// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // WebPPicture tools: alpha handling, etc. // // Author: Skal (pascal.massimino@gmail.com) #include #include "./vp8i_enc.h" #include "../dsp/yuv.h" static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { return (0xff000000u | (r << 16) | (g << 8) | b); } //------------------------------------------------------------------------------ // Helper: clean up fully transparent area to help compressibility. #define SIZE 8 #define SIZE2 (SIZE / 2) static int is_transparent_area(const uint8_t* ptr, int stride, int size) { int y, x; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) { if (ptr[x]) { return 0; } } ptr += stride; } return 1; } static int is_transparent_argb_area(const uint32_t* ptr, int stride, int size) { int y, x; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) { if (ptr[x] & 0xff000000u) { return 0; } } ptr += stride; } return 1; } static void flatten(uint8_t* ptr, int v, int stride, int size) { int y; for (y = 0; y < size; ++y) { memset(ptr, v, size); ptr += stride; } } static void flatten_argb(uint32_t* ptr, uint32_t v, int stride, int size) { int x, y; for (y = 0; y < size; ++y) { for (x = 0; x < size; ++x) ptr[x] = v; ptr += stride; } } void WebPCleanupTransparentArea(WebPPicture* pic) { int x, y, w, h; if (pic == NULL) return; w = pic->width / SIZE; h = pic->height / SIZE; // note: we ignore the left-overs on right/bottom if (pic->use_argb) { uint32_t argb_value = 0; for (y = 0; y < h; ++y) { int need_reset = 1; for (x = 0; x < w; ++x) { const int off = (y * pic->argb_stride + x) * SIZE; if (is_transparent_argb_area(pic->argb + off, pic->argb_stride, SIZE)) { if (need_reset) { argb_value = pic->argb[off]; need_reset = 0; } flatten_argb(pic->argb + off, argb_value, pic->argb_stride, SIZE); } else { need_reset = 1; } } } } else { const uint8_t* const a_ptr = pic->a; int values[3] = { 0 }; if (a_ptr == NULL) return; // nothing to do for (y = 0; y < h; ++y) { int need_reset = 1; for (x = 0; x < w; ++x) { const int off_a = (y * pic->a_stride + x) * SIZE; const int off_y = (y * pic->y_stride + x) * SIZE; const int off_uv = (y * pic->uv_stride + x) * SIZE2; if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) { if (need_reset) { values[0] = pic->y[off_y]; values[1] = pic->u[off_uv]; values[2] = pic->v[off_uv]; need_reset = 0; } flatten(pic->y + off_y, values[0], pic->y_stride, SIZE); flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2); flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2); } else { need_reset = 1; } } } } } #undef SIZE #undef SIZE2 void WebPCleanupTransparentAreaLossless(WebPPicture* const pic) { int x, y, w, h; uint32_t* argb; assert(pic != NULL && pic->use_argb); w = pic->width; h = pic->height; argb = pic->argb; for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { if ((argb[x] & 0xff000000) == 0) { argb[x] = 0x00000000; } } argb += pic->argb_stride; } } //------------------------------------------------------------------------------ // Blend color and remove transparency info #define BLEND(V0, V1, ALPHA) \ ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16) #define BLEND_10BIT(V0, V1, ALPHA) \ ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18) void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) { const int red = (background_rgb >> 16) & 0xff; const int green = (background_rgb >> 8) & 0xff; const int blue = (background_rgb >> 0) & 0xff; int x, y; if (pic == NULL) return; if (!pic->use_argb) { const int uv_width = (pic->width >> 1); // omit last pixel during u/v loop const int Y0 = VP8RGBToY(red, green, blue, YUV_HALF); // VP8RGBToU/V expects the u/v values summed over four pixels const int U0 = VP8RGBToU(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); const int V0 = VP8RGBToV(4 * red, 4 * green, 4 * blue, 4 * YUV_HALF); const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT; if (!has_alpha || pic->a == NULL) return; // nothing to do for (y = 0; y < pic->height; ++y) { // Luma blending uint8_t* const y_ptr = pic->y + y * pic->y_stride; uint8_t* const a_ptr = pic->a + y * pic->a_stride; for (x = 0; x < pic->width; ++x) { const int alpha = a_ptr[x]; if (alpha < 0xff) { y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]); } } // Chroma blending every even line if ((y & 1) == 0) { uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride; uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride; uint8_t* const a_ptr2 = (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride; for (x = 0; x < uv_width; ++x) { // Average four alpha values into a single blending weight. // TODO(skal): might lead to visible contouring. Can we do better? const int alpha = a_ptr[2 * x + 0] + a_ptr[2 * x + 1] + a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1]; u[x] = BLEND_10BIT(U0, u[x], alpha); v[x] = BLEND_10BIT(V0, v[x], alpha); } if (pic->width & 1) { // rightmost pixel const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]); u[x] = BLEND_10BIT(U0, u[x], alpha); v[x] = BLEND_10BIT(V0, v[x], alpha); } } memset(a_ptr, 0xff, pic->width); } } else { uint32_t* argb = pic->argb; const uint32_t background = MakeARGB32(red, green, blue); for (y = 0; y < pic->height; ++y) { for (x = 0; x < pic->width; ++x) { const int alpha = (argb[x] >> 24) & 0xff; if (alpha != 0xff) { if (alpha > 0) { int r = (argb[x] >> 16) & 0xff; int g = (argb[x] >> 8) & 0xff; int b = (argb[x] >> 0) & 0xff; r = BLEND(red, r, alpha); g = BLEND(green, g, alpha); b = BLEND(blue, b, alpha); argb[x] = MakeARGB32(r, g, b); } else { argb[x] = background; } } } argb += pic->argb_stride; } } } #undef BLEND #undef BLEND_10BIT //------------------------------------------------------------------------------