// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // NEON variant of methods for lossless decoder // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_NEON) #include <arm_neon.h> #include "src/dsp/lossless.h" #include "src/dsp/neon.h" //------------------------------------------------------------------------------ // Colorspace conversion functions #if !defined(WORK_AROUND_GCC) // gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for // gcc-4.8.x at least. static void ConvertBGRAToRGBA_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) const uint8x16_t tmp = pixel.val[0]; pixel.val[0] = pixel.val[2]; pixel.val[2] = tmp; vst4q_u8(dst, pixel); dst += 64; } VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs } static void ConvertBGRAToBGR_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; vst3q_u8(dst, tmp); dst += 48; } VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs } static void ConvertBGRAToRGB_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~15); for (; src < end; src += 16) { const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; vst3q_u8(dst, tmp); dst += 48; } VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs } #else // WORK_AROUND_GCC // gcc-4.6.0 fallback static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; static void ConvertBGRAToRGBA_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~1); const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); for (; src < end; src += 2) { const uint8x8_t pixels = vld1_u8((uint8_t*)src); vst1_u8(dst, vtbl1_u8(pixels, shuffle)); dst += 8; } VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs } static const uint8_t kBGRShuffle[3][8] = { { 0, 1, 2, 4, 5, 6, 8, 9 }, { 10, 12, 13, 14, 16, 17, 18, 20 }, { 21, 22, 24, 25, 26, 28, 29, 30 } }; static void ConvertBGRAToBGR_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~7); const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); for (; src < end; src += 8) { uint8x8x4_t pixels; INIT_VECTOR4(pixels, vld1_u8((const uint8_t*)(src + 0)), vld1_u8((const uint8_t*)(src + 2)), vld1_u8((const uint8_t*)(src + 4)), vld1_u8((const uint8_t*)(src + 6))); vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); dst += 8 * 3; } VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs } static const uint8_t kRGBShuffle[3][8] = { { 2, 1, 0, 6, 5, 4, 10, 9 }, { 8, 14, 13, 12, 18, 17, 16, 22 }, { 21, 20, 26, 25, 24, 30, 29, 28 } }; static void ConvertBGRAToRGB_NEON(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const end = src + (num_pixels & ~7); const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); for (; src < end; src += 8) { uint8x8x4_t pixels; INIT_VECTOR4(pixels, vld1_u8((const uint8_t*)(src + 0)), vld1_u8((const uint8_t*)(src + 2)), vld1_u8((const uint8_t*)(src + 4)), vld1_u8((const uint8_t*)(src + 6))); vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); dst += 8 * 3; } VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs } #endif // !WORK_AROUND_GCC //------------------------------------------------------------------------------ // Predictor Transform #define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) #define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) #define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) #define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) #define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); #define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); #define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); #define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { const uint8x8_t A0 = LOAD_U32_AS_U8(a0); const uint8x8_t A1 = LOAD_U32_AS_U8(a1); return vhadd_u8(A0, A1); } static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, uint32_t c1, uint32_t c2) { const uint8x8_t avg = Average2_u8_NEON(c0, c1); // Remove one to c2 when bigger than avg. const uint8x8_t C2 = LOAD_U32_AS_U8(c2); const uint8x8_t cmp = vcgt_u8(C2, avg); const uint8x8_t C2_1 = vadd_u8(C2, cmp); // Compute half of the difference between avg and c2. const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); // Compute the sum with avg and saturate. const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); const uint32_t output = GET_U8_AS_U32(res); return output; } static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); const uint32_t avg = GET_U8_AS_U32(avg_u8x8); return avg; } static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, uint32_t a2) { const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); const uint8x8_t A1 = LOAD_U32_AS_U8(a1); const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); return avg; } static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) { return Average3_NEON(left, top[0], top[1]); } static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) { return Average2_NEON(left, top[-1]); } static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) { return Average2_NEON(left, top[0]); } static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) { return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]); } // Batch versions of those functions. // Predictor0: ARGB_BLACK. static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t res = vaddq_u8(src, black); STOREQ_U8_AS_U32P(&out[i], res); } VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); } // Predictor1: left. static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; const uint8x16_t zero = LOADQ_U32_AS_U8(0); for (i = 0; i + 4 <= num_pixels; i += 4) { // a | b | c | d const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); // 0 | a | b | c const uint8x16_t shift0 = vextq_u8(zero, src, 12); // a | a + b | b + c | c + d const uint8x16_t sum0 = vaddq_u8(src, shift0); // 0 | 0 | a | a + b const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); // a | a + b | a + b + c | a + b + c + d const uint8x16_t sum1 = vaddq_u8(sum0, shift1); const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); const uint8x16_t res = vaddq_u8(sum1, prev); STOREQ_U8_AS_U32P(&out[i], res); } VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); } // Macro that adds 32-bit integers from IN using mod 256 arithmetic // per 8 bit channel. #define GENERATE_PREDICTOR_1(X, IN) \ static void PredictorAdd##X##_NEON(const uint32_t* in, \ const uint32_t* upper, int num_pixels, \ uint32_t* out) { \ int i; \ for (i = 0; i + 4 <= num_pixels; i += 4) { \ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ const uint8x16_t res = vaddq_u8(src, other); \ STOREQ_U8_AS_U32P(&out[i], res); \ } \ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ } // Predictor2: Top. GENERATE_PREDICTOR_1(2, upper[i]) // Predictor3: Top-right. GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor4: Top-left. GENERATE_PREDICTOR_1(4, upper[i - 1]) #undef GENERATE_PREDICTOR_1 // Predictor5: average(average(left, TR), T) #define DO_PRED5(LANE) do { \ const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ const uint8x16_t res = vaddq_u8(avg, src); \ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ L = ROTATE32_LEFT(res); \ } while (0) static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); DO_PRED5(0); DO_PRED5(1); DO_PRED5(2); DO_PRED5(3); } VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED5 #define DO_PRED67(LANE) do { \ const uint8x16_t avg = vhaddq_u8(L, top); \ const uint8x16_t res = vaddq_u8(avg, src); \ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ L = ROTATE32_LEFT(res); \ } while (0) // Predictor6: average(left, TL) static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); DO_PRED67(0); DO_PRED67(1); DO_PRED67(2); DO_PRED67(3); } VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); } // Predictor7: average(left, T) static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); DO_PRED67(0); DO_PRED67(1); DO_PRED67(2); DO_PRED67(3); } VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED67 #define GENERATE_PREDICTOR_2(X, IN) \ static void PredictorAdd##X##_NEON(const uint32_t* in, \ const uint32_t* upper, int num_pixels, \ uint32_t* out) { \ int i; \ for (i = 0; i + 4 <= num_pixels; i += 4) { \ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ const uint8x16_t avg = vhaddq_u8(T, Tother); \ const uint8x16_t res = vaddq_u8(avg, src); \ STOREQ_U8_AS_U32P(&out[i], res); \ } \ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ } // Predictor8: average TL T. GENERATE_PREDICTOR_2(8, upper[i - 1]) // Predictor9: average T TR. GENERATE_PREDICTOR_2(9, upper[i + 1]) #undef GENERATE_PREDICTOR_2 // Predictor10: average of (average of (L,TL), average of (T, TR)). #define DO_PRED10(LANE) do { \ const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ const uint8x16_t res = vaddq_u8(avg, src); \ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ L = ROTATE32_LEFT(res); \ } while (0) static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); const uint8x16_t avgTTR = vhaddq_u8(T, TR); DO_PRED10(0); DO_PRED10(1); DO_PRED10(2); DO_PRED10(3); } VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED10 // Predictor11: select. #define DO_PRED11(LANE) do { \ const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ const uint32x4_t mask = vcleq_u32(pa, pb); \ const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ L = ROTATE32_LEFT(res); \ } while (0) static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); const uint32x4_t pb = vpaddlq_u16(sum_TTL); const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t sumTin = vaddq_u8(T, src); // in + T DO_PRED11(0); DO_PRED11(1); DO_PRED11(2); DO_PRED11(3); } VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED11 // Predictor12: ClampedAddSubtractFull. #define DO_PRED12(DIFF, LANE) do { \ const uint8x8_t pred = \ vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ const uint8x8_t res = \ vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ const uint16x8_t res16 = vmovl_u8(res); \ vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ /* rotate in the left predictor for next iteration */ \ L = vextq_u16(res16, res16, 4); \ } while (0) static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); for (i = 0; i + 4 <= num_pixels; i += 4) { // load four pixels of source const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); // precompute the difference T - TL once for all, stored as s16 const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); const int16x8_t diff_lo = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); const int16x8_t diff_hi = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); // loop over the four reconstructed pixels DO_PRED12(diff_lo, 0); DO_PRED12(diff_lo, 1); DO_PRED12(diff_hi, 2); DO_PRED12(diff_hi, 3); } VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED12 // Predictor13: ClampedAddSubtractHalf #define DO_PRED13(LANE, LOW_OR_HI) do { \ const uint8x16_t avg = vhaddq_u8(L, T); \ const uint8x16_t cmp = vcgtq_u8(TL, avg); \ const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ /* Compute half of the difference between avg and TL'. */ \ const int8x8_t diff_avg = \ vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ /* Compute the sum with avg and saturate. */ \ const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ const uint8x16_t res2 = vcombine_u8(res, res); \ vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ L = ROTATE32_LEFT(res2); \ } while (0) static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); DO_PRED13(0, vget_low_u8); DO_PRED13(1, vget_low_u8); DO_PRED13(2, vget_high_u8); DO_PRED13(3, vget_high_u8); } VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); } #undef DO_PRED13 #undef LOAD_U32_AS_U8 #undef LOAD_U32P_AS_U8 #undef LOADQ_U32_AS_U8 #undef LOADQ_U32P_AS_U8 #undef GET_U8_AS_U32 #undef GETQ_U8_AS_U32 #undef STOREQ_U8_AS_U32P #undef ROTATE32_LEFT //------------------------------------------------------------------------------ // Subtract-Green Transform // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use // non-standard versions there. #if defined(__APPLE__) && defined(__aarch64__) && \ defined(__apple_build_version__) && (__apple_build_version__< 6020037) #define USE_VTBLQ #endif #ifdef USE_VTBLQ // 255 = byte will be zeroed static const uint8_t kGreenShuffle[16] = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 }; static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, const uint8x16_t shuffle) { return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), vtbl1q_u8(argb, vget_high_u8(shuffle))); } #else // !USE_VTBLQ // 255 = byte will be zeroed static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, const uint8x8_t shuffle) { return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), vtbl1_u8(vget_high_u8(argb), shuffle)); } #endif // USE_VTBLQ static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, uint32_t* dst) { const uint32_t* const end = src + (num_pixels & ~3); #ifdef USE_VTBLQ const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); #else const uint8x8_t shuffle = vld1_u8(kGreenShuffle); #endif for (; src < end; src += 4, dst += 4) { const uint8x16_t argb = vld1q_u8((const uint8_t*)src); const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); } // fallthrough and finish off with plain-C VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); } //------------------------------------------------------------------------------ // Color Transform static void TransformColorInverse_NEON(const VP8LMultipliers* const m, const uint32_t* const src, int num_pixels, uint32_t* dst) { // sign-extended multiplying constants, pre-shifted by 6. #define CST(X) (((int16_t)(m->X << 8)) >> 6) const int16_t rb[8] = { CST(green_to_blue_), CST(green_to_red_), CST(green_to_blue_), CST(green_to_red_), CST(green_to_blue_), CST(green_to_red_), CST(green_to_blue_), CST(green_to_red_) }; const int16x8_t mults_rb = vld1q_s16(rb); const int16_t b2[8] = { 0, CST(red_to_blue_), 0, CST(red_to_blue_), 0, CST(red_to_blue_), 0, CST(red_to_blue_), }; const int16x8_t mults_b2 = vld1q_s16(b2); #undef CST #ifdef USE_VTBLQ static const uint8_t kg0g0[16] = { 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 }; const uint8x16_t shuffle = vld1q_u8(kg0g0); #else static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; const uint8x8_t shuffle = vld1_u8(k0g0g); #endif const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); int i; for (i = 0; i + 4 <= num_pixels; i += 4) { const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); // 0 g 0 g const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); // x dr x db1 const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); // x r' x b' const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), vreinterpretq_s8_s16(A)); // r' 0 b' 0 const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); // x db2 0 0 const int16x8_t D = vqdmulhq_s16(C, mults_b2); // 0 x db2 0 const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); // r' x b'' 0 const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), vreinterpretq_s8_s16(C)); // 0 r' 0 b'' const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); vst1q_u32(dst + i, out); } // Fall-back to C-version for left-overs. VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); } #undef USE_VTBLQ //------------------------------------------------------------------------------ // Entry point extern void VP8LDspInitNEON(void); WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { VP8LPredictors[5] = Predictor5_NEON; VP8LPredictors[6] = Predictor6_NEON; VP8LPredictors[7] = Predictor7_NEON; VP8LPredictors[13] = Predictor13_NEON; VP8LPredictorsAdd[0] = PredictorAdd0_NEON; VP8LPredictorsAdd[1] = PredictorAdd1_NEON; VP8LPredictorsAdd[2] = PredictorAdd2_NEON; VP8LPredictorsAdd[3] = PredictorAdd3_NEON; VP8LPredictorsAdd[4] = PredictorAdd4_NEON; VP8LPredictorsAdd[5] = PredictorAdd5_NEON; VP8LPredictorsAdd[6] = PredictorAdd6_NEON; VP8LPredictorsAdd[7] = PredictorAdd7_NEON; VP8LPredictorsAdd[8] = PredictorAdd8_NEON; VP8LPredictorsAdd[9] = PredictorAdd9_NEON; VP8LPredictorsAdd[10] = PredictorAdd10_NEON; VP8LPredictorsAdd[11] = PredictorAdd11_NEON; VP8LPredictorsAdd[12] = PredictorAdd12_NEON; VP8LPredictorsAdd[13] = PredictorAdd13_NEON; VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; VP8LTransformColorInverse = TransformColorInverse_NEON; } #else // !WEBP_USE_NEON WEBP_DSP_INIT_STUB(VP8LDspInitNEON) #endif // WEBP_USE_NEON