// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // WebPPicture tools: alpha handling, etc. // // Author: Skal (pascal.massimino@gmail.com) #include <assert.h> #include "src/enc/vp8i_enc.h" #include "src/dsp/yuv.h" //------------------------------------------------------------------------------ // Helper: clean up fully transparent area to help compressibility. #define SIZE 8 #define SIZE2 (SIZE / 2) static int IsTransparentARGBArea(const uint32_t* ptr, int stride, int size) { int y, x; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) { if (ptr[x] & 0xff000000u) { return 0; } } ptr += stride; } return 1; } static void Flatten(uint8_t* ptr, int v, int stride, int size) { int y; for (y = 0; y < size; ++y) { memset(ptr, v, size); ptr += stride; } } static void FlattenARGB(uint32_t* ptr, uint32_t v, int stride, int size) { int x, y; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) ptr[x] = v; ptr += stride; } } // Smoothen the luma components of transparent pixels. Return true if the whole // block is transparent. static int SmoothenBlock(const uint8_t* a_ptr, int a_stride, uint8_t* y_ptr, int y_stride, int width, int height) { int sum = 0, count = 0; int x, y; const uint8_t* alpha_ptr = a_ptr; uint8_t* luma_ptr = y_ptr; for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { if (alpha_ptr[x] != 0) { ++count; sum += luma_ptr[x]; } } alpha_ptr += a_stride; luma_ptr += y_stride; } if (count > 0 && count < width * height) { const uint8_t avg_u8 = (uint8_t)(sum / count); alpha_ptr = a_ptr; luma_ptr = y_ptr; for (y = 0; y < height; ++y) { for (x = 0; x < width; ++x) { if (alpha_ptr[x] == 0) luma_ptr[x] = avg_u8; } alpha_ptr += a_stride; luma_ptr += y_stride; } } return (count == 0); } void WebPReplaceTransparentPixels(WebPPicture* const pic, uint32_t color) { if (pic != NULL && pic->use_argb) { int y = pic->height; uint32_t* argb = pic->argb; color &= 0xffffffu; // force alpha=0 WebPInitAlphaProcessing(); while (y-- > 0) { WebPAlphaReplace(argb, pic->width, color); argb += pic->argb_stride; } } } void WebPCleanupTransparentArea(WebPPicture* pic) { int x, y, w, h; if (pic == NULL) return; w = pic->width / SIZE; h = pic->height / SIZE; // note: we ignore the left-overs on right/bottom, except for SmoothenBlock(). if (pic->use_argb) { uint32_t argb_value = 0; for (y = 0; y < h; ++y) { int need_reset = 1; for (x = 0; x < w; ++x) { const int off = (y * pic->argb_stride + x) * SIZE; if (IsTransparentARGBArea(pic->argb + off, pic->argb_stride, SIZE)) { if (need_reset) { argb_value = pic->argb[off]; need_reset = 0; } FlattenARGB(pic->argb + off, argb_value, pic->argb_stride, SIZE); } else { need_reset = 1; } } } } else { const int width = pic->width; const int height = pic->height; const int y_stride = pic->y_stride; const int uv_stride = pic->uv_stride; const int a_stride = pic->a_stride; uint8_t* y_ptr = pic->y; uint8_t* u_ptr = pic->u; uint8_t* v_ptr = pic->v; const uint8_t* a_ptr = pic->a; int values[3] = { 0 }; if (a_ptr == NULL || y_ptr == NULL || u_ptr == NULL || v_ptr == NULL) { return; } for (y = 0; y + SIZE <= height; y += SIZE) { int need_reset = 1; for (x = 0; x + SIZE <= width; x += SIZE) { if (SmoothenBlock(a_ptr + x, a_stride, y_ptr + x, y_stride, SIZE, SIZE)) { if (need_reset) { values[0] = y_ptr[x]; values[1] = u_ptr[x >> 1]; values[2] = v_ptr[x >> 1]; need_reset = 0; } Flatten(y_ptr + x, values[0], y_stride, SIZE); Flatten(u_ptr + (x >> 1), values[1], uv_stride, SIZE2); Flatten(v_ptr + (x >> 1), values[2], uv_stride, SIZE2); } else { need_reset = 1; } } if (x < width) { SmoothenBlock(a_ptr + x, a_stride, y_ptr + x, y_stride, width - x, SIZE); } a_ptr += SIZE * a_stride; y_ptr += SIZE * y_stride; u_ptr += SIZE2 * uv_stride; v_ptr += SIZE2 * uv_stride; } if (y < height) { const int sub_height = height - y; for (x = 0; x + SIZE <= width; x += SIZE) { SmoothenBlock(a_ptr + x, a_stride, y_ptr + x, y_stride, SIZE, sub_height); } if (x < width) { SmoothenBlock(a_ptr + x, a_stride, y_ptr + x, y_stride, width - x, sub_height); } } } } #undef SIZE #undef SIZE2 //------------------------------------------------------------------------------ // Blend color and remove transparency info #define BLEND(V0, V1, ALPHA) \ ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101 + 256) >> 16) #define BLEND_10BIT(V0, V1, ALPHA) \ ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101 + 1024) >> 18) static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { return (0xff000000u | (r << 16) | (g << 8) | b); } void WebPBlendAlpha(WebPPicture* picture, uint32_t background_rgb) { const int red = (background_rgb >> 16) & 0xff; const int green = (background_rgb >> 8) & 0xff; const int blue = (background_rgb >> 0) & 0xff; int x, y; if (picture == NULL) return; if (!picture->use_argb) { // omit last pixel during u/v loop const int uv_width = (picture->width >> 1); const int Y0 = VP8RGBToY(red, green, blue, YUV_HALF); // VP8RGBToU/V expects the u/v values summed over four pixels const int U0 = VP8RGBToU(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); const int V0 = VP8RGBToV(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); const int has_alpha = picture->colorspace & WEBP_CSP_ALPHA_BIT; uint8_t* y_ptr = picture->y; uint8_t* u_ptr = picture->u; uint8_t* v_ptr = picture->v; uint8_t* a_ptr = picture->a; if (!has_alpha || a_ptr == NULL) return; // nothing to do for (y = 0; y < picture->height; ++y) { // Luma blending for (x = 0; x < picture->width; ++x) { const uint8_t alpha = a_ptr[x]; if (alpha < 0xff) { y_ptr[x] = BLEND(Y0, y_ptr[x], alpha); } } // Chroma blending every even line if ((y & 1) == 0) { uint8_t* const a_ptr2 = (y + 1 == picture->height) ? a_ptr : a_ptr + picture->a_stride; for (x = 0; x < uv_width; ++x) { // Average four alpha values into a single blending weight. // TODO(skal): might lead to visible contouring. Can we do better? const uint32_t alpha = a_ptr[2 * x + 0] + a_ptr[2 * x + 1] + a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1]; u_ptr[x] = BLEND_10BIT(U0, u_ptr[x], alpha); v_ptr[x] = BLEND_10BIT(V0, v_ptr[x], alpha); } if (picture->width & 1) { // rightmost pixel const uint32_t alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]); u_ptr[x] = BLEND_10BIT(U0, u_ptr[x], alpha); v_ptr[x] = BLEND_10BIT(V0, v_ptr[x], alpha); } } else { u_ptr += picture->uv_stride; v_ptr += picture->uv_stride; } memset(a_ptr, 0xff, picture->width); // reset alpha value to opaque a_ptr += picture->a_stride; y_ptr += picture->y_stride; } } else { uint32_t* argb = picture->argb; const uint32_t background = MakeARGB32(red, green, blue); for (y = 0; y < picture->height; ++y) { for (x = 0; x < picture->width; ++x) { const int alpha = (argb[x] >> 24) & 0xff; if (alpha != 0xff) { if (alpha > 0) { int r = (argb[x] >> 16) & 0xff; int g = (argb[x] >> 8) & 0xff; int b = (argb[x] >> 0) & 0xff; r = BLEND(red, r, alpha); g = BLEND(green, g, alpha); b = BLEND(blue, b, alpha); argb[x] = MakeARGB32(r, g, b); } else { argb[x] = background; } } } argb += picture->argb_stride; } } } #undef BLEND #undef BLEND_10BIT //------------------------------------------------------------------------------