muladd: #endif /* * Step 5: R = u1 G + u2 Q */ MBEDTLS_MPI_CHK( mbedtls_ecp_muladd_restartable( grp, &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP ) ); if( mbedtls_ecp_is_zero( &R ) ) { ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; goto cleanup; } /* * Step 6: convert xR to an integer (no-op) * Step 7: reduce xR mod n (gives v) */ MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R.X, &R.X, &grp->N ) ); /* * Step 8: check if v (that is, R.X) is equal to r */ if( mbedtls_mpi_cmp_mpi( &R.X, r ) != 0 ) { ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; goto cleanup; } cleanup: mbedtls_ecp_point_free( &R ); mbedtls_mpi_free( &e ); mbedtls_mpi_free( &s_inv ); mbedtls_mpi_free( &u1 ); mbedtls_mpi_free( &u2 ); ECDSA_RS_LEAVE( ver ); return( ret ); } /* * Verify ECDSA signature of hashed message */ int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp, const unsigned char *buf, size_t blen, const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s) { ECDSA_VALIDATE_RET( grp != NULL ); ECDSA_VALIDATE_RET( Q != NULL ); ECDSA_VALIDATE_RET( r != NULL ); ECDSA_VALIDATE_RET( s != NULL ); ECDSA_VALIDATE_RET( buf != NULL || blen == 0 ); return( ecdsa_verify_restartable( grp, buf, blen, Q, r, s, NULL ) ); } #endif /* !MBEDTLS_ECDSA_VERIFY_ALT */ /* * Convert a signature (given by context) to ASN.1 */ static int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, unsigned char *sig, size_t *slen ) { int ret; unsigned char buf[MBEDTLS_ECDSA_MAX_LEN]; unsigned char *p = buf + sizeof( buf ); size_t len = 0; MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, s ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_mpi( &p, buf, r ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( &p, buf, len ) ); MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( &p, buf, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ); memcpy( sig, p, len ); *slen = len; return( 0 ); } /* * Compute and write signature */ int mbedtls_ecdsa_write_signature_restartable( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecdsa_restart_ctx *rs_ctx ) { int ret; mbedtls_mpi r, s; ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( hash != NULL ); ECDSA_VALIDATE_RET( sig != NULL ); ECDSA_VALIDATE_RET( slen != NULL ); mbedtls_mpi_init( &r ); mbedtls_mpi_init( &s ); #if defined(MBEDTLS_ECDSA_DETERMINISTIC) MBEDTLS_MPI_CHK( ecdsa_sign_det_restartable( &ctx->grp, &r, &s, &ctx->d, hash, hlen, md_alg, f_rng, p_rng, rs_ctx ) ); #else (void) md_alg; #if defined(MBEDTLS_ECDSA_SIGN_ALT) MBEDTLS_MPI_CHK( mbedtls_ecdsa_sign( &ctx->grp, &r, &s, &ctx->d, hash, hlen, f_rng, p_rng ) ); #else /* Use the same RNG for both blinding and ephemeral key generation */ MBEDTLS_MPI_CHK( ecdsa_sign_restartable( &ctx->grp, &r, &s, &ctx->d, hash, hlen, f_rng, p_rng, f_rng, p_rng, rs_ctx ) ); #endif /* MBEDTLS_ECDSA_SIGN_ALT */ #endif /* MBEDTLS_ECDSA_DETERMINISTIC */ MBEDTLS_MPI_CHK( ecdsa_signature_to_asn1( &r, &s, sig, slen ) ); cleanup: mbedtls_mpi_free( &r ); mbedtls_mpi_free( &s ); return( ret ); } /* * Compute and write signature */ int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( hash != NULL ); ECDSA_VALIDATE_RET( sig != NULL ); ECDSA_VALIDATE_RET( slen != NULL ); return( mbedtls_ecdsa_write_signature_restartable( ctx, md_alg, hash, hlen, sig, slen, f_rng, p_rng, NULL ) ); } #if !defined(MBEDTLS_DEPRECATED_REMOVED) && \ defined(MBEDTLS_ECDSA_DETERMINISTIC) int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx, const unsigned char *hash, size_t hlen, unsigned char *sig, size_t *slen, mbedtls_md_type_t md_alg ) { ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( hash != NULL ); ECDSA_VALIDATE_RET( sig != NULL ); ECDSA_VALIDATE_RET( slen != NULL ); return( mbedtls_ecdsa_write_signature( ctx, md_alg, hash, hlen, sig, slen, NULL, NULL ) ); } #endif /* * Read and check signature */ int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const unsigned char *sig, size_t slen ) { ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( hash != NULL ); ECDSA_VALIDATE_RET( sig != NULL ); return( mbedtls_ecdsa_read_signature_restartable( ctx, hash, hlen, sig, slen, NULL ) ); } /* * Restartable read and check signature */ int mbedtls_ecdsa_read_signature_restartable( mbedtls_ecdsa_context *ctx, const unsigned char *hash, size_t hlen, const unsigned char *sig, size_t slen, mbedtls_ecdsa_restart_ctx *rs_ctx ) { int ret; unsigned char *p = (unsigned char *) sig; const unsigned char *end = sig + slen; size_t len; mbedtls_mpi r, s; ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( hash != NULL ); ECDSA_VALIDATE_RET( sig != NULL ); mbedtls_mpi_init( &r ); mbedtls_mpi_init( &s ); if( ( ret = mbedtls_asn1_get_tag( &p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 ) { ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; goto cleanup; } if( p + len != end ) { ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA + MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; goto cleanup; } if( ( ret = mbedtls_asn1_get_mpi( &p, end, &r ) ) != 0 || ( ret = mbedtls_asn1_get_mpi( &p, end, &s ) ) != 0 ) { ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA; goto cleanup; } #if defined(MBEDTLS_ECDSA_VERIFY_ALT) if( ( ret = mbedtls_ecdsa_verify( &ctx->grp, hash, hlen, &ctx->Q, &r, &s ) ) != 0 ) goto cleanup; #else if( ( ret = ecdsa_verify_restartable( &ctx->grp, hash, hlen, &ctx->Q, &r, &s, rs_ctx ) ) != 0 ) goto cleanup; #endif /* MBEDTLS_ECDSA_VERIFY_ALT */ /* At this point we know that the buffer starts with a valid signature. * Return 0 if the buffer just contains the signature, and a specific * error code if the valid signature is followed by more data. */ if( p != end ) ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH; cleanup: mbedtls_mpi_free( &r ); mbedtls_mpi_free( &s ); return( ret ); } #if !defined(MBEDTLS_ECDSA_GENKEY_ALT) /* * Generate key pair */ int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) { int ret = 0; ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( f_rng != NULL ); ret = mbedtls_ecp_group_load( &ctx->grp, gid ); if( ret != 0 ) return( ret ); return( mbedtls_ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) ); } #endif /* !MBEDTLS_ECDSA_GENKEY_ALT */ /* * Set context from an mbedtls_ecp_keypair */ int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key ) { int ret; ECDSA_VALIDATE_RET( ctx != NULL ); ECDSA_VALIDATE_RET( key != NULL ); if( ( ret = mbedtls_ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 || ( ret = mbedtls_mpi_copy( &ctx->d, &key->d ) ) != 0 || ( ret = mbedtls_ecp_copy( &ctx->Q, &key->Q ) ) != 0 ) { mbedtls_ecdsa_free( ctx ); } return( ret ); } /* * Initialize context */ void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx ) { ECDSA_VALIDATE( ctx != NULL ); mbedtls_ecp_keypair_init( ctx ); } /* * Free context */ void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx ) { if( ctx == NULL ) return; mbedtls_ecp_keypair_free( ctx ); } #if defined(MBEDTLS_ECP_RESTARTABLE) /* * Initialize a restart context */ void mbedtls_ecdsa_restart_init( mbedtls_ecdsa_restart_ctx *ctx ) { ECDSA_VALIDATE( ctx != NULL ); mbedtls_ecp_restart_init( &ctx->ecp ); ctx->ver = NULL; ctx->sig = NULL; #if defined(MBEDTLS_ECDSA_DETERMINISTIC) ctx->det = NULL; #endif } /* * Free the components of a restart context */ void mbedtls_ecdsa_restart_free( mbedtls_ecdsa_restart_ctx *ctx ) { if( ctx == NULL ) return; mbedtls_ecp_restart_free( &ctx->ecp ); ecdsa_restart_ver_free( ctx->ver ); mbedtls_free( ctx->ver ); ctx->ver = NULL; ecdsa_restart_sig_free( ctx->sig ); mbedtls_free( ctx->sig ); ctx->sig = NULL; #if defined(MBEDTLS_ECDSA_DETERMINISTIC) ecdsa_restart_det_free( ctx->det ); mbedtls_free( ctx->det ); ctx->det = NULL; #endif } #endif /* MBEDTLS_ECP_RESTARTABLE */ #endif /* MBEDTLS_ECDSA_C */