// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Image transforms and color space conversion methods for lossless decoder. // // Authors: Vikas Arora (vikaas.arora@gmail.com) // Jyrki Alakuijala (jyrki@google.com) // Urvang Joshi (urvang@google.com) #include "src/dsp/dsp.h" #include #include #include #include "src/dec/vp8li_dec.h" #include "src/utils/endian_inl_utils.h" #include "src/dsp/lossless.h" #include "src/dsp/lossless_common.h" //------------------------------------------------------------------------------ // Image transforms. static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); } static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { return Average2(Average2(a0, a2), a1); } static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3) { return Average2(Average2(a0, a1), Average2(a2, a3)); } static WEBP_INLINE uint32_t Clip255(uint32_t a) { if (a < 256) { return a; } // return 0, when a is a negative integer. // return 255, when a is positive. return ~a >> 24; } static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { return Clip255(a + b - c); } static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, uint32_t c2) { const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, (c1 >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, (c1 >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; } static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { return Clip255(a + (a - b) / 2); } static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, uint32_t c2) { const uint32_t ave = Average2(c0, c1); const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; } // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is // inlined. #if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409 # define LOCAL_INLINE __attribute__ ((noinline)) #else # define LOCAL_INLINE WEBP_INLINE #endif static LOCAL_INLINE int Sub3(int a, int b, int c) { const int pb = b - c; const int pa = a - c; return abs(pb) - abs(pa); } #undef LOCAL_INLINE static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { const int pa_minus_pb = Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); return (pa_minus_pb <= 0) ? a : b; } //------------------------------------------------------------------------------ // Predictors static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) { (void)top; (void)left; return ARGB_BLACK; } static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) { (void)top; return left; } static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) { (void)left; return top[0]; } static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) { (void)left; return top[1]; } static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) { (void)left; return top[-1]; } static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average3(left, top[0], top[1]); return pred; } static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[-1]); return pred; } static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(left, top[0]); return pred; } static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[-1], top[0]); (void)left; return pred; } static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average2(top[0], top[1]); (void)left; return pred; } static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Average4(left, top[-1], top[0], top[1]); return pred; } static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = Select(top[0], left, top[-1]); return pred; } static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); return pred; } static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) { const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); return pred; } GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C) static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, int num_pixels, uint32_t* out) { int i; uint32_t left = out[-1]; for (i = 0; i < num_pixels; ++i) { out[i] = left = VP8LAddPixels(in[i], left); } (void)upper; } GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C) GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C) GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C) GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C) GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C) GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C) GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C) GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C) GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C) GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C) GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C) GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C) //------------------------------------------------------------------------------ // Inverse prediction. static void PredictorInverseTransform_C(const VP8LTransform* const transform, int y_start, int y_end, const uint32_t* in, uint32_t* out) { const int width = transform->xsize_; if (y_start == 0) { // First Row follows the L (mode=1) mode. PredictorAdd0_C(in, NULL, 1, out); PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); in += width; out += width; ++y_start; } { int y = y_start; const int tile_width = 1 << transform->bits_; const int mask = tile_width - 1; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); const uint32_t* pred_mode_base = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { const uint32_t* pred_mode_src = pred_mode_base; int x = 1; // First pixel follows the T (mode=2) mode. PredictorAdd2_C(in, out - width, 1, out); // .. the rest: while (x < width) { const VP8LPredictorAddSubFunc pred_func = VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; int x_end = (x & ~mask) + tile_width; if (x_end > width) x_end = width; pred_func(in + x, out + x - width, x_end - x, out + x); x = x_end; } in += width; out += width; ++y; if ((y & mask) == 0) { // Use the same mask, since tiles are squares. pred_mode_base += tiles_per_row; } } } } // Add green to blue and red channels (i.e. perform the inverse transform of // 'subtract green'). void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, uint32_t* dst) { int i; for (i = 0; i < num_pixels; ++i) { const uint32_t argb = src[i]; const uint32_t green = ((argb >> 8) & 0xff); uint32_t red_blue = (argb & 0x00ff00ffu); red_blue += (green << 16) | green; red_blue &= 0x00ff00ffu; dst[i] = (argb & 0xff00ff00u) | red_blue; } } static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) { return ((int)color_pred * color) >> 5; } static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, VP8LMultipliers* const m) { m->green_to_red_ = (color_code >> 0) & 0xff; m->green_to_blue_ = (color_code >> 8) & 0xff; m->red_to_blue_ = (color_code >> 16) & 0xff; } void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, const uint32_t* src, int num_pixels, uint32_t* dst) { int i; for (i = 0; i < num_pixels; ++i) { const uint32_t argb = src[i]; const int8_t green = (int8_t)(argb >> 8); const uint32_t red = argb >> 16; int new_red = red & 0xff; int new_blue = argb & 0xff; new_red += ColorTransformDelta(m->green_to_red_, green); new_red &= 0xff; new_blue += ColorTransformDelta(m->green_to_blue_, green); new_blue += ColorTransformDelta(m->red_to_blue_, (int8_t)new_red); new_blue &= 0xff; dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); } } // Color space inverse transform. static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, int y_start, int y_end, const uint32_t* src, uint32_t* dst) { const int width = transform->xsize_; const int tile_width = 1 << transform->bits_; const int mask = tile_width - 1; const int safe_width = width & ~mask; const int remaining_width = width - safe_width; const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); int y = y_start; const uint32_t* pred_row = transform->data_ + (y >> transform->bits_) * tiles_per_row; while (y < y_end) { const uint32_t* pred = pred_row; VP8LMultipliers m = { 0, 0, 0 }; const uint32_t* const src_safe_end = src + safe_width; const uint32_t* const src_end = src + width; while (src < src_safe_end) { ColorCodeToMultipliers(*pred++, &m); VP8LTransformColorInverse(&m, src, tile_width, dst); src += tile_width; dst += tile_width; } if (src < src_end) { // Left-overs using C-version. ColorCodeToMultipliers(*pred++, &m); VP8LTransformColorInverse(&m, src, remaining_width, dst); src += remaining_width; dst += remaining_width; } ++y; if ((y & mask) == 0) pred_row += tiles_per_row; } } // Separate out pixels packed together using pixel-bundling. // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ GET_INDEX, GET_VALUE) \ static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ TYPE* dst, int y_start, int y_end, int width) { \ int y; \ for (y = y_start; y < y_end; ++y) { \ int x; \ for (x = 0; x < width; ++x) { \ *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ } \ } \ } \ STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ int y_start, int y_end, const TYPE* src, \ TYPE* dst) { \ int y; \ const int bits_per_pixel = 8 >> transform->bits_; \ const int width = transform->xsize_; \ const uint32_t* const color_map = transform->data_; \ if (bits_per_pixel < 8) { \ const int pixels_per_byte = 1 << transform->bits_; \ const int count_mask = pixels_per_byte - 1; \ const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ for (y = y_start; y < y_end; ++y) { \ uint32_t packed_pixels = 0; \ int x; \ for (x = 0; x < width; ++x) { \ /* We need to load fresh 'packed_pixels' once every */ \ /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ /* is a power of 2, so can just use a mask for that, instead of */ \ /* decrementing a counter. */ \ if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ packed_pixels >>= bits_per_pixel; \ } \ } \ } else { \ VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ } \ } COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) #undef COLOR_INDEX_INVERSE void VP8LInverseTransform(const VP8LTransform* const transform, int row_start, int row_end, const uint32_t* const in, uint32_t* const out) { const int width = transform->xsize_; assert(row_start < row_end); assert(row_end <= transform->ysize_); switch (transform->type_) { case SUBTRACT_GREEN: VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); break; case PREDICTOR_TRANSFORM: PredictorInverseTransform_C(transform, row_start, row_end, in, out); if (row_end != transform->ysize_) { // The last predicted row in this iteration will be the top-pred row // for the first row in next iteration. memcpy(out - width, out + (row_end - row_start - 1) * width, width * sizeof(*out)); } break; case CROSS_COLOR_TRANSFORM: ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); break; case COLOR_INDEXING_TRANSFORM: if (in == out && transform->bits_ > 0) { // Move packed pixels to the end of unpacked region, so that unpacking // can occur seamlessly. // Also, note that this is the only transform that applies on // the effective width of VP8LSubSampleSize(xsize_, bits_). All other // transforms work on effective width of xsize_. const int out_stride = (row_end - row_start) * width; const int in_stride = (row_end - row_start) * VP8LSubSampleSize(transform->xsize_, transform->bits_); uint32_t* const src = out + out_stride - in_stride; memmove(src, out, in_stride * sizeof(*src)); ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); } else { ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); } break; } } //------------------------------------------------------------------------------ // Color space conversion. static int is_big_endian(void) { static const union { uint16_t w; uint8_t b[2]; } tmp = { 1 }; return (tmp.b[0] != 1); } void VP8LConvertBGRAToRGB_C(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; } } void VP8LConvertBGRAToRGBA_C(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 16) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 24) & 0xff; } } void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); #if (WEBP_SWAP_16BIT_CSP == 1) *dst++ = ba; *dst++ = rg; #else *dst++ = rg; *dst++ = ba; #endif } } void VP8LConvertBGRAToRGB565_C(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); #if (WEBP_SWAP_16BIT_CSP == 1) *dst++ = gb; *dst++ = rg; #else *dst++ = rg; *dst++ = gb; #endif } } void VP8LConvertBGRAToBGR_C(const uint32_t* src, int num_pixels, uint8_t* dst) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; *dst++ = (argb >> 0) & 0xff; *dst++ = (argb >> 8) & 0xff; *dst++ = (argb >> 16) & 0xff; } } static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, int swap_on_big_endian) { if (is_big_endian() == swap_on_big_endian) { const uint32_t* const src_end = src + num_pixels; while (src < src_end) { const uint32_t argb = *src++; WebPUint32ToMem(dst, BSwap32(argb)); dst += sizeof(argb); } } else { memcpy(dst, src, num_pixels * sizeof(*src)); } } void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { switch (out_colorspace) { case MODE_RGB: VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); break; case MODE_RGBA: VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); break; case MODE_rgbA: VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); break; case MODE_BGR: VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); break; case MODE_BGRA: CopyOrSwap(in_data, num_pixels, rgba, 1); break; case MODE_bgrA: CopyOrSwap(in_data, num_pixels, rgba, 1); WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); break; case MODE_ARGB: CopyOrSwap(in_data, num_pixels, rgba, 0); break; case MODE_Argb: CopyOrSwap(in_data, num_pixels, rgba, 0); WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); break; case MODE_RGBA_4444: VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); break; case MODE_rgbA_4444: VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); break; case MODE_RGB_565: VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); break; default: assert(0); // Code flow should not reach here. } } //------------------------------------------------------------------------------ VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; VP8LPredictorFunc VP8LPredictors[16]; // exposed plain-C implementations VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; VP8LPredictorFunc VP8LPredictors_C[16]; VP8LTransformColorInverseFunc VP8LTransformColorInverse; VP8LConvertFunc VP8LConvertBGRAToRGB; VP8LConvertFunc VP8LConvertBGRAToRGBA; VP8LConvertFunc VP8LConvertBGRAToRGBA4444; VP8LConvertFunc VP8LConvertBGRAToRGB565; VP8LConvertFunc VP8LConvertBGRAToBGR; VP8LMapARGBFunc VP8LMapColor32b; VP8LMapAlphaFunc VP8LMapColor8b; extern void VP8LDspInitSSE2(void); extern void VP8LDspInitNEON(void); extern void VP8LDspInitMIPSdspR2(void); extern void VP8LDspInitMSA(void); #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ (OUT)[0] = IN##0_C; \ (OUT)[1] = IN##1_C; \ (OUT)[2] = IN##2_C; \ (OUT)[3] = IN##3_C; \ (OUT)[4] = IN##4_C; \ (OUT)[5] = IN##5_C; \ (OUT)[6] = IN##6_C; \ (OUT)[7] = IN##7_C; \ (OUT)[8] = IN##8_C; \ (OUT)[9] = IN##9_C; \ (OUT)[10] = IN##10_C; \ (OUT)[11] = IN##11_C; \ (OUT)[12] = IN##12_C; \ (OUT)[13] = IN##13_C; \ (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ (OUT)[15] = IN##0_C; \ } while (0); WEBP_DSP_INIT_FUNC(VP8LDspInit) { COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) #if !WEBP_NEON_OMIT_C_CODE VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; VP8LTransformColorInverse = VP8LTransformColorInverse_C; VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; #endif VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; VP8LMapColor32b = MapARGB_C; VP8LMapColor8b = MapAlpha_C; // If defined, use CPUInfo() to overwrite some pointers with faster versions. if (VP8GetCPUInfo != NULL) { #if defined(WEBP_USE_SSE2) if (VP8GetCPUInfo(kSSE2)) { VP8LDspInitSSE2(); } #endif #if defined(WEBP_USE_MIPS_DSP_R2) if (VP8GetCPUInfo(kMIPSdspR2)) { VP8LDspInitMIPSdspR2(); } #endif #if defined(WEBP_USE_MSA) if (VP8GetCPUInfo(kMSA)) { VP8LDspInitMSA(); } #endif } #if defined(WEBP_USE_NEON) if (WEBP_NEON_OMIT_C_CODE || (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { VP8LDspInitNEON(); } #endif assert(VP8LAddGreenToBlueAndRed != NULL); assert(VP8LTransformColorInverse != NULL); assert(VP8LConvertBGRAToRGBA != NULL); assert(VP8LConvertBGRAToRGB != NULL); assert(VP8LConvertBGRAToBGR != NULL); assert(VP8LConvertBGRAToRGBA4444 != NULL); assert(VP8LConvertBGRAToRGB565 != NULL); assert(VP8LMapColor32b != NULL); assert(VP8LMapColor8b != NULL); } #undef COPY_PREDICTOR_ARRAY //------------------------------------------------------------------------------