// Copyright 2010 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // inline YUV<->RGB conversion function // // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. // More information at: http://en.wikipedia.org/wiki/YCbCr // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). // // For the Y'CbCr to RGB conversion, the BT.601 specification reads: // R = 1.164 * (Y-16) + 1.596 * (V-128) // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) // B = 1.164 * (Y-16) + 2.018 * (U-128) // where Y is in the [16,235] range, and U/V in the [16,240] range. // // The fixed-point implementation used here is: // R = (19077 . y + 26149 . v - 14234) >> 6 // G = (19077 . y - 6419 . u - 13320 . v + 8708) >> 6 // B = (19077 . y + 33050 . u - 17685) >> 6 // where the '.' operator is the mulhi_epu16 variant: // a . b = ((a << 8) * b) >> 16 // that preserves 8 bits of fractional precision before final descaling. // Author: Skal (pascal.massimino@gmail.com) #ifndef WEBP_DSP_YUV_H_ #define WEBP_DSP_YUV_H_ #include "src/dsp/dsp.h" #include "src/dec/vp8_dec.h" //------------------------------------------------------------------------------ // YUV -> RGB conversion #ifdef __cplusplus extern "C" { #endif enum { YUV_FIX = 16, // fixed-point precision for RGB->YUV YUV_HALF = 1 << (YUV_FIX - 1), YUV_FIX2 = 6, // fixed-point precision for YUV->RGB YUV_MASK2 = (256 << YUV_FIX2) - 1 }; //------------------------------------------------------------------------------ // slower on x86 by ~7-8%, but bit-exact with the SSE2/NEON version static WEBP_INLINE int MultHi(int v, int coeff) { // _mm_mulhi_epu16 emulation return (v * coeff) >> 8; } static WEBP_INLINE int VP8Clip8(int v) { return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; } static WEBP_INLINE int VP8YUVToR(int y, int v) { return VP8Clip8(MultHi(y, 19077) + MultHi(v, 26149) - 14234); } static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { return VP8Clip8(MultHi(y, 19077) - MultHi(u, 6419) - MultHi(v, 13320) + 8708); } static WEBP_INLINE int VP8YUVToB(int y, int u) { return VP8Clip8(MultHi(y, 19077) + MultHi(u, 33050) - 17685); } static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, uint8_t* const rgb) { rgb[0] = VP8YUVToR(y, v); rgb[1] = VP8YUVToG(y, u, v); rgb[2] = VP8YUVToB(y, u); } static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, uint8_t* const bgr) { bgr[0] = VP8YUVToB(y, u); bgr[1] = VP8YUVToG(y, u, v); bgr[2] = VP8YUVToR(y, v); } static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { const int r = VP8YUVToR(y, v); // 5 usable bits const int g = VP8YUVToG(y, u, v); // 6 usable bits const int b = VP8YUVToB(y, u); // 5 usable bits const int rg = (r & 0xf8) | (g >> 5); const int gb = ((g << 3) & 0xe0) | (b >> 3); #if (WEBP_SWAP_16BIT_CSP == 1) rgb[0] = gb; rgb[1] = rg; #else rgb[0] = rg; rgb[1] = gb; #endif } static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { const int r = VP8YUVToR(y, v); // 4 usable bits const int g = VP8YUVToG(y, u, v); // 4 usable bits const int b = VP8YUVToB(y, u); // 4 usable bits const int rg = (r & 0xf0) | (g >> 4); const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits #if (WEBP_SWAP_16BIT_CSP == 1) argb[0] = ba; argb[1] = rg; #else argb[0] = rg; argb[1] = ba; #endif } //----------------------------------------------------------------------------- // Alpha handling variants static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { argb[0] = 0xff; VP8YuvToRgb(y, u, v, argb + 1); } static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) { VP8YuvToBgr(y, u, v, bgra); bgra[3] = 0xff; } static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) { VP8YuvToRgb(y, u, v, rgba); rgba[3] = 0xff; } //----------------------------------------------------------------------------- // SSE2 extra functions (mostly for upsampling_sse2.c) #if defined(WEBP_USE_SSE2) // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst. void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); #endif // WEBP_USE_SSE2 //----------------------------------------------------------------------------- // SSE41 extra functions (mostly for upsampling_sse41.c) #if defined(WEBP_USE_SSE41) // Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst. void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); #endif // WEBP_USE_SSE41 //------------------------------------------------------------------------------ // RGB -> YUV conversion // Stub functions that can be called with various rounding values: static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; } static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { const int luma = 16839 * r + 33059 * g + 6420 * b; return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip } static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { const int u = -9719 * r - 19081 * g + 28800 * b; return VP8ClipUV(u, rounding); } static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { const int v = +28800 * r - 24116 * g - 4684 * b; return VP8ClipUV(v, rounding); } #ifdef __cplusplus } // extern "C" #endif #endif /* WEBP_DSP_YUV_H_ */