// Copyright 2011 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 version of speed-critical encoding functions. // // Author: Christian Duvivier (cduvivier@google.com) #include "src/dsp/dsp.h" #if defined(WEBP_USE_SSE2) #include <assert.h> #include <stdlib.h> // for abs() #include <emmintrin.h> #include "src/dsp/common_sse2.h" #include "src/enc/cost_enc.h" #include "src/enc/vp8i_enc.h" //------------------------------------------------------------------------------ // Transforms (Paragraph 14.4) // Does one or two inverse transforms. static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, int do_two) { // This implementation makes use of 16-bit fixed point versions of two // multiply constants: // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 // // To be able to use signed 16-bit integers, we use the following trick to // have constants within range: // - Associated constants are obtained by subtracting the 16-bit fixed point // version of one: // k = K - (1 << 16) => K = k + (1 << 16) // K1 = 85267 => k1 = 20091 // K2 = 35468 => k2 = -30068 // - The multiplication of a variable by a constant become the sum of the // variable and the multiplication of that variable by the associated // constant: // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x const __m128i k1 = _mm_set1_epi16(20091); const __m128i k2 = _mm_set1_epi16(-30068); __m128i T0, T1, T2, T3; // Load and concatenate the transform coefficients (we'll do two inverse // transforms in parallel). In the case of only one inverse transform, the // second half of the vectors will just contain random value we'll never // use nor store. __m128i in0, in1, in2, in3; { in0 = _mm_loadl_epi64((const __m128i*)&in[0]); in1 = _mm_loadl_epi64((const __m128i*)&in[4]); in2 = _mm_loadl_epi64((const __m128i*)&in[8]); in3 = _mm_loadl_epi64((const __m128i*)&in[12]); // a00 a10 a20 a30 x x x x // a01 a11 a21 a31 x x x x // a02 a12 a22 a32 x x x x // a03 a13 a23 a33 x x x x if (do_two) { const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); in0 = _mm_unpacklo_epi64(in0, inB0); in1 = _mm_unpacklo_epi64(in1, inB1); in2 = _mm_unpacklo_epi64(in2, inB2); in3 = _mm_unpacklo_epi64(in3, inB3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } } // Vertical pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i a = _mm_add_epi16(in0, in2); const __m128i b = _mm_sub_epi16(in0, in2); // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 const __m128i c1 = _mm_mulhi_epi16(in1, k2); const __m128i c2 = _mm_mulhi_epi16(in3, k1); const __m128i c3 = _mm_sub_epi16(in1, in3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 const __m128i d1 = _mm_mulhi_epi16(in1, k1); const __m128i d2 = _mm_mulhi_epi16(in3, k2); const __m128i d3 = _mm_add_epi16(in1, in3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); } // Horizontal pass and subsequent transpose. { // First pass, c and d calculations are longer because of the "trick" // multiplications. const __m128i four = _mm_set1_epi16(4); const __m128i dc = _mm_add_epi16(T0, four); const __m128i a = _mm_add_epi16(dc, T2); const __m128i b = _mm_sub_epi16(dc, T2); // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 const __m128i c1 = _mm_mulhi_epi16(T1, k2); const __m128i c2 = _mm_mulhi_epi16(T3, k1); const __m128i c3 = _mm_sub_epi16(T1, T3); const __m128i c4 = _mm_sub_epi16(c1, c2); const __m128i c = _mm_add_epi16(c3, c4); // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 const __m128i d1 = _mm_mulhi_epi16(T1, k1); const __m128i d2 = _mm_mulhi_epi16(T3, k2); const __m128i d3 = _mm_add_epi16(T1, T3); const __m128i d4 = _mm_add_epi16(d1, d2); const __m128i d = _mm_add_epi16(d3, d4); // Second pass. const __m128i tmp0 = _mm_add_epi16(a, d); const __m128i tmp1 = _mm_add_epi16(b, c); const __m128i tmp2 = _mm_sub_epi16(b, c); const __m128i tmp3 = _mm_sub_epi16(a, d); const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, &T2, &T3); } // Add inverse transform to 'ref' and store. { const __m128i zero = _mm_setzero_si128(); // Load the reference(s). __m128i ref0, ref1, ref2, ref3; if (do_two) { // Load eight bytes/pixels per line. ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); } else { // Load four bytes/pixels per line. ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS])); ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS])); ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS])); ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS])); } // Convert to 16b. ref0 = _mm_unpacklo_epi8(ref0, zero); ref1 = _mm_unpacklo_epi8(ref1, zero); ref2 = _mm_unpacklo_epi8(ref2, zero); ref3 = _mm_unpacklo_epi8(ref3, zero); // Add the inverse transform(s). ref0 = _mm_add_epi16(ref0, T0); ref1 = _mm_add_epi16(ref1, T1); ref2 = _mm_add_epi16(ref2, T2); ref3 = _mm_add_epi16(ref3, T3); // Unsigned saturate to 8b. ref0 = _mm_packus_epi16(ref0, ref0); ref1 = _mm_packus_epi16(ref1, ref1); ref2 = _mm_packus_epi16(ref2, ref2); ref3 = _mm_packus_epi16(ref3, ref3); // Store the results. if (do_two) { // Store eight bytes/pixels per line. _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); } else { // Store four bytes/pixels per line. WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); } } } static void FTransformPass1_SSE2(const __m128i* const in01, const __m128i* const in23, __m128i* const out01, __m128i* const out32) { const __m128i k937 = _mm_set1_epi32(937); const __m128i k1812 = _mm_set1_epi32(1812); const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, 2217, 5352, 2217, 5352); const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, -5352, 2217, -5352, 2217); // *in01 = 00 01 10 11 02 03 12 13 // *in23 = 20 21 30 31 22 23 32 33 const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); // 00 01 10 11 03 02 13 12 // 20 21 30 31 23 22 33 32 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); // 00 01 10 11 20 21 30 31 // 03 02 13 12 23 22 33 32 const __m128i a01 = _mm_add_epi16(s01, s32); const __m128i a32 = _mm_sub_epi16(s01, s32); // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); *out01 = _mm_unpacklo_epi32(s_lo, s_hi); *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. } static void FTransformPass2_SSE2(const __m128i* const v01, const __m128i* const v32, int16_t* out) { const __m128i zero = _mm_setzero_si128(); const __m128i seven = _mm_set1_epi16(7); const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217); const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352); const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); const __m128i k51000 = _mm_set1_epi32(51000); // Same operations are done on the (0,3) and (1,2) pairs. // a3 = v0 - v3 // a2 = v1 - v2 const __m128i a32 = _mm_sub_epi16(*v01, *v32); const __m128i a22 = _mm_unpackhi_epi64(a32, a32); const __m128i b23 = _mm_unpacklo_epi16(a22, a32); const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); const __m128i d3 = _mm_add_epi32(c3, k51000); const __m128i e1 = _mm_srai_epi32(d1, 16); const __m128i e3 = _mm_srai_epi32(d3, 16); // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) const __m128i f1 = _mm_packs_epi32(e1, e1); const __m128i f3 = _mm_packs_epi32(e3, e3); // g1 = f1 + (a3 != 0); // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the // desired (0, 1), we add one earlier through k12000_plus_one. // -> g1 = f1 + 1 - (a3 == 0) const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); // a0 = v0 + v3 // a1 = v1 + v2 const __m128i a01 = _mm_add_epi16(*v01, *v32); const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); const __m128i a11 = _mm_unpackhi_epi64(a01, a01); const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); // d0 = (a0 + a1 + 7) >> 4; // d2 = (a0 - a1 + 7) >> 4; const __m128i d0 = _mm_srai_epi16(c0, 4); const __m128i d2 = _mm_srai_epi16(c2, 4); const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); _mm_storeu_si128((__m128i*)&out[0], d0_g1); _mm_storeu_si128((__m128i*)&out[8], d2_f3); } static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref, int16_t* out) { const __m128i zero = _mm_setzero_si128(); // Load src. const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); // 00 01 02 03 * // 10 11 12 13 * // 20 21 22 23 * // 30 31 32 33 * // Shuffle. const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); // 00 01 10 11 02 03 12 13 * * ... // 20 21 30 31 22 22 32 33 * * ... // Load ref. const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); // Convert both to 16 bit. const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); // Compute the difference. const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); __m128i v01, v32; // First pass FTransformPass1_SSE2(&row01, &row23, &v01, &v32); // Second pass FTransformPass2_SSE2(&v01, &v32, out); } static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref, int16_t* out) { const __m128i zero = _mm_setzero_si128(); // Load src and convert to 16b. const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); // Load ref and convert to 16b. const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); // Compute difference. -> 00 01 02 03 00' 01' 02' 03' const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); // Unpack and shuffle // 00 01 02 03 0 0 0 0 // 10 11 12 13 0 0 0 0 // 20 21 22 23 0 0 0 0 // 30 31 32 33 0 0 0 0 const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); __m128i v01l, v32l; __m128i v01h, v32h; // First pass FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l); FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h); // Second pass FTransformPass2_SSE2(&v01l, &v32l, out + 0); FTransformPass2_SSE2(&v01h, &v32h, out + 16); } static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) { const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 *out = _mm_madd_epi16(D, kMult); } static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) { // Input is 12b signed. __m128i row0, row1, row2, row3; // Rows are 14b signed. FTransformWHTRow_SSE2(in + 0 * 64, &row0); FTransformWHTRow_SSE2(in + 1 * 64, &row1); FTransformWHTRow_SSE2(in + 2 * 64, &row2); FTransformWHTRow_SSE2(in + 3 * 64, &row3); { // The a* are 15b signed. const __m128i a0 = _mm_add_epi32(row0, row2); const __m128i a1 = _mm_add_epi32(row1, row3); const __m128i a2 = _mm_sub_epi32(row1, row3); const __m128i a3 = _mm_sub_epi32(row0, row2); const __m128i a0a3 = _mm_packs_epi32(a0, a3); const __m128i a1a2 = _mm_packs_epi32(a1, a2); // The b* are 16b signed. const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); } } //------------------------------------------------------------------------------ // Compute susceptibility based on DCT-coeff histograms: // the higher, the "easier" the macroblock is to compress. static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred, int start_block, int end_block, VP8Histogram* const histo) { const __m128i zero = _mm_setzero_si128(); const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); int j; int distribution[MAX_COEFF_THRESH + 1] = { 0 }; for (j = start_block; j < end_block; ++j) { int16_t out[16]; int k; FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out); // Convert coefficients to bin (within out[]). { // Load. const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); const __m128i d0 = _mm_sub_epi16(zero, out0); const __m128i d1 = _mm_sub_epi16(zero, out1); const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b const __m128i abs1 = _mm_max_epi16(out1, d1); // v = abs(out) >> 3 const __m128i v0 = _mm_srai_epi16(abs0, 3); const __m128i v1 = _mm_srai_epi16(abs1, 3); // bin = min(v, MAX_COEFF_THRESH) const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); // Store. _mm_storeu_si128((__m128i*)&out[0], bin0); _mm_storeu_si128((__m128i*)&out[8], bin1); } // Convert coefficients to bin. for (k = 0; k < 16; ++k) { ++distribution[out[k]]; } } VP8SetHistogramData(distribution, histo); } //------------------------------------------------------------------------------ // Intra predictions // helper for chroma-DC predictions static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { int j; const __m128i values = _mm_set1_epi8(v); for (j = 0; j < 8; ++j) { _mm_storel_epi64((__m128i*)(dst + j * BPS), values); } } static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { int j; const __m128i values = _mm_set1_epi8(v); for (j = 0; j < 16; ++j) { _mm_store_si128((__m128i*)(dst + j * BPS), values); } } static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) { if (size == 4) { int j; for (j = 0; j < 4; ++j) { memset(dst + j * BPS, value, 4); } } else if (size == 8) { Put8x8uv_SSE2(value, dst); } else { Put16_SSE2(value, dst); } } static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) { int j; const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); for (j = 0; j < 8; ++j) { _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); } } static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) { const __m128i top_values = _mm_load_si128((const __m128i*)top); int j; for (j = 0; j < 16; ++j) { _mm_store_si128((__m128i*)(dst + j * BPS), top_values); } } static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst, const uint8_t* top, int size) { if (top != NULL) { if (size == 8) { VE8uv_SSE2(dst, top); } else { VE16_SSE2(dst, top); } } else { Fill_SSE2(dst, 127, size); } } static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) { int j; for (j = 0; j < 8; ++j) { const __m128i values = _mm_set1_epi8(left[j]); _mm_storel_epi64((__m128i*)dst, values); dst += BPS; } } static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) { int j; for (j = 0; j < 16; ++j) { const __m128i values = _mm_set1_epi8(left[j]); _mm_store_si128((__m128i*)dst, values); dst += BPS; } } static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst, const uint8_t* left, int size) { if (left != NULL) { if (size == 8) { HE8uv_SSE2(dst, left); } else { HE16_SSE2(dst, left); } } else { Fill_SSE2(dst, 129, size); } } static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top, int size) { const __m128i zero = _mm_setzero_si128(); int y; if (size == 8) { const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); for (y = 0; y < 8; ++y, dst += BPS) { const int val = left[y] - left[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); _mm_storel_epi64((__m128i*)dst, out); } } else { const __m128i top_values = _mm_load_si128((const __m128i*)top); const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); for (y = 0; y < 16; ++y, dst += BPS) { const int val = left[y] - left[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out_0 = _mm_add_epi16(base, top_base_0); const __m128i out_1 = _mm_add_epi16(base, top_base_1); const __m128i out = _mm_packus_epi16(out_0, out_1); _mm_store_si128((__m128i*)dst, out); } } } static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top, int size) { if (left != NULL) { if (top != NULL) { TM_SSE2(dst, left, top, size); } else { HorizontalPred_SSE2(dst, left, size); } } else { // true motion without left samples (hence: with default 129 value) // is equivalent to VE prediction where you just copy the top samples. // Note that if top samples are not available, the default value is // then 129, and not 127 as in the VerticalPred case. if (top != NULL) { VerticalPred_SSE2(dst, top, size); } else { Fill_SSE2(dst, 129, size); } } } static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); const int DC = VP8HorizontalAdd8b(&combined) + 8; Put8x8uv_SSE2(DC >> 4, dst); } static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) { const __m128i zero = _mm_setzero_si128(); const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); const __m128i sum = _mm_sad_epu8(top_values, zero); const int DC = _mm_cvtsi128_si32(sum) + 4; Put8x8uv_SSE2(DC >> 3, dst); } static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) { // 'left' is contiguous so we can reuse the top summation. DC8uvNoLeft_SSE2(dst, left); } static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) { Put8x8uv_SSE2(0x80, dst); } static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { if (top != NULL) { if (left != NULL) { // top and left present DC8uv_SSE2(dst, left, top); } else { // top, but no left DC8uvNoLeft_SSE2(dst, top); } } else if (left != NULL) { // left but no top DC8uvNoTop_SSE2(dst, left); } else { // no top, no left, nothing. DC8uvNoTopLeft_SSE2(dst); } } static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { const __m128i top_row = _mm_load_si128((const __m128i*)top); const __m128i left_row = _mm_load_si128((const __m128i*)left); const int DC = VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; Put16_SSE2(DC >> 5, dst); } static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) { const __m128i top_row = _mm_load_si128((const __m128i*)top); const int DC = VP8HorizontalAdd8b(&top_row) + 8; Put16_SSE2(DC >> 4, dst); } static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) { // 'left' is contiguous so we can reuse the top summation. DC16NoLeft_SSE2(dst, left); } static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) { Put16_SSE2(0x80, dst); } static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { if (top != NULL) { if (left != NULL) { // top and left present DC16_SSE2(dst, left, top); } else { // top, but no left DC16NoLeft_SSE2(dst, top); } } else if (left != NULL) { // left but no top DC16NoTop_SSE2(dst, left); } else { // no top, no left, nothing. DC16NoTopLeft_SSE2(dst); } } //------------------------------------------------------------------------------ // 4x4 predictions #define DST(x, y) dst[(x) + (y) * BPS] #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) #define AVG2(a, b) (((a) + (b) + 1) >> 1) // We use the following 8b-arithmetic tricks: // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] // and: // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 static WEBP_INLINE void VE4_SSE2(uint8_t* dst, const uint8_t* top) { // vertical const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); const __m128i b = _mm_subs_epu8(a, lsb); const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); const uint32_t vals = _mm_cvtsi128_si32(avg); int i; for (i = 0; i < 4; ++i) { WebPUint32ToMem(dst + i * BPS, vals); } } static WEBP_INLINE void HE4_SSE2(uint8_t* dst, const uint8_t* top) { // horizontal const int X = top[-1]; const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); } static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) { uint32_t dc = 4; int i; for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; Fill_SSE2(dst, dc >> 3, 4); } static WEBP_INLINE void LD4_SSE2(uint8_t* dst, const uint8_t* top) { // Down-Left const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); } static WEBP_INLINE void VR4_SSE2(uint8_t* dst, const uint8_t* top) { // Vertical-Right const __m128i one = _mm_set1_epi8(1); const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int X = top[-1]; const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); const __m128i _XABCD = _mm_slli_si128(XABCD, 1); const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i efgh = _mm_avg_epu8(avg2, XABCD); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); // these two are hard to implement in SSE2, so we keep the C-version: DST(0, 2) = AVG3(J, I, X); DST(0, 3) = AVG3(K, J, I); } static WEBP_INLINE void VL4_SSE2(uint8_t* dst, const uint8_t* top) { // Vertical-Left const __m128i one = _mm_set1_epi8(1); const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); const __m128i avg3 = _mm_avg_epu8(avg1, avg2); const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); const __m128i abbc = _mm_or_si128(ab, bc); const __m128i lsb2 = _mm_and_si128(abbc, lsb1); const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); // these two are hard to get and irregular DST(3, 2) = (extra_out >> 0) & 0xff; DST(3, 3) = (extra_out >> 8) & 0xff; } static WEBP_INLINE void RD4_SSE2(uint8_t* dst, const uint8_t* top) { // Down-right const __m128i one = _mm_set1_epi8(1); const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); const __m128i avg2 = _mm_subs_epu8(avg1, lsb); const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); } static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) { const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; DST(0, 0) = AVG2(I, J); DST(2, 0) = DST(0, 1) = AVG2(J, K); DST(2, 1) = DST(0, 2) = AVG2(K, L); DST(1, 0) = AVG3(I, J, K); DST(3, 0) = DST(1, 1) = AVG3(J, K, L); DST(3, 1) = DST(1, 2) = AVG3(K, L, L); DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; } static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) { const int X = top[-1]; const int I = top[-2]; const int J = top[-3]; const int K = top[-4]; const int L = top[-5]; const int A = top[0]; const int B = top[1]; const int C = top[2]; DST(0, 0) = DST(2, 1) = AVG2(I, X); DST(0, 1) = DST(2, 2) = AVG2(J, I); DST(0, 2) = DST(2, 3) = AVG2(K, J); DST(0, 3) = AVG2(L, K); DST(3, 0) = AVG3(A, B, C); DST(2, 0) = AVG3(X, A, B); DST(1, 0) = DST(3, 1) = AVG3(I, X, A); DST(1, 1) = DST(3, 2) = AVG3(J, I, X); DST(1, 2) = DST(3, 3) = AVG3(K, J, I); DST(1, 3) = AVG3(L, K, J); } static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) { const __m128i zero = _mm_setzero_si128(); const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); int y; for (y = 0; y < 4; ++y, dst += BPS) { const int val = top[-2 - y] - top[-1]; const __m128i base = _mm_set1_epi16(val); const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); } } #undef DST #undef AVG3 #undef AVG2 //------------------------------------------------------------------------------ // luma 4x4 prediction // Left samples are top[-5 .. -2], top_left is top[-1], top are // located at top[0..3], and top right is top[4..7] static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) { DC4_SSE2(I4DC4 + dst, top); TM4_SSE2(I4TM4 + dst, top); VE4_SSE2(I4VE4 + dst, top); HE4_SSE2(I4HE4 + dst, top); RD4_SSE2(I4RD4 + dst, top); VR4_SSE2(I4VR4 + dst, top); LD4_SSE2(I4LD4 + dst, top); VL4_SSE2(I4VL4 + dst, top); HD4_SSE2(I4HD4 + dst, top); HU4_SSE2(I4HU4 + dst, top); } //------------------------------------------------------------------------------ // Chroma 8x8 prediction (paragraph 12.2) static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { // U block DC8uvMode_SSE2(C8DC8 + dst, left, top); VerticalPred_SSE2(C8VE8 + dst, top, 8); HorizontalPred_SSE2(C8HE8 + dst, left, 8); TrueMotion_SSE2(C8TM8 + dst, left, top, 8); // V block dst += 8; if (top != NULL) top += 8; if (left != NULL) left += 16; DC8uvMode_SSE2(C8DC8 + dst, left, top); VerticalPred_SSE2(C8VE8 + dst, top, 8); HorizontalPred_SSE2(C8HE8 + dst, left, 8); TrueMotion_SSE2(C8TM8 + dst, left, top, 8); } //------------------------------------------------------------------------------ // luma 16x16 prediction (paragraph 12.3) static void Intra16Preds_SSE2(uint8_t* dst, const uint8_t* left, const uint8_t* top) { DC16Mode_SSE2(I16DC16 + dst, left, top); VerticalPred_SSE2(I16VE16 + dst, top, 16); HorizontalPred_SSE2(I16HE16 + dst, left, 16); TrueMotion_SSE2(I16TM16 + dst, left, top, 16); } //------------------------------------------------------------------------------ // Metric static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a, const __m128i b, __m128i* const sum) { // take abs(a-b) in 8b const __m128i a_b = _mm_subs_epu8(a, b); const __m128i b_a = _mm_subs_epu8(b, a); const __m128i abs_a_b = _mm_or_si128(a_b, b_a); // zero-extend to 16b const __m128i zero = _mm_setzero_si128(); const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); // multiply with self const __m128i sum1 = _mm_madd_epi16(C0, C0); const __m128i sum2 = _mm_madd_epi16(C1, C1); *sum = _mm_add_epi32(sum1, sum2); } static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b, int num_pairs) { __m128i sum = _mm_setzero_si128(); int32_t tmp[4]; int i; for (i = 0; i < num_pairs; ++i) { const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); __m128i sum1, sum2; SubtractAndAccumulate_SSE2(a0, b0, &sum1); SubtractAndAccumulate_SSE2(a1, b1, &sum2); sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); a += 2 * BPS; b += 2 * BPS; } _mm_storeu_si128((__m128i*)tmp, sum); return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); } static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) { return SSE_16xN_SSE2(a, b, 8); } static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) { return SSE_16xN_SSE2(a, b, 4); } #define LOAD_8x16b(ptr) \ _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) { const __m128i zero = _mm_setzero_si128(); int num_pairs = 4; __m128i sum = zero; int32_t tmp[4]; while (num_pairs-- > 0) { const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); // subtract const __m128i c0 = _mm_subs_epi16(a0, b0); const __m128i c1 = _mm_subs_epi16(a1, b1); // multiply/accumulate with self const __m128i d0 = _mm_madd_epi16(c0, c0); const __m128i d1 = _mm_madd_epi16(c1, c1); // collect const __m128i sum01 = _mm_add_epi32(d0, d1); sum = _mm_add_epi32(sum, sum01); a += 2 * BPS; b += 2 * BPS; } _mm_storeu_si128((__m128i*)tmp, sum); return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); } #undef LOAD_8x16b static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) { const __m128i zero = _mm_setzero_si128(); // Load values. Note that we read 8 pixels instead of 4, // but the a/b buffers are over-allocated to that effect. const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); // Combine pair of lines. const __m128i a01 = _mm_unpacklo_epi32(a0, a1); const __m128i a23 = _mm_unpacklo_epi32(a2, a3); const __m128i b01 = _mm_unpacklo_epi32(b0, b1); const __m128i b23 = _mm_unpacklo_epi32(b2, b3); // Convert to 16b. const __m128i a01s = _mm_unpacklo_epi8(a01, zero); const __m128i a23s = _mm_unpacklo_epi8(a23, zero); const __m128i b01s = _mm_unpacklo_epi8(b01, zero); const __m128i b23s = _mm_unpacklo_epi8(b23, zero); // subtract, square and accumulate const __m128i d0 = _mm_subs_epi16(a01s, b01s); const __m128i d1 = _mm_subs_epi16(a23s, b23s); const __m128i e0 = _mm_madd_epi16(d0, d0); const __m128i e1 = _mm_madd_epi16(d1, d1); const __m128i sum = _mm_add_epi32(e0, e1); int32_t tmp[4]; _mm_storeu_si128((__m128i*)tmp, sum); return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); } //------------------------------------------------------------------------------ static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) { const __m128i mask = _mm_set1_epi16(0x00ff); const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte const __m128i b1 = _mm_srli_epi16(a1, 8); const __m128i b2 = _mm_srli_epi16(a2, 8); const __m128i b3 = _mm_srli_epi16(a3, 8); const __m128i c0 = _mm_and_si128(a0, mask); // lo byte const __m128i c1 = _mm_and_si128(a1, mask); const __m128i c2 = _mm_and_si128(a2, mask); const __m128i c3 = _mm_and_si128(a3, mask); const __m128i d0 = _mm_add_epi32(b0, c0); const __m128i d1 = _mm_add_epi32(b1, c1); const __m128i d2 = _mm_add_epi32(b2, c2); const __m128i d3 = _mm_add_epi32(b3, c3); const __m128i e0 = _mm_add_epi32(d0, d1); const __m128i e1 = _mm_add_epi32(d2, d3); const __m128i f0 = _mm_add_epi32(e0, e1); uint16_t tmp[8]; _mm_storeu_si128((__m128i*)tmp, f0); dc[0] = tmp[0] + tmp[1]; dc[1] = tmp[2] + tmp[3]; dc[2] = tmp[4] + tmp[5]; dc[3] = tmp[6] + tmp[7]; } //------------------------------------------------------------------------------ // Texture distortion // // We try to match the spectral content (weighted) between source and // reconstructed samples. // Hadamard transform // Returns the weighted sum of the absolute value of transformed coefficients. // w[] contains a row-major 4 by 4 symmetric matrix. static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB, const uint16_t* const w) { int32_t sum[4]; __m128i tmp_0, tmp_1, tmp_2, tmp_3; const __m128i zero = _mm_setzero_si128(); // Load and combine inputs. { const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); // Combine inA and inB (we'll do two transforms in parallel). const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 } // Vertical pass first to avoid a transpose (vertical and horizontal passes // are commutative because w/kWeightY is symmetric) and subsequent transpose. { // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 // Transpose the two 4x4. VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); } // Horizontal pass and difference of weighted sums. { // Load all inputs. const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); // Calculate a and b (two 4x4 at once). const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); const __m128i b0 = _mm_add_epi16(a0, a1); const __m128i b1 = _mm_add_epi16(a3, a2); const __m128i b2 = _mm_sub_epi16(a3, a2); const __m128i b3 = _mm_sub_epi16(a0, a1); // Separate the transforms of inA and inB. __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); { const __m128i d0 = _mm_sub_epi16(zero, A_b0); const __m128i d1 = _mm_sub_epi16(zero, A_b2); const __m128i d2 = _mm_sub_epi16(zero, B_b0); const __m128i d3 = _mm_sub_epi16(zero, B_b2); A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b A_b2 = _mm_max_epi16(A_b2, d1); B_b0 = _mm_max_epi16(B_b0, d2); B_b2 = _mm_max_epi16(B_b2, d3); } // weighted sums A_b0 = _mm_madd_epi16(A_b0, w_0); A_b2 = _mm_madd_epi16(A_b2, w_8); B_b0 = _mm_madd_epi16(B_b0, w_0); B_b2 = _mm_madd_epi16(B_b2, w_8); A_b0 = _mm_add_epi32(A_b0, A_b2); B_b0 = _mm_add_epi32(B_b0, B_b2); // difference of weighted sums A_b0 = _mm_sub_epi32(A_b0, B_b0); _mm_storeu_si128((__m128i*)&sum[0], A_b0); } return sum[0] + sum[1] + sum[2] + sum[3]; } static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { const int diff_sum = TTransform_SSE2(a, b, w); return abs(diff_sum) >> 5; } static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b, const uint16_t* const w) { int D = 0; int x, y; for (y = 0; y < 16 * BPS; y += 4 * BPS) { for (x = 0; x < 16; x += 4) { D += Disto4x4_SSE2(a + x + y, b + x + y, w); } } return D; } //------------------------------------------------------------------------------ // Quantization // static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16], const uint16_t* const sharpen, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); const __m128i zero = _mm_setzero_si128(); __m128i coeff0, coeff8; __m128i out0, out8; __m128i packed_out; // Load all inputs. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); // extract sign(in) (0x0000 if positive, 0xffff if negative) const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); // coeff = abs(in) = (in ^ sign) - sign coeff0 = _mm_xor_si128(in0, sign0); coeff8 = _mm_xor_si128(in8, sign8); coeff0 = _mm_sub_epi16(coeff0, sign0); coeff8 = _mm_sub_epi16(coeff8, sign8); // coeff = abs(in) + sharpen if (sharpen != NULL) { const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); } // out = (coeff * iQ + B) >> QFIX { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // out = (coeff * iQ + B) const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = QUANTDIV(coeff, iQ, B, QFIX) out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); // if (coeff > 2047) coeff = 2047 out0 = _mm_min_epi16(out0, max_coeff_2047); out8 = _mm_min_epi16(out8, max_coeff_2047); } // get sign back (if (sign[j]) out_n = -out_n) out0 = _mm_xor_si128(out0, sign0); out8 = _mm_xor_si128(out8, sign8); out0 = _mm_sub_epi16(out0, sign0); out8 = _mm_sub_epi16(out8, sign8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); // zigzag the output before storing it. // // The zigzag pattern can almost be reproduced with a small sequence of // shuffles. After it, we only need to swap the 7th (ending up in third // position instead of twelfth) and 8th values. { __m128i outZ0, outZ8; outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); _mm_storeu_si128((__m128i*)&out[0], outZ0); _mm_storeu_si128((__m128i*)&out[8], outZ8); packed_out = _mm_packs_epi16(outZ0, outZ8); } { const int16_t outZ_12 = out[12]; const int16_t outZ_3 = out[3]; out[3] = outZ_12; out[12] = outZ_3; } // detect if all 'out' values are zeroes or not return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); } static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx); } static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16], const VP8Matrix* const mtx) { return DoQuantizeBlock_SSE2(in, out, NULL, mtx); } static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32], const VP8Matrix* const mtx) { int nz; const uint16_t* const sharpen = &mtx->sharpen_[0]; nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; return nz; } //------------------------------------------------------------------------------ // Entry point extern void VP8EncDspInitSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { VP8CollectHistogram = CollectHistogram_SSE2; VP8EncPredLuma16 = Intra16Preds_SSE2; VP8EncPredChroma8 = IntraChromaPreds_SSE2; VP8EncPredLuma4 = Intra4Preds_SSE2; VP8EncQuantizeBlock = QuantizeBlock_SSE2; VP8EncQuantize2Blocks = Quantize2Blocks_SSE2; VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2; VP8ITransform = ITransform_SSE2; VP8FTransform = FTransform_SSE2; VP8FTransform2 = FTransform2_SSE2; VP8FTransformWHT = FTransformWHT_SSE2; VP8SSE16x16 = SSE16x16_SSE2; VP8SSE16x8 = SSE16x8_SSE2; VP8SSE8x8 = SSE8x8_SSE2; VP8SSE4x4 = SSE4x4_SSE2; VP8TDisto4x4 = Disto4x4_SSE2; VP8TDisto16x16 = Disto16x16_SSE2; VP8Mean16x4 = Mean16x4_SSE2; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) #endif // WEBP_USE_SSE2