// Copyright 2015 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 Rescaling functions // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_SSE2) && !defined(WEBP_REDUCE_SIZE) #include #include #include "src/utils/rescaler_utils.h" #include "src/utils/utils.h" //------------------------------------------------------------------------------ // Implementations of critical functions ImportRow / ExportRow #define ROUNDER (WEBP_RESCALER_ONE >> 1) #define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) #define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) // input: 8 bytes ABCDEFGH -> output: A0E0B0F0C0G0D0H0 static void LoadTwoPixels_SSE2(const uint8_t* const src, __m128i* out) { const __m128i zero = _mm_setzero_si128(); const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH const __m128i B = _mm_unpacklo_epi8(A, zero); // A0B0C0D0E0F0G0H0 const __m128i C = _mm_srli_si128(B, 8); // E0F0G0H0 *out = _mm_unpacklo_epi16(B, C); } // input: 8 bytes ABCDEFGH -> output: A0B0C0D0E0F0G0H0 static void LoadEightPixels_SSE2(const uint8_t* const src, __m128i* out) { const __m128i zero = _mm_setzero_si128(); const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH *out = _mm_unpacklo_epi8(A, zero); } static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk, const uint8_t* src) { rescaler_t* frow = wrk->frow; const rescaler_t* const frow_end = frow + wrk->dst_width * wrk->num_channels; const int x_add = wrk->x_add; int accum = x_add; __m128i cur_pixels; // SSE2 implementation only works with 16b signed arithmetic at max. if (wrk->src_width < 8 || accum >= (1 << 15)) { WebPRescalerImportRowExpand_C(wrk, src); return; } assert(!WebPRescalerInputDone(wrk)); assert(wrk->x_expand); if (wrk->num_channels == 4) { LoadTwoPixels_SSE2(src, &cur_pixels); src += 4; while (1) { const __m128i mult = _mm_set1_epi32(((x_add - accum) << 16) | accum); const __m128i out = _mm_madd_epi16(cur_pixels, mult); _mm_storeu_si128((__m128i*)frow, out); frow += 4; if (frow >= frow_end) break; accum -= wrk->x_sub; if (accum < 0) { LoadTwoPixels_SSE2(src, &cur_pixels); src += 4; accum += x_add; } } } else { int left; const uint8_t* const src_limit = src + wrk->src_width - 8; LoadEightPixels_SSE2(src, &cur_pixels); src += 7; left = 7; while (1) { const __m128i mult = _mm_cvtsi32_si128(((x_add - accum) << 16) | accum); const __m128i out = _mm_madd_epi16(cur_pixels, mult); assert(sizeof(*frow) == sizeof(uint32_t)); WebPUint32ToMem((uint8_t*)frow, _mm_cvtsi128_si32(out)); frow += 1; if (frow >= frow_end) break; accum -= wrk->x_sub; if (accum < 0) { if (--left) { cur_pixels = _mm_srli_si128(cur_pixels, 2); } else if (src <= src_limit) { LoadEightPixels_SSE2(src, &cur_pixels); src += 7; left = 7; } else { // tail cur_pixels = _mm_srli_si128(cur_pixels, 2); cur_pixels = _mm_insert_epi16(cur_pixels, src[1], 1); src += 1; left = 1; } accum += x_add; } } } assert(accum == 0); } static void RescalerImportRowShrink_SSE2(WebPRescaler* const wrk, const uint8_t* src) { const int x_sub = wrk->x_sub; int accum = 0; const __m128i zero = _mm_setzero_si128(); const __m128i mult0 = _mm_set1_epi16(x_sub); const __m128i mult1 = _mm_set1_epi32(wrk->fx_scale); const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); __m128i sum = zero; rescaler_t* frow = wrk->frow; const rescaler_t* const frow_end = wrk->frow + 4 * wrk->dst_width; if (wrk->num_channels != 4 || wrk->x_add > (x_sub << 7)) { WebPRescalerImportRowShrink_C(wrk, src); return; } assert(!WebPRescalerInputDone(wrk)); assert(!wrk->x_expand); for (; frow < frow_end; frow += 4) { __m128i base = zero; accum += wrk->x_add; while (accum > 0) { const __m128i A = _mm_cvtsi32_si128(WebPMemToUint32(src)); src += 4; base = _mm_unpacklo_epi8(A, zero); // To avoid overflow, we need: base * x_add / x_sub < 32768 // => x_add < x_sub << 7. That's a 1/128 reduction ratio limit. sum = _mm_add_epi16(sum, base); accum -= x_sub; } { // Emit next horizontal pixel. const __m128i mult = _mm_set1_epi16(-accum); const __m128i frac0 = _mm_mullo_epi16(base, mult); // 16b x 16b -> 32b const __m128i frac1 = _mm_mulhi_epu16(base, mult); const __m128i frac = _mm_unpacklo_epi16(frac0, frac1); // frac is 32b const __m128i A0 = _mm_mullo_epi16(sum, mult0); const __m128i A1 = _mm_mulhi_epu16(sum, mult0); const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // sum * x_sub const __m128i frow_out = _mm_sub_epi32(B0, frac); // sum * x_sub - frac const __m128i D0 = _mm_srli_epi64(frac, 32); const __m128i D1 = _mm_mul_epu32(frac, mult1); // 32b x 16b -> 64b const __m128i D2 = _mm_mul_epu32(D0, mult1); const __m128i E1 = _mm_add_epi64(D1, rounder); const __m128i E2 = _mm_add_epi64(D2, rounder); const __m128i F1 = _mm_shuffle_epi32(E1, 1 | (3 << 2)); const __m128i F2 = _mm_shuffle_epi32(E2, 1 | (3 << 2)); const __m128i G = _mm_unpacklo_epi32(F1, F2); sum = _mm_packs_epi32(G, zero); _mm_storeu_si128((__m128i*)frow, frow_out); } } assert(accum == 0); } //------------------------------------------------------------------------------ // Row export // load *src as epi64, multiply by mult and store result in [out0 ... out3] static WEBP_INLINE void LoadDispatchAndMult_SSE2(const rescaler_t* const src, const __m128i* const mult, __m128i* const out0, __m128i* const out1, __m128i* const out2, __m128i* const out3) { const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + 0)); const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + 4)); const __m128i A2 = _mm_srli_epi64(A0, 32); const __m128i A3 = _mm_srli_epi64(A1, 32); if (mult != NULL) { *out0 = _mm_mul_epu32(A0, *mult); *out1 = _mm_mul_epu32(A1, *mult); *out2 = _mm_mul_epu32(A2, *mult); *out3 = _mm_mul_epu32(A3, *mult); } else { *out0 = A0; *out1 = A1; *out2 = A2; *out3 = A3; } } static WEBP_INLINE void ProcessRow_SSE2(const __m128i* const A0, const __m128i* const A1, const __m128i* const A2, const __m128i* const A3, const __m128i* const mult, uint8_t* const dst) { const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); const __m128i mask = _mm_set_epi32(0xffffffffu, 0, 0xffffffffu, 0); const __m128i B0 = _mm_mul_epu32(*A0, *mult); const __m128i B1 = _mm_mul_epu32(*A1, *mult); const __m128i B2 = _mm_mul_epu32(*A2, *mult); const __m128i B3 = _mm_mul_epu32(*A3, *mult); const __m128i C0 = _mm_add_epi64(B0, rounder); const __m128i C1 = _mm_add_epi64(B1, rounder); const __m128i C2 = _mm_add_epi64(B2, rounder); const __m128i C3 = _mm_add_epi64(B3, rounder); const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX); const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX); #if (WEBP_RESCALER_RFIX < 32) const __m128i D2 = _mm_and_si128(_mm_slli_epi64(C2, 32 - WEBP_RESCALER_RFIX), mask); const __m128i D3 = _mm_and_si128(_mm_slli_epi64(C3, 32 - WEBP_RESCALER_RFIX), mask); #else const __m128i D2 = _mm_and_si128(C2, mask); const __m128i D3 = _mm_and_si128(C3, mask); #endif const __m128i E0 = _mm_or_si128(D0, D2); const __m128i E1 = _mm_or_si128(D1, D3); const __m128i F = _mm_packs_epi32(E0, E1); const __m128i G = _mm_packus_epi16(F, F); _mm_storel_epi64((__m128i*)dst, G); } static WEBP_INLINE void ProcessRow_Floor_SSE2(const __m128i* const A0, const __m128i* const A1, const __m128i* const A2, const __m128i* const A3, const __m128i* const mult, uint8_t* const dst) { const __m128i mask = _mm_set_epi32(0xffffffffu, 0, 0xffffffffu, 0); const __m128i B0 = _mm_mul_epu32(*A0, *mult); const __m128i B1 = _mm_mul_epu32(*A1, *mult); const __m128i B2 = _mm_mul_epu32(*A2, *mult); const __m128i B3 = _mm_mul_epu32(*A3, *mult); const __m128i D0 = _mm_srli_epi64(B0, WEBP_RESCALER_RFIX); const __m128i D1 = _mm_srli_epi64(B1, WEBP_RESCALER_RFIX); #if (WEBP_RESCALER_RFIX < 32) const __m128i D2 = _mm_and_si128(_mm_slli_epi64(B2, 32 - WEBP_RESCALER_RFIX), mask); const __m128i D3 = _mm_and_si128(_mm_slli_epi64(B3, 32 - WEBP_RESCALER_RFIX), mask); #else const __m128i D2 = _mm_and_si128(B2, mask); const __m128i D3 = _mm_and_si128(B3, mask); #endif const __m128i E0 = _mm_or_si128(D0, D2); const __m128i E1 = _mm_or_si128(D1, D3); const __m128i F = _mm_packs_epi32(E0, E1); const __m128i G = _mm_packus_epi16(F, F); _mm_storel_epi64((__m128i*)dst, G); } static void RescalerExportRowExpand_SSE2(WebPRescaler* const wrk) { int x_out; uint8_t* const dst = wrk->dst; rescaler_t* const irow = wrk->irow; const int x_out_max = wrk->dst_width * wrk->num_channels; const rescaler_t* const frow = wrk->frow; const __m128i mult = _mm_set_epi32(0, wrk->fy_scale, 0, wrk->fy_scale); assert(!WebPRescalerOutputDone(wrk)); assert(wrk->y_accum <= 0 && wrk->y_sub + wrk->y_accum >= 0); assert(wrk->y_expand); if (wrk->y_accum == 0) { for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { __m128i A0, A1, A2, A3; LoadDispatchAndMult_SSE2(frow + x_out, NULL, &A0, &A1, &A2, &A3); ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out); } for (; x_out < x_out_max; ++x_out) { const uint32_t J = frow[x_out]; const int v = (int)MULT_FIX(J, wrk->fy_scale); assert(v >= 0 && v <= 255); dst[x_out] = v; } } else { const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); const __m128i mA = _mm_set_epi32(0, A, 0, A); const __m128i mB = _mm_set_epi32(0, B, 0, B); const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { __m128i A0, A1, A2, A3, B0, B1, B2, B3; LoadDispatchAndMult_SSE2(frow + x_out, &mA, &A0, &A1, &A2, &A3); LoadDispatchAndMult_SSE2(irow + x_out, &mB, &B0, &B1, &B2, &B3); { const __m128i C0 = _mm_add_epi64(A0, B0); const __m128i C1 = _mm_add_epi64(A1, B1); const __m128i C2 = _mm_add_epi64(A2, B2); const __m128i C3 = _mm_add_epi64(A3, B3); const __m128i D0 = _mm_add_epi64(C0, rounder); const __m128i D1 = _mm_add_epi64(C1, rounder); const __m128i D2 = _mm_add_epi64(C2, rounder); const __m128i D3 = _mm_add_epi64(C3, rounder); const __m128i E0 = _mm_srli_epi64(D0, WEBP_RESCALER_RFIX); const __m128i E1 = _mm_srli_epi64(D1, WEBP_RESCALER_RFIX); const __m128i E2 = _mm_srli_epi64(D2, WEBP_RESCALER_RFIX); const __m128i E3 = _mm_srli_epi64(D3, WEBP_RESCALER_RFIX); ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult, dst + x_out); } } for (; x_out < x_out_max; ++x_out) { const uint64_t I = (uint64_t)A * frow[x_out] + (uint64_t)B * irow[x_out]; const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); const int v = (int)MULT_FIX(J, wrk->fy_scale); assert(v >= 0 && v <= 255); dst[x_out] = v; } } } static void RescalerExportRowShrink_SSE2(WebPRescaler* const wrk) { int x_out; uint8_t* const dst = wrk->dst; rescaler_t* const irow = wrk->irow; const int x_out_max = wrk->dst_width * wrk->num_channels; const rescaler_t* const frow = wrk->frow; const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum); assert(!WebPRescalerOutputDone(wrk)); assert(wrk->y_accum <= 0); assert(!wrk->y_expand); if (yscale) { const int scale_xy = wrk->fxy_scale; const __m128i mult_xy = _mm_set_epi32(0, scale_xy, 0, scale_xy); const __m128i mult_y = _mm_set_epi32(0, yscale, 0, yscale); const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { __m128i A0, A1, A2, A3, B0, B1, B2, B3; LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3); LoadDispatchAndMult_SSE2(frow + x_out, &mult_y, &B0, &B1, &B2, &B3); { const __m128i C0 = _mm_add_epi64(B0, rounder); const __m128i C1 = _mm_add_epi64(B1, rounder); const __m128i C2 = _mm_add_epi64(B2, rounder); const __m128i C3 = _mm_add_epi64(B3, rounder); const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX); // = frac const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX); const __m128i D2 = _mm_srli_epi64(C2, WEBP_RESCALER_RFIX); const __m128i D3 = _mm_srli_epi64(C3, WEBP_RESCALER_RFIX); const __m128i E0 = _mm_sub_epi64(A0, D0); // irow[x] - frac const __m128i E1 = _mm_sub_epi64(A1, D1); const __m128i E2 = _mm_sub_epi64(A2, D2); const __m128i E3 = _mm_sub_epi64(A3, D3); const __m128i F2 = _mm_slli_epi64(D2, 32); const __m128i F3 = _mm_slli_epi64(D3, 32); const __m128i G0 = _mm_or_si128(D0, F2); const __m128i G1 = _mm_or_si128(D1, F3); _mm_storeu_si128((__m128i*)(irow + x_out + 0), G0); _mm_storeu_si128((__m128i*)(irow + x_out + 4), G1); ProcessRow_Floor_SSE2(&E0, &E1, &E2, &E3, &mult_xy, dst + x_out); } } for (; x_out < x_out_max; ++x_out) { const uint32_t frac = (int)MULT_FIX(frow[x_out], yscale); const int v = (int)MULT_FIX_FLOOR(irow[x_out] - frac, wrk->fxy_scale); assert(v >= 0 && v <= 255); dst[x_out] = v; irow[x_out] = frac; // new fractional start } } else { const uint32_t scale = wrk->fxy_scale; const __m128i mult = _mm_set_epi32(0, scale, 0, scale); const __m128i zero = _mm_setzero_si128(); for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { __m128i A0, A1, A2, A3; LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3); _mm_storeu_si128((__m128i*)(irow + x_out + 0), zero); _mm_storeu_si128((__m128i*)(irow + x_out + 4), zero); ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out); } for (; x_out < x_out_max; ++x_out) { const int v = (int)MULT_FIX(irow[x_out], scale); assert(v >= 0 && v <= 255); dst[x_out] = v; irow[x_out] = 0; } } } #undef MULT_FIX_FLOOR #undef MULT_FIX #undef ROUNDER //------------------------------------------------------------------------------ extern void WebPRescalerDspInitSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitSSE2(void) { WebPRescalerImportRowExpand = RescalerImportRowExpand_SSE2; WebPRescalerImportRowShrink = RescalerImportRowShrink_SSE2; WebPRescalerExportRowExpand = RescalerExportRowExpand_SSE2; WebPRescalerExportRowShrink = RescalerExportRowShrink_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(WebPRescalerDspInitSSE2) #endif // WEBP_USE_SSE2