// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ********************************************************************** * Copyright (C) 2008-2016, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** */ #include "unicode/utypes.h" #include "unicode/uspoof.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "unicode/utf16.h" #include "utrie2.h" #include "cmemory.h" #include "cstring.h" #include "scriptset.h" #include "umutex.h" #include "udataswp.h" #include "uassert.h" #include "ucln_in.h" #include "uspoof_impl.h" #if !UCONFIG_NO_NORMALIZATION U_NAMESPACE_BEGIN UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SpoofImpl) SpoofImpl::SpoofImpl(SpoofData *data, UErrorCode& status) { construct(status); fSpoofData = data; } SpoofImpl::SpoofImpl(UErrorCode& status) { construct(status); // TODO: Call this method where it is actually needed, instead of in the // constructor, to allow for lazy data loading. See #12696. fSpoofData = SpoofData::getDefault(status); } SpoofImpl::SpoofImpl() { UErrorCode status = U_ZERO_ERROR; construct(status); // TODO: Call this method where it is actually needed, instead of in the // constructor, to allow for lazy data loading. See #12696. fSpoofData = SpoofData::getDefault(status); } void SpoofImpl::construct(UErrorCode& status) { fChecks = USPOOF_ALL_CHECKS; fSpoofData = NULL; fAllowedCharsSet = NULL; fAllowedLocales = NULL; fRestrictionLevel = USPOOF_HIGHLY_RESTRICTIVE; if (U_FAILURE(status)) { return; } UnicodeSet *allowedCharsSet = new UnicodeSet(0, 0x10ffff); fAllowedCharsSet = allowedCharsSet; fAllowedLocales = uprv_strdup(""); if (fAllowedCharsSet == NULL || fAllowedLocales == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } allowedCharsSet->freeze(); } // Copy Constructor, used by the user level clone() function. SpoofImpl::SpoofImpl(const SpoofImpl &src, UErrorCode &status) : fChecks(USPOOF_ALL_CHECKS), fSpoofData(NULL), fAllowedCharsSet(NULL) , fAllowedLocales(NULL) { if (U_FAILURE(status)) { return; } fChecks = src.fChecks; if (src.fSpoofData != NULL) { fSpoofData = src.fSpoofData->addReference(); } fAllowedCharsSet = src.fAllowedCharsSet->clone(); fAllowedLocales = uprv_strdup(src.fAllowedLocales); if (fAllowedCharsSet == NULL || fAllowedLocales == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } fRestrictionLevel = src.fRestrictionLevel; } SpoofImpl::~SpoofImpl() { if (fSpoofData != NULL) { fSpoofData->removeReference(); // Will delete if refCount goes to zero. } delete fAllowedCharsSet; uprv_free((void *)fAllowedLocales); } // Cast this instance as a USpoofChecker for the C API. USpoofChecker *SpoofImpl::asUSpoofChecker() { return exportForC(); } // // Incoming parameter check on Status and the SpoofChecker object // received from the C API. // const SpoofImpl *SpoofImpl::validateThis(const USpoofChecker *sc, UErrorCode &status) { auto* This = validate(sc, status); if (U_FAILURE(status)) { return NULL; } if (This->fSpoofData != NULL && !This->fSpoofData->validateDataVersion(status)) { return NULL; } return This; } SpoofImpl *SpoofImpl::validateThis(USpoofChecker *sc, UErrorCode &status) { return const_cast (SpoofImpl::validateThis(const_cast(sc), status)); } void SpoofImpl::setAllowedLocales(const char *localesList, UErrorCode &status) { UnicodeSet allowedChars; UnicodeSet *tmpSet = NULL; const char *locStart = localesList; const char *locEnd = NULL; const char *localesListEnd = localesList + uprv_strlen(localesList); int32_t localeListCount = 0; // Number of locales provided by caller. // Loop runs once per locale from the localesList, a comma separated list of locales. do { locEnd = uprv_strchr(locStart, ','); if (locEnd == NULL) { locEnd = localesListEnd; } while (*locStart == ' ') { locStart++; } const char *trimmedEnd = locEnd-1; while (trimmedEnd > locStart && *trimmedEnd == ' ') { trimmedEnd--; } if (trimmedEnd <= locStart) { break; } const char *locale = uprv_strndup(locStart, (int32_t)(trimmedEnd + 1 - locStart)); localeListCount++; // We have one locale from the locales list. // Add the script chars for this locale to the accumulating set of allowed chars. // If the locale is no good, we will be notified back via status. addScriptChars(locale, &allowedChars, status); uprv_free((void *)locale); if (U_FAILURE(status)) { break; } locStart = locEnd + 1; } while (locStart < localesListEnd); // If our caller provided an empty list of locales, we disable the allowed characters checking if (localeListCount == 0) { uprv_free((void *)fAllowedLocales); fAllowedLocales = uprv_strdup(""); tmpSet = new UnicodeSet(0, 0x10ffff); if (fAllowedLocales == NULL || tmpSet == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } tmpSet->freeze(); delete fAllowedCharsSet; fAllowedCharsSet = tmpSet; fChecks &= ~USPOOF_CHAR_LIMIT; return; } // Add all common and inherited characters to the set of allowed chars. UnicodeSet tempSet; tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_COMMON, status); allowedChars.addAll(tempSet); tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_INHERITED, status); allowedChars.addAll(tempSet); // If anything went wrong, we bail out without changing // the state of the spoof checker. if (U_FAILURE(status)) { return; } // Store the updated spoof checker state. tmpSet = allowedChars.clone(); const char *tmpLocalesList = uprv_strdup(localesList); if (tmpSet == NULL || tmpLocalesList == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_free((void *)fAllowedLocales); fAllowedLocales = tmpLocalesList; tmpSet->freeze(); delete fAllowedCharsSet; fAllowedCharsSet = tmpSet; fChecks |= USPOOF_CHAR_LIMIT; } const char * SpoofImpl::getAllowedLocales(UErrorCode &/*status*/) { return fAllowedLocales; } // Given a locale (a language), add all the characters from all of the scripts used with that language // to the allowedChars UnicodeSet void SpoofImpl::addScriptChars(const char *locale, UnicodeSet *allowedChars, UErrorCode &status) { UScriptCode scripts[30]; int32_t numScripts = uscript_getCode(locale, scripts, UPRV_LENGTHOF(scripts), &status); if (U_FAILURE(status)) { return; } if (status == U_USING_DEFAULT_WARNING) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } UnicodeSet tmpSet; int32_t i; for (i=0; iaddAll(tmpSet); } } // Computes the augmented script set for a code point, according to UTS 39 section 5.1. void SpoofImpl::getAugmentedScriptSet(UChar32 codePoint, ScriptSet& result, UErrorCode& status) { result.resetAll(); result.setScriptExtensions(codePoint, status); if (U_FAILURE(status)) { return; } // Section 5.1 step 1 if (result.test(USCRIPT_HAN, status)) { result.set(USCRIPT_HAN_WITH_BOPOMOFO, status); result.set(USCRIPT_JAPANESE, status); result.set(USCRIPT_KOREAN, status); } if (result.test(USCRIPT_HIRAGANA, status)) { result.set(USCRIPT_JAPANESE, status); } if (result.test(USCRIPT_KATAKANA, status)) { result.set(USCRIPT_JAPANESE, status); } if (result.test(USCRIPT_HANGUL, status)) { result.set(USCRIPT_KOREAN, status); } if (result.test(USCRIPT_BOPOMOFO, status)) { result.set(USCRIPT_HAN_WITH_BOPOMOFO, status); } // Section 5.1 step 2 if (result.test(USCRIPT_COMMON, status) || result.test(USCRIPT_INHERITED, status)) { result.setAll(); } } // Computes the resolved script set for a string, according to UTS 39 section 5.1. void SpoofImpl::getResolvedScriptSet(const UnicodeString& input, ScriptSet& result, UErrorCode& status) const { getResolvedScriptSetWithout(input, USCRIPT_CODE_LIMIT, result, status); } // Computes the resolved script set for a string, omitting characters having the specified script. // If USCRIPT_CODE_LIMIT is passed as the second argument, all characters are included. void SpoofImpl::getResolvedScriptSetWithout(const UnicodeString& input, UScriptCode script, ScriptSet& result, UErrorCode& status) const { result.setAll(); ScriptSet temp; UChar32 codePoint; for (int32_t i = 0; i < input.length(); i += U16_LENGTH(codePoint)) { codePoint = input.char32At(i); // Compute the augmented script set for the character getAugmentedScriptSet(codePoint, temp, status); if (U_FAILURE(status)) { return; } // Intersect the augmented script set with the resolved script set, but only if the character doesn't // have the script specified in the function call if (script == USCRIPT_CODE_LIMIT || !temp.test(script, status)) { result.intersect(temp); } } } // Computes the set of numerics for a string, according to UTS 39 section 5.3. void SpoofImpl::getNumerics(const UnicodeString& input, UnicodeSet& result, UErrorCode& /*status*/) const { result.clear(); UChar32 codePoint; for (int32_t i = 0; i < input.length(); i += U16_LENGTH(codePoint)) { codePoint = input.char32At(i); // Store a representative character for each kind of decimal digit if (u_charType(codePoint) == U_DECIMAL_DIGIT_NUMBER) { // Store the zero character as a representative for comparison. // Unicode guarantees it is codePoint - value result.add(codePoint - (UChar32)u_getNumericValue(codePoint)); } } } // Computes the restriction level of a string, according to UTS 39 section 5.2. URestrictionLevel SpoofImpl::getRestrictionLevel(const UnicodeString& input, UErrorCode& status) const { // Section 5.2 step 1: if (!fAllowedCharsSet->containsAll(input)) { return USPOOF_UNRESTRICTIVE; } // Section 5.2 step 2 // Java use a static UnicodeSet for this test. In C++, avoid the static variable // and just do a simple for loop. UBool allASCII = true; for (int32_t i=0, length=input.length(); i 0x7f) { allASCII = false; break; } } if (allASCII) { return USPOOF_ASCII; } // Section 5.2 steps 3: ScriptSet resolvedScriptSet; getResolvedScriptSet(input, resolvedScriptSet, status); if (U_FAILURE(status)) { return USPOOF_UNRESTRICTIVE; } // Section 5.2 step 4: if (!resolvedScriptSet.isEmpty()) { return USPOOF_SINGLE_SCRIPT_RESTRICTIVE; } // Section 5.2 step 5: ScriptSet resolvedNoLatn; getResolvedScriptSetWithout(input, USCRIPT_LATIN, resolvedNoLatn, status); if (U_FAILURE(status)) { return USPOOF_UNRESTRICTIVE; } // Section 5.2 step 6: if (resolvedNoLatn.test(USCRIPT_HAN_WITH_BOPOMOFO, status) || resolvedNoLatn.test(USCRIPT_JAPANESE, status) || resolvedNoLatn.test(USCRIPT_KOREAN, status)) { return USPOOF_HIGHLY_RESTRICTIVE; } // Section 5.2 step 7: if (!resolvedNoLatn.isEmpty() && !resolvedNoLatn.test(USCRIPT_CYRILLIC, status) && !resolvedNoLatn.test(USCRIPT_GREEK, status) && !resolvedNoLatn.test(USCRIPT_CHEROKEE, status)) { return USPOOF_MODERATELY_RESTRICTIVE; } // Section 5.2 step 8: return USPOOF_MINIMALLY_RESTRICTIVE; } int32_t SpoofImpl::findHiddenOverlay(const UnicodeString& input, UErrorCode&) const { bool sawLeadCharacter = false; for (int32_t i=0; iconfusableLookup(cp, skelStr); UChar32 finalCp = skelStr.char32At(skelStr.moveIndex32(skelStr.length(), -1)); if (finalCp != cp && isIllegalCombiningDotLeadCharacterNoLookup(finalCp)) { return true; } return false; } // Convert a text format hex number. Utility function used by builder code. Static. // Input: UChar *string text. Output: a UChar32 // Input has been pre-checked, and will have no non-hex chars. // The number must fall in the code point range of 0..0x10ffff // Static Function. UChar32 SpoofImpl::ScanHex(const UChar *s, int32_t start, int32_t limit, UErrorCode &status) { if (U_FAILURE(status)) { return 0; } U_ASSERT(limit-start > 0); uint32_t val = 0; int i; for (i=start; i9) { digitVal = 0xa + (s[i] - 0x41); // Upper Case 'A' } if (digitVal>15) { digitVal = 0xa + (s[i] - 0x61); // Lower Case 'a' } U_ASSERT(digitVal <= 0xf); val <<= 4; val += digitVal; } if (val > 0x10ffff) { status = U_PARSE_ERROR; val = 0; } return (UChar32)val; } //----------------------------------------- // // class CheckResult Implementation // //----------------------------------------- CheckResult::CheckResult() { clear(); } USpoofCheckResult* CheckResult::asUSpoofCheckResult() { return exportForC(); } // // Incoming parameter check on Status and the CheckResult object // received from the C API. // const CheckResult* CheckResult::validateThis(const USpoofCheckResult *ptr, UErrorCode &status) { return validate(ptr, status); } CheckResult* CheckResult::validateThis(USpoofCheckResult *ptr, UErrorCode &status) { return validate(ptr, status); } void CheckResult::clear() { fChecks = 0; fNumerics.clear(); fRestrictionLevel = USPOOF_UNDEFINED_RESTRICTIVE; } int32_t CheckResult::toCombinedBitmask(int32_t enabledChecks) { if ((enabledChecks & USPOOF_AUX_INFO) != 0 && fRestrictionLevel != USPOOF_UNDEFINED_RESTRICTIVE) { return fChecks | fRestrictionLevel; } else { return fChecks; } } CheckResult::~CheckResult() { } //---------------------------------------------------------------------------------------------- // // class SpoofData Implementation // //---------------------------------------------------------------------------------------------- UBool SpoofData::validateDataVersion(UErrorCode &status) const { if (U_FAILURE(status) || fRawData == NULL || fRawData->fMagic != USPOOF_MAGIC || fRawData->fFormatVersion[0] != USPOOF_CONFUSABLE_DATA_FORMAT_VERSION || fRawData->fFormatVersion[1] != 0 || fRawData->fFormatVersion[2] != 0 || fRawData->fFormatVersion[3] != 0) { status = U_INVALID_FORMAT_ERROR; return false; } return true; } static UBool U_CALLCONV spoofDataIsAcceptable(void *context, const char * /* type */, const char * /*name*/, const UDataInfo *pInfo) { if( pInfo->size >= 20 && pInfo->isBigEndian == U_IS_BIG_ENDIAN && pInfo->charsetFamily == U_CHARSET_FAMILY && pInfo->dataFormat[0] == 0x43 && // dataFormat="Cfu " pInfo->dataFormat[1] == 0x66 && pInfo->dataFormat[2] == 0x75 && pInfo->dataFormat[3] == 0x20 && pInfo->formatVersion[0] == USPOOF_CONFUSABLE_DATA_FORMAT_VERSION ) { UVersionInfo *version = static_cast(context); if(version != NULL) { uprv_memcpy(version, pInfo->dataVersion, 4); } return true; } else { return false; } } // Methods for the loading of the default confusables data file. The confusable // data is loaded only when it is needed. // // SpoofData::getDefault() - Return the default confusables data, and call the // initOnce() if it is not available. Adds a reference // to the SpoofData that the caller is responsible for // decrementing when they are done with the data. // // uspoof_loadDefaultData - Called once, from initOnce(). The resulting SpoofData // is shared by all spoof checkers using the default data. // // uspoof_cleanupDefaultData - Called during cleanup. // static UInitOnce gSpoofInitDefaultOnce {}; static SpoofData* gDefaultSpoofData; static UBool U_CALLCONV uspoof_cleanupDefaultData(void) { if (gDefaultSpoofData) { // Will delete, assuming all user-level spoof checkers were closed. gDefaultSpoofData->removeReference(); gDefaultSpoofData = nullptr; gSpoofInitDefaultOnce.reset(); } return true; } static void U_CALLCONV uspoof_loadDefaultData(UErrorCode& status) { UDataMemory *udm = udata_openChoice(nullptr, "cfu", "confusables", spoofDataIsAcceptable, nullptr, // context, would receive dataVersion if supplied. &status); if (U_FAILURE(status)) { return; } gDefaultSpoofData = new SpoofData(udm, status); if (U_FAILURE(status)) { delete gDefaultSpoofData; gDefaultSpoofData = nullptr; return; } if (gDefaultSpoofData == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return; } ucln_i18n_registerCleanup(UCLN_I18N_SPOOFDATA, uspoof_cleanupDefaultData); } SpoofData* SpoofData::getDefault(UErrorCode& status) { umtx_initOnce(gSpoofInitDefaultOnce, &uspoof_loadDefaultData, status); if (U_FAILURE(status)) { return NULL; } gDefaultSpoofData->addReference(); return gDefaultSpoofData; } SpoofData::SpoofData(UDataMemory *udm, UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } fUDM = udm; // fRawData is non-const because it may be constructed by the data builder. fRawData = reinterpret_cast( const_cast(udata_getMemory(udm))); validateDataVersion(status); initPtrs(status); } SpoofData::SpoofData(const void *data, int32_t length, UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } if ((size_t)length < sizeof(SpoofDataHeader)) { status = U_INVALID_FORMAT_ERROR; return; } if (data == NULL) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } void *ncData = const_cast(data); fRawData = static_cast(ncData); if (length < fRawData->fLength) { status = U_INVALID_FORMAT_ERROR; return; } validateDataVersion(status); initPtrs(status); } // Spoof Data constructor for use from data builder. // Initializes a new, empty data area that will be populated later. SpoofData::SpoofData(UErrorCode &status) { reset(); if (U_FAILURE(status)) { return; } fDataOwned = true; // The spoof header should already be sized to be a multiple of 16 bytes. // Just in case it's not, round it up. uint32_t initialSize = (sizeof(SpoofDataHeader) + 15) & ~15; U_ASSERT(initialSize == sizeof(SpoofDataHeader)); fRawData = static_cast(uprv_malloc(initialSize)); fMemLimit = initialSize; if (fRawData == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memset(fRawData, 0, initialSize); fRawData->fMagic = USPOOF_MAGIC; fRawData->fFormatVersion[0] = USPOOF_CONFUSABLE_DATA_FORMAT_VERSION; fRawData->fFormatVersion[1] = 0; fRawData->fFormatVersion[2] = 0; fRawData->fFormatVersion[3] = 0; initPtrs(status); } // reset() - initialize all fields. // Should be updated if any new fields are added. // Called by constructors to put things in a known initial state. void SpoofData::reset() { fRawData = NULL; fDataOwned = false; fUDM = NULL; fMemLimit = 0; fRefCount = 1; fCFUKeys = NULL; fCFUValues = NULL; fCFUStrings = NULL; } // SpoofData::initPtrs() // Initialize the pointers to the various sections of the raw data. // // This function is used both during the Trie building process (multiple // times, as the individual data sections are added), and // during the opening of a Spoof Checker from prebuilt data. // // The pointers for non-existent data sections (identified by an offset of 0) // are set to NULL. // // Note: During building the data, adding each new data section // reallocs the raw data area, which likely relocates it, which // in turn requires reinitializing all of the pointers into it, hence // multiple calls to this function during building. // void SpoofData::initPtrs(UErrorCode &status) { fCFUKeys = NULL; fCFUValues = NULL; fCFUStrings = NULL; if (U_FAILURE(status)) { return; } if (fRawData->fCFUKeys != 0) { fCFUKeys = (int32_t *)((char *)fRawData + fRawData->fCFUKeys); } if (fRawData->fCFUStringIndex != 0) { fCFUValues = (uint16_t *)((char *)fRawData + fRawData->fCFUStringIndex); } if (fRawData->fCFUStringTable != 0) { fCFUStrings = (UChar *)((char *)fRawData + fRawData->fCFUStringTable); } } SpoofData::~SpoofData() { if (fDataOwned) { uprv_free(fRawData); } fRawData = NULL; if (fUDM != NULL) { udata_close(fUDM); } fUDM = NULL; } void SpoofData::removeReference() { if (umtx_atomic_dec(&fRefCount) == 0) { delete this; } } SpoofData *SpoofData::addReference() { umtx_atomic_inc(&fRefCount); return this; } void *SpoofData::reserveSpace(int32_t numBytes, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } if (!fDataOwned) { UPRV_UNREACHABLE_EXIT; } numBytes = (numBytes + 15) & ~15; // Round up to a multiple of 16 uint32_t returnOffset = fMemLimit; fMemLimit += numBytes; fRawData = static_cast(uprv_realloc(fRawData, fMemLimit)); fRawData->fLength = fMemLimit; uprv_memset((char *)fRawData + returnOffset, 0, numBytes); initPtrs(status); return (char *)fRawData + returnOffset; } int32_t SpoofData::serialize(void *buf, int32_t capacity, UErrorCode &status) const { int32_t dataSize = fRawData->fLength; if (capacity < dataSize) { status = U_BUFFER_OVERFLOW_ERROR; return dataSize; } uprv_memcpy(buf, fRawData, dataSize); return dataSize; } int32_t SpoofData::size() const { return fRawData->fLength; } //------------------------------- // // Front-end APIs for SpoofData // //------------------------------- int32_t SpoofData::confusableLookup(UChar32 inChar, UnicodeString &dest) const { // Perform a binary search. // [lo, hi), i.e lo is inclusive, hi is exclusive. // The result after the loop will be in lo. int32_t lo = 0; int32_t hi = length(); do { int32_t mid = (lo + hi) / 2; if (codePointAt(mid) > inChar) { hi = mid; } else if (codePointAt(mid) < inChar) { lo = mid; } else { // Found result. Break early. lo = mid; break; } } while (hi - lo > 1); // Did we find an entry? If not, the char maps to itself. if (codePointAt(lo) != inChar) { dest.append(inChar); return 1; } // Add the element to the string builder and return. return appendValueTo(lo, dest); } int32_t SpoofData::length() const { return fRawData->fCFUKeysSize; } UChar32 SpoofData::codePointAt(int32_t index) const { return ConfusableDataUtils::keyToCodePoint(fCFUKeys[index]); } int32_t SpoofData::appendValueTo(int32_t index, UnicodeString& dest) const { int32_t stringLength = ConfusableDataUtils::keyToLength(fCFUKeys[index]); // Value is either a char (for strings of length 1) or // an index into the string table (for longer strings) uint16_t value = fCFUValues[index]; if (stringLength == 1) { dest.append((UChar)value); } else { dest.append(fCFUStrings + value, stringLength); } return stringLength; } U_NAMESPACE_END U_NAMESPACE_USE //----------------------------------------------------------------------------- // // uspoof_swap - byte swap and char encoding swap of spoof data // //----------------------------------------------------------------------------- U_CAPI int32_t U_EXPORT2 uspoof_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *status) { if (status == NULL || U_FAILURE(*status)) { return 0; } if(ds==NULL || inData==NULL || length<-1 || (length>0 && outData==NULL)) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } // // Check that the data header is for spoof data. // (Header contents are defined in gencfu.cpp) // const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData+4); if(!( pInfo->dataFormat[0]==0x43 && /* dataFormat="Cfu " */ pInfo->dataFormat[1]==0x66 && pInfo->dataFormat[2]==0x75 && pInfo->dataFormat[3]==0x20 && pInfo->formatVersion[0]==USPOOF_CONFUSABLE_DATA_FORMAT_VERSION && pInfo->formatVersion[1]==0 && pInfo->formatVersion[2]==0 && pInfo->formatVersion[3]==0 )) { udata_printError(ds, "uspoof_swap(): data format %02x.%02x.%02x.%02x " "(format version %02x %02x %02x %02x) is not recognized\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0], pInfo->formatVersion[1], pInfo->formatVersion[2], pInfo->formatVersion[3]); *status=U_UNSUPPORTED_ERROR; return 0; } // // Swap the data header. (This is the generic ICU Data Header, not the uspoof Specific // header). This swap also conveniently gets us // the size of the ICU d.h., which lets us locate the start // of the uspoof specific data. // int32_t headerSize=udata_swapDataHeader(ds, inData, length, outData, status); // // Get the Spoof Data Header, and check that it appears to be OK. // // const uint8_t *inBytes =(const uint8_t *)inData+headerSize; SpoofDataHeader *spoofDH = (SpoofDataHeader *)inBytes; if (ds->readUInt32(spoofDH->fMagic) != USPOOF_MAGIC || ds->readUInt32(spoofDH->fLength) < sizeof(SpoofDataHeader)) { udata_printError(ds, "uspoof_swap(): Spoof Data header is invalid.\n"); *status=U_UNSUPPORTED_ERROR; return 0; } // // Prefight operation? Just return the size // int32_t spoofDataLength = ds->readUInt32(spoofDH->fLength); int32_t totalSize = headerSize + spoofDataLength; if (length < 0) { return totalSize; } // // Check that length passed in is consistent with length from Spoof data header. // if (length < totalSize) { udata_printError(ds, "uspoof_swap(): too few bytes (%d after ICU Data header) for spoof data.\n", spoofDataLength); *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } // // Swap the Data. Do the data itself first, then the Spoof Data Header, because // we need to reference the header to locate the data, and an // inplace swap of the header leaves it unusable. // uint8_t *outBytes = (uint8_t *)outData + headerSize; SpoofDataHeader *outputDH = (SpoofDataHeader *)outBytes; int32_t sectionStart; int32_t sectionLength; // // If not swapping in place, zero out the output buffer before starting. // Gaps may exist between the individual sections, and these must be zeroed in // the output buffer. The simplest way to do that is to just zero the whole thing. // if (inBytes != outBytes) { uprv_memset(outBytes, 0, spoofDataLength); } // Confusables Keys Section (fCFUKeys) sectionStart = ds->readUInt32(spoofDH->fCFUKeys); sectionLength = ds->readUInt32(spoofDH->fCFUKeysSize) * 4; ds->swapArray32(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // String Index Section sectionStart = ds->readUInt32(spoofDH->fCFUStringIndex); sectionLength = ds->readUInt32(spoofDH->fCFUStringIndexSize) * 2; ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // String Table Section sectionStart = ds->readUInt32(spoofDH->fCFUStringTable); sectionLength = ds->readUInt32(spoofDH->fCFUStringTableLen) * 2; ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status); // And, last, swap the header itself. // int32_t fMagic // swap this // uint8_t fFormatVersion[4] // Do not swap this, just copy // int32_t fLength and all the rest // Swap the rest, all is 32 bit stuff. // uint32_t magic = ds->readUInt32(spoofDH->fMagic); ds->writeUInt32((uint32_t *)&outputDH->fMagic, magic); if (inBytes != outBytes) { uprv_memcpy(outputDH->fFormatVersion, spoofDH->fFormatVersion, sizeof(spoofDH->fFormatVersion)); } // swap starting at fLength ds->swapArray32(ds, &spoofDH->fLength, sizeof(SpoofDataHeader)-8 /* minus magic and fFormatVersion[4] */, &outputDH->fLength, status); return totalSize; } #endif