// Copyright 2016 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // SSE2 code common to several files. // // Author: Vincent Rabaud (vrabaud@google.com) #ifndef WEBP_DSP_COMMON_SSE2_H_ #define WEBP_DSP_COMMON_SSE2_H_ #ifdef __cplusplus extern "C" { #endif #if defined(WEBP_USE_SSE2) #include <emmintrin.h> //------------------------------------------------------------------------------ // Quite useful macro for debugging. Left here for convenience. #if 0 #include <stdio.h> static WEBP_INLINE void PrintReg(const __m128i r, const char* const name, int size) { int n; union { __m128i r; uint8_t i8[16]; uint16_t i16[8]; uint32_t i32[4]; uint64_t i64[2]; } tmp; tmp.r = r; fprintf(stderr, "%s\t: ", name); if (size == 8) { for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", tmp.i8[n]); } else if (size == 16) { for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", tmp.i16[n]); } else if (size == 32) { for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", tmp.i32[n]); } else { for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx ", tmp.i64[n]); } fprintf(stderr, "\n"); } #endif //------------------------------------------------------------------------------ // Math functions. // Return the sum of all the 8b in the register. static WEBP_INLINE int VP8HorizontalAdd8b(const __m128i* const a) { const __m128i zero = _mm_setzero_si128(); const __m128i sad8x2 = _mm_sad_epu8(*a, zero); // sum the two sads: sad8x2[0:1] + sad8x2[8:9] const __m128i sum = _mm_add_epi32(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); return _mm_cvtsi128_si32(sum); } // Transpose two 4x4 16b matrices horizontally stored in registers. static WEBP_INLINE void VP8Transpose_2_4x4_16b( const __m128i* const in0, const __m128i* const in1, const __m128i* const in2, const __m128i* const in3, __m128i* const out0, __m128i* const out1, __m128i* const out2, __m128i* const out3) { // Transpose the two 4x4. // a00 a01 a02 a03 b00 b01 b02 b03 // a10 a11 a12 a13 b10 b11 b12 b13 // a20 a21 a22 a23 b20 b21 b22 b23 // a30 a31 a32 a33 b30 b31 b32 b33 const __m128i transpose0_0 = _mm_unpacklo_epi16(*in0, *in1); const __m128i transpose0_1 = _mm_unpacklo_epi16(*in2, *in3); const __m128i transpose0_2 = _mm_unpackhi_epi16(*in0, *in1); const __m128i transpose0_3 = _mm_unpackhi_epi16(*in2, *in3); // a00 a10 a01 a11 a02 a12 a03 a13 // a20 a30 a21 a31 a22 a32 a23 a33 // b00 b10 b01 b11 b02 b12 b03 b13 // b20 b30 b21 b31 b22 b32 b23 b33 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); // a00 a10 a20 a30 a01 a11 a21 a31 // b00 b10 b20 b30 b01 b11 b21 b31 // a02 a12 a22 a32 a03 a13 a23 a33 // b02 b12 a22 b32 b03 b13 b23 b33 *out0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); *out1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); *out2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); *out3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); // a00 a10 a20 a30 b00 b10 b20 b30 // a01 a11 a21 a31 b01 b11 b21 b31 // a02 a12 a22 a32 b02 b12 b22 b32 // a03 a13 a23 a33 b03 b13 b23 b33 } //------------------------------------------------------------------------------ // Channel mixing. // Function used several times in VP8PlanarTo24b. // It samples the in buffer as follows: one every two unsigned char is stored // at the beginning of the buffer, while the other half is stored at the end. #define VP8PlanarTo24bHelper(IN, OUT) \ do { \ const __m128i v_mask = _mm_set1_epi16(0x00ff); \ /* Take one every two upper 8b values.*/ \ (OUT##0) = _mm_packus_epi16(_mm_and_si128((IN##0), v_mask), \ _mm_and_si128((IN##1), v_mask)); \ (OUT##1) = _mm_packus_epi16(_mm_and_si128((IN##2), v_mask), \ _mm_and_si128((IN##3), v_mask)); \ (OUT##2) = _mm_packus_epi16(_mm_and_si128((IN##4), v_mask), \ _mm_and_si128((IN##5), v_mask)); \ /* Take one every two lower 8b values.*/ \ (OUT##3) = _mm_packus_epi16(_mm_srli_epi16((IN##0), 8), \ _mm_srli_epi16((IN##1), 8)); \ (OUT##4) = _mm_packus_epi16(_mm_srli_epi16((IN##2), 8), \ _mm_srli_epi16((IN##3), 8)); \ (OUT##5) = _mm_packus_epi16(_mm_srli_epi16((IN##4), 8), \ _mm_srli_epi16((IN##5), 8)); \ } while (0) // Pack the planar buffers // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... static WEBP_INLINE void VP8PlanarTo24b_SSE2( __m128i* const in0, __m128i* const in1, __m128i* const in2, __m128i* const in3, __m128i* const in4, __m128i* const in5) { // The input is 6 registers of sixteen 8b but for the sake of explanation, // let's take 6 registers of four 8b values. // To pack, we will keep taking one every two 8b integer and move it // around as follows: // Input: // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 // Split the 6 registers in two sets of 3 registers: the first set as the even // 8b bytes, the second the odd ones: // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 // Repeat the same permutations twice more: // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; VP8PlanarTo24bHelper(*in, tmp); VP8PlanarTo24bHelper(tmp, *in); VP8PlanarTo24bHelper(*in, tmp); // We need to do it two more times than the example as we have sixteen bytes. { __m128i out0, out1, out2, out3, out4, out5; VP8PlanarTo24bHelper(tmp, out); VP8PlanarTo24bHelper(out, *in); } } #undef VP8PlanarTo24bHelper // Convert four packed four-channel buffers like argbargbargbargb... into the // split channels aaaaa ... rrrr ... gggg .... bbbbb ...... static WEBP_INLINE void VP8L32bToPlanar_SSE2(__m128i* const in0, __m128i* const in1, __m128i* const in2, __m128i* const in3) { // Column-wise transpose. const __m128i A0 = _mm_unpacklo_epi8(*in0, *in1); const __m128i A1 = _mm_unpackhi_epi8(*in0, *in1); const __m128i A2 = _mm_unpacklo_epi8(*in2, *in3); const __m128i A3 = _mm_unpackhi_epi8(*in2, *in3); const __m128i B0 = _mm_unpacklo_epi8(A0, A1); const __m128i B1 = _mm_unpackhi_epi8(A0, A1); const __m128i B2 = _mm_unpacklo_epi8(A2, A3); const __m128i B3 = _mm_unpackhi_epi8(A2, A3); // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0 // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0 const __m128i C0 = _mm_unpacklo_epi8(B0, B1); const __m128i C1 = _mm_unpackhi_epi8(B0, B1); const __m128i C2 = _mm_unpacklo_epi8(B2, B3); const __m128i C3 = _mm_unpackhi_epi8(B2, B3); // Gather the channels. *in0 = _mm_unpackhi_epi64(C1, C3); *in1 = _mm_unpacklo_epi64(C1, C3); *in2 = _mm_unpackhi_epi64(C0, C2); *in3 = _mm_unpacklo_epi64(C0, C2); } #endif // WEBP_USE_SSE2 #ifdef __cplusplus } // extern "C" #endif #endif // WEBP_DSP_COMMON_SSE2_H_