// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ********************************************************************** * Copyright (C) 1999-2015, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 10/20/99 alan Creation. ********************************************************************** */ #include "unicode/utypes.h" #include "unicode/parsepos.h" #include "unicode/symtable.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/utf8.h" #include "unicode/utf16.h" #include "ruleiter.h" #include "cmemory.h" #include "cstring.h" #include "patternprops.h" #include "uelement.h" #include "util.h" #include "uvector.h" #include "charstr.h" #include "ustrfmt.h" #include "uassert.h" #include "bmpset.h" #include "unisetspan.h" // HIGH_VALUE > all valid values. 110000 for codepoints #define UNICODESET_HIGH 0x0110000 // LOW <= all valid values. ZERO for codepoints #define UNICODESET_LOW 0x000000 /** Max list [0, 1, 2, ..., max code point, HIGH] */ constexpr int32_t MAX_LENGTH = UNICODESET_HIGH + 1; U_NAMESPACE_BEGIN SymbolTable::~SymbolTable() {} UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeSet) /** * Modify the given UChar32 variable so that it is in range, by * pinning values < UNICODESET_LOW to UNICODESET_LOW, and * pinning values > UNICODESET_HIGH-1 to UNICODESET_HIGH-1. * It modifies its argument in-place and also returns it. */ static inline UChar32 pinCodePoint(UChar32& c) { if (c < UNICODESET_LOW) { c = UNICODESET_LOW; } else if (c > (UNICODESET_HIGH-1)) { c = (UNICODESET_HIGH-1); } return c; } //---------------------------------------------------------------- // Debugging //---------------------------------------------------------------- // DO NOT DELETE THIS CODE. This code is used to debug memory leaks. // To enable the debugging, define the symbol DEBUG_MEM in the line // below. This will result in text being sent to stdout that looks // like this: // DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85- // DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85- // Each line lists a construction (ct) or destruction (dt) event, the // object address, the number of outstanding objects after the event, // and the pattern of the object in question. // #define DEBUG_MEM #ifdef DEBUG_MEM #include static int32_t _dbgCount = 0; static inline void _dbgct(UnicodeSet* set) { UnicodeString str; set->toPattern(str, true); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf); } static inline void _dbgdt(UnicodeSet* set) { UnicodeString str; set->toPattern(str, true); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf); } #else #define _dbgct(set) #define _dbgdt(set) #endif //---------------------------------------------------------------- // UnicodeString in UVector support //---------------------------------------------------------------- static void U_CALLCONV cloneUnicodeString(UElement *dst, UElement *src) { dst->pointer = new UnicodeString(*(UnicodeString*)src->pointer); } static int32_t U_CALLCONV compareUnicodeString(UElement t1, UElement t2) { const UnicodeString &a = *(const UnicodeString*)t1.pointer; const UnicodeString &b = *(const UnicodeString*)t2.pointer; return a.compare(b); } UBool UnicodeSet::hasStrings() const { return strings != nullptr && !strings->isEmpty(); } int32_t UnicodeSet::stringsSize() const { return strings == nullptr ? 0 : strings->size(); } UBool UnicodeSet::stringsContains(const UnicodeString &s) const { return strings != nullptr && strings->contains((void*) &s); } //---------------------------------------------------------------- // Constructors &c //---------------------------------------------------------------- /** * Constructs an empty set. */ UnicodeSet::UnicodeSet() { list[0] = UNICODESET_HIGH; _dbgct(this); } /** * Constructs a set containing the given range. If end > * start then an empty set is created. * * @param start first character, inclusive, of range * @param end last character, inclusive, of range */ UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) { list[0] = UNICODESET_HIGH; add(start, end); _dbgct(this); } /** * Constructs a set that is identical to the given UnicodeSet. */ UnicodeSet::UnicodeSet(const UnicodeSet& o) : UnicodeFilter(o) { *this = o; _dbgct(this); } // Copy-construct as thawed. UnicodeSet::UnicodeSet(const UnicodeSet& o, UBool /* asThawed */) : UnicodeFilter(o) { if (ensureCapacity(o.len)) { // *this = o except for bmpSet and stringSpan len = o.len; uprv_memcpy(list, o.list, (size_t)len*sizeof(UChar32)); if (o.hasStrings()) { UErrorCode status = U_ZERO_ERROR; if (!allocateStrings(status) || (strings->assign(*o.strings, cloneUnicodeString, status), U_FAILURE(status))) { setToBogus(); return; } } if (o.pat) { setPattern(o.pat, o.patLen); } _dbgct(this); } } /** * Destructs the set. */ UnicodeSet::~UnicodeSet() { _dbgdt(this); // first! if (list != stackList) { uprv_free(list); } delete bmpSet; if (buffer != stackList) { uprv_free(buffer); } delete strings; delete stringSpan; releasePattern(); } /** * Assigns this object to be a copy of another. */ UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) { return copyFrom(o, false); } UnicodeSet& UnicodeSet::copyFrom(const UnicodeSet& o, UBool asThawed) { if (this == &o) { return *this; } if (isFrozen()) { return *this; } if (o.isBogus()) { setToBogus(); return *this; } if (!ensureCapacity(o.len)) { // ensureCapacity will mark the UnicodeSet as Bogus if OOM failure happens. return *this; } len = o.len; uprv_memcpy(list, o.list, (size_t)len*sizeof(UChar32)); if (o.bmpSet != nullptr && !asThawed) { bmpSet = new BMPSet(*o.bmpSet, list, len); if (bmpSet == NULL) { // Check for memory allocation error. setToBogus(); return *this; } } if (o.hasStrings()) { UErrorCode status = U_ZERO_ERROR; if ((strings == nullptr && !allocateStrings(status)) || (strings->assign(*o.strings, cloneUnicodeString, status), U_FAILURE(status))) { setToBogus(); return *this; } } else if (hasStrings()) { strings->removeAllElements(); } if (o.stringSpan != nullptr && !asThawed) { stringSpan = new UnicodeSetStringSpan(*o.stringSpan, *strings); if (stringSpan == NULL) { // Check for memory allocation error. setToBogus(); return *this; } } releasePattern(); if (o.pat) { setPattern(o.pat, o.patLen); } return *this; } /** * Returns a copy of this object. All UnicodeMatcher objects have * to support cloning in order to allow classes using * UnicodeMatchers, such as Transliterator, to implement cloning. */ UnicodeSet* UnicodeSet::clone() const { return new UnicodeSet(*this); } UnicodeSet *UnicodeSet::cloneAsThawed() const { return new UnicodeSet(*this, true); } /** * Compares the specified object with this set for equality. Returns * true if the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). * * @param o set to be compared for equality with this set. * @return true if the specified set is equal to this set. */ bool UnicodeSet::operator==(const UnicodeSet& o) const { if (len != o.len) return false; for (int32_t i = 0; i < len; ++i) { if (list[i] != o.list[i]) return false; } if (hasStrings() != o.hasStrings()) { return false; } if (hasStrings() && *strings != *o.strings) return false; return true; } /** * Returns the hash code value for this set. * * @return the hash code value for this set. * @see Object#hashCode() */ int32_t UnicodeSet::hashCode(void) const { uint32_t result = static_cast(len); for (int32_t i = 0; i < len; ++i) { result *= 1000003u; result += list[i]; } return static_cast(result); } //---------------------------------------------------------------- // Public API //---------------------------------------------------------------- /** * Returns the number of elements in this set (its cardinality), * Note than the elements of a set may include both individual * codepoints and strings. * * @return the number of elements in this set (its cardinality). */ int32_t UnicodeSet::size(void) const { int32_t n = 0; int32_t count = getRangeCount(); for (int32_t i = 0; i < count; ++i) { n += getRangeEnd(i) - getRangeStart(i) + 1; } return n + stringsSize(); } /** * Returns true if this set contains no elements. * * @return true if this set contains no elements. */ UBool UnicodeSet::isEmpty(void) const { return len == 1 && !hasStrings(); } /** * Returns true if this set contains the given character. * @param c character to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 c) const { // Set i to the index of the start item greater than ch // We know we will terminate without length test! // LATER: for large sets, add binary search //int32_t i = -1; //for (;;) { // if (c < list[++i]) break; //} if (bmpSet != NULL) { return bmpSet->contains(c); } if (stringSpan != NULL) { return stringSpan->contains(c); } if (c >= UNICODESET_HIGH) { // Don't need to check LOW bound return false; } int32_t i = findCodePoint(c); return (UBool)(i & 1); // return true if odd } /** * Returns the smallest value i such that c < list[i]. Caller * must ensure that c is a legal value or this method will enter * an infinite loop. This method performs a binary search. * @param c a character in the range MIN_VALUE..MAX_VALUE * inclusive * @return the smallest integer i in the range 0..len-1, * inclusive, such that c < list[i] */ int32_t UnicodeSet::findCodePoint(UChar32 c) const { /* Examples: findCodePoint(c) set list[] c=0 1 3 4 7 8 === ============== =========== [] [110000] 0 0 0 0 0 0 [\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2 [\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2 [:Any:] [0, 110000] 1 1 1 1 1 1 */ // Return the smallest i such that c < list[i]. Assume // list[len - 1] == HIGH and that c is legal (0..HIGH-1). if (c < list[0]) return 0; // High runner test. c is often after the last range, so an // initial check for this condition pays off. int32_t lo = 0; int32_t hi = len - 1; if (lo >= hi || c >= list[hi-1]) return hi; // invariant: c >= list[lo] // invariant: c < list[hi] for (;;) { int32_t i = (lo + hi) >> 1; if (i == lo) { break; // Found! } else if (c < list[i]) { hi = i; } else { lo = i; } } return hi; } /** * Returns true if this set contains every character * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 start, UChar32 end) const { //int32_t i = -1; //for (;;) { // if (start < list[++i]) break; //} int32_t i = findCodePoint(start); return ((i & 1) != 0 && end < list[i]); } /** * Returns true if this set contains the given * multicharacter string. * @param s string to be checked for containment * @return true if this set contains the specified string */ UBool UnicodeSet::contains(const UnicodeString& s) const { int32_t cp = getSingleCP(s); if (cp < 0) { return stringsContains(s); } else { return contains((UChar32) cp); } } /** * Returns true if this set contains all the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int i=0; icontainsAll(*c.strings)); } /** * Returns true if this set contains all the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeString& s) const { return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_CONTAINED) == s.length()); } /** * Returns true if this set contains none of the characters * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const { //int32_t i = -1; //for (;;) { // if (start < list[++i]) break; //} int32_t i = findCodePoint(start); return ((i & 1) == 0 && end < list[i]); } /** * Returns true if this set contains none of the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int32_t i=0; icontainsNone(*c.strings); } /** * Returns true if this set contains none of the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeString& s) const { return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_NOT_CONTAINED) == s.length()); } /** * Returns true if this set contains any character whose low byte * is the given value. This is used by RuleBasedTransliterator for * indexing. */ UBool UnicodeSet::matchesIndexValue(uint8_t v) const { /* The index value v, in the range [0,255], is contained in this set if * it is contained in any pair of this set. Pairs either have the high * bytes equal, or unequal. If the high bytes are equal, then we have * aaxx..aayy, where aa is the high byte. Then v is contained if xx <= * v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa. * Then v is contained if xx <= v || v <= yy. (This is identical to the * time zone month containment logic.) */ int32_t i; int32_t rangeCount=getRangeCount(); for (i=0; isize(); ++i) { const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i); if (s.isEmpty()) { continue; // skip the empty string } UChar32 c = s.char32At(0); if ((c & 0xFF) == v) { return true; } } } return false; } /** * Implementation of UnicodeMatcher::matches(). Always matches the * longest possible multichar string. */ UMatchDegree UnicodeSet::matches(const Replaceable& text, int32_t& offset, int32_t limit, UBool incremental) { if (offset == limit) { if (contains(U_ETHER)) { return incremental ? U_PARTIAL_MATCH : U_MATCH; } else { return U_MISMATCH; } } else { if (hasStrings()) { // try strings first // might separate forward and backward loops later // for now they are combined // TODO Improve efficiency of this, at least in the forward // direction, if not in both. In the forward direction we // can assume the strings are sorted. int32_t i; UBool forward = offset < limit; // firstChar is the leftmost char to match in the // forward direction or the rightmost char to match in // the reverse direction. UChar firstChar = text.charAt(offset); // If there are multiple strings that can match we // return the longest match. int32_t highWaterLength = 0; for (i=0; isize(); ++i) { const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i); if (trial.isEmpty()) { continue; // skip the empty string } UChar c = trial.charAt(forward ? 0 : trial.length() - 1); // Strings are sorted, so we can optimize in the // forward direction. if (forward && c > firstChar) break; if (c != firstChar) continue; int32_t matchLen = matchRest(text, offset, limit, trial); if (incremental) { int32_t maxLen = forward ? limit-offset : offset-limit; if (matchLen == maxLen) { // We have successfully matched but only up to limit. return U_PARTIAL_MATCH; } } if (matchLen == trial.length()) { // We have successfully matched the whole string. if (matchLen > highWaterLength) { highWaterLength = matchLen; } // In the forward direction we know strings // are sorted so we can bail early. if (forward && matchLen < highWaterLength) { break; } continue; } } // We've checked all strings without a partial match. // If we have full matches, return the longest one. if (highWaterLength != 0) { offset += forward ? highWaterLength : -highWaterLength; return U_MATCH; } } return UnicodeFilter::matches(text, offset, limit, incremental); } } /** * Returns the longest match for s in text at the given position. * If limit > start then match forward from start+1 to limit * matching all characters except s.charAt(0). If limit < start, * go backward starting from start-1 matching all characters * except s.charAt(s.length()-1). This method assumes that the * first character, text.charAt(start), matches s, so it does not * check it. * @param text the text to match * @param start the first character to match. In the forward * direction, text.charAt(start) is matched against s.charAt(0). * In the reverse direction, it is matched against * s.charAt(s.length()-1). * @param limit the limit offset for matching, either last+1 in * the forward direction, or last-1 in the reverse direction, * where last is the index of the last character to match. * @return If part of s matches up to the limit, return |limit - * start|. If all of s matches before reaching the limit, return * s.length(). If there is a mismatch between s and text, return * 0 */ int32_t UnicodeSet::matchRest(const Replaceable& text, int32_t start, int32_t limit, const UnicodeString& s) { int32_t i; int32_t maxLen; int32_t slen = s.length(); if (start < limit) { maxLen = limit - start; if (maxLen > slen) maxLen = slen; for (i = 1; i < maxLen; ++i) { if (text.charAt(start + i) != s.charAt(i)) return 0; } } else { maxLen = start - limit; if (maxLen > slen) maxLen = slen; --slen; // <=> slen = s.length() - 1; for (i = 1; i < maxLen; ++i) { if (text.charAt(start - i) != s.charAt(slen - i)) return 0; } } return maxLen; } /** * Implement of UnicodeMatcher */ void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const { toUnionTo.addAll(*this); } /** * Returns the index of the given character within this set, where * the set is ordered by ascending code point. If the character * is not in this set, return -1. The inverse of this method is * charAt(). * @return an index from 0..size()-1, or -1 */ int32_t UnicodeSet::indexOf(UChar32 c) const { if (c < MIN_VALUE || c > MAX_VALUE) { return -1; } int32_t i = 0; int32_t n = 0; for (;;) { UChar32 start = list[i++]; if (c < start) { return -1; } UChar32 limit = list[i++]; if (c < limit) { return n + c - start; } n += limit - start; } } /** * Returns the character at the given index within this set, where * the set is ordered by ascending code point. If the index is * out of range, return (UChar32)-1. The inverse of this method is * indexOf(). * @param index an index from 0..size()-1 * @return the character at the given index, or (UChar32)-1. */ UChar32 UnicodeSet::charAt(int32_t index) const { if (index >= 0) { // len2 is the largest even integer <= len, that is, it is len // for even values and len-1 for odd values. With odd values // the last entry is UNICODESET_HIGH. int32_t len2 = len & ~1; for (int32_t i=0; i < len2;) { UChar32 start = list[i++]; int32_t count = list[i++] - start; if (index < count) { return (UChar32)(start + index); } index -= count; } } return (UChar32)-1; } /** * Make this object represent the range start - end. * If end > start then this object is set to an * an empty range. * * @param start first character in the set, inclusive * @rparam end last character in the set, inclusive */ UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) { clear(); complement(start, end); return *this; } /** * Adds the specified range to this set if it is not already * present. If this set already contains the specified range, * the call leaves this set unchanged. If end > start * then an empty range is added, leaving the set unchanged. * * @param start first character, inclusive, of range to be added * to this set. * @param end last character, inclusive, of range to be added * to this set. */ UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) { if (pinCodePoint(start) < pinCodePoint(end)) { UChar32 limit = end + 1; // Fast path for adding a new range after the last one. // Odd list length: [..., lastStart, lastLimit, HIGH] if ((len & 1) != 0) { // If the list is empty, set lastLimit low enough to not be adjacent to 0. UChar32 lastLimit = len == 1 ? -2 : list[len - 2]; if (lastLimit <= start && !isFrozen() && !isBogus()) { if (lastLimit == start) { // Extend the last range. list[len - 2] = limit; if (limit == UNICODESET_HIGH) { --len; } } else { list[len - 1] = start; if (limit < UNICODESET_HIGH) { if (ensureCapacity(len + 2)) { list[len++] = limit; list[len++] = UNICODESET_HIGH; } } else { // limit == UNICODESET_HIGH if (ensureCapacity(len + 1)) { list[len++] = UNICODESET_HIGH; } } } releasePattern(); return *this; } } // This is slow. Could be much faster using findCodePoint(start) // and modifying the list, dealing with adjacent & overlapping ranges. UChar32 range[3] = { start, limit, UNICODESET_HIGH }; add(range, 2, 0); } else if (start == end) { add(start); } return *this; } // #define DEBUG_US_ADD #ifdef DEBUG_US_ADD #include void dump(UChar32 c) { if (c <= 0xFF) { printf("%c", (char)c); } else { printf("U+%04X", c); } } void dump(const UChar32* list, int32_t len) { printf("["); for (int32_t i=0; i "); #endif if (c == list[i]-1) { // c is before start of next range list[i] = c; // if we touched the HIGH mark, then add a new one if (c == (UNICODESET_HIGH - 1)) { if (!ensureCapacity(len+1)) { // ensureCapacity will mark the object as Bogus if OOM failure happens. return *this; } list[len++] = UNICODESET_HIGH; } if (i > 0 && c == list[i-1]) { // collapse adjacent ranges // [..., start_k-1, c, c, limit_k, ..., HIGH] // ^ // list[i] //for (int32_t k=i-1; k 0 && c == list[i-1]) { // c is after end of prior range list[i-1]++; // no need to check for collapse here } else { // At this point we know the new char is not adjacent to // any existing ranges, and it is not 10FFFF. // [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH] // ^ // list[i] // [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH] // ^ // list[i] if (!ensureCapacity(len+2)) { // ensureCapacity will mark the object as Bogus if OOM failure happens. return *this; } UChar32 *p = list + i; uprv_memmove(p + 2, p, (len - i) * sizeof(*p)); list[i] = c; list[i+1] = c+1; len += 2; } #ifdef DEBUG_US_ADD dump(list, len); printf("\n"); for (i=1; i {"ch"} * * @param s the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::add(const UnicodeString& s) { if (isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (!stringsContains(s)) { _add(s); releasePattern(); } } else { add((UChar32)cp); } return *this; } /** * Adds the given string, in order, to 'strings'. The given string * must have been checked by the caller to not already be in 'strings'. */ void UnicodeSet::_add(const UnicodeString& s) { if (isFrozen() || isBogus()) { return; } UErrorCode ec = U_ZERO_ERROR; if (strings == nullptr && !allocateStrings(ec)) { setToBogus(); return; } UnicodeString* t = new UnicodeString(s); if (t == NULL) { // Check for memory allocation error. setToBogus(); return; } strings->sortedInsert(t, compareUnicodeString, ec); if (U_FAILURE(ec)) { setToBogus(); } } /** * @return a code point IF the string consists of a single one. * otherwise returns -1. * @param string to test */ int32_t UnicodeSet::getSingleCP(const UnicodeString& s) { int32_t sLength = s.length(); if (sLength == 1) return s.charAt(0); if (sLength == 2) { UChar32 cp = s.char32At(0); if (cp > 0xFFFF) { // is surrogate pair return cp; } } return -1; } /** * Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += U16_LENGTH(cp)) { cp = s.char32At(i); add(cp); } return *this; } /** * Retains EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); retainAll(set); return *this; } /** * Complement EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); complementAll(set); return *this; } /** * Remove EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); removeAll(set); return *this; } UnicodeSet& UnicodeSet::removeAllStrings() { if (!isFrozen() && hasStrings()) { strings->removeAllElements(); releasePattern(); } return *this; } /** * Makes a set from a multicharacter string. Thus "ch" => {"ch"} *
Warning: you cannot add an empty string ("") to a UnicodeSet. * @param the source string * @return a newly created set containing the given string */ UnicodeSet* U_EXPORT2 UnicodeSet::createFrom(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); if (set != NULL) { // Check for memory allocation error. set->add(s); } return set; } /** * Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"} * @param the source string * @return a newly created set containing the given characters */ UnicodeSet* U_EXPORT2 UnicodeSet::createFromAll(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); if (set != NULL) { // Check for memory allocation error. set->addAll(s); } return set; } /** * Retain only the elements in this set that are contained in the * specified range. If end > start then an empty range is * retained, leaving the set empty. * * @param start first character, inclusive, of range to be retained * to this set. * @param end last character, inclusive, of range to be retained * to this set. */ UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 0); } else { clear(); } return *this; } UnicodeSet& UnicodeSet::retain(UChar32 c) { return retain(c, c); } UnicodeSet& UnicodeSet::retain(const UnicodeString &s) { if (isFrozen() || isBogus()) { return *this; } UChar32 cp = getSingleCP(s); if (cp < 0) { bool isIn = stringsContains(s); // Check for getRangeCount() first to avoid somewhat-expensive size() // when there are single code points. if (isIn && getRangeCount() == 0 && size() == 1) { return *this; } clear(); if (isIn) { _add(s); } } else { retain(cp, cp); } return *this; } /** * Removes the specified range from this set if it is present. * The set will not contain the specified range once the call * returns. If end > start then an empty range is * removed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 2); } return *this; } /** * Removes the specified character from this set if it is present. * The set will not contain the specified range once the call * returns. */ UnicodeSet& UnicodeSet::remove(UChar32 c) { return remove(c, c); } /** * Removes the specified string from this set if it is present. * The set will not contain the specified character once the call * returns. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::remove(const UnicodeString& s) { if (isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (strings != nullptr && strings->removeElement((void*) &s)) { releasePattern(); } } else { remove((UChar32)cp, (UChar32)cp); } return *this; } /** * Complements the specified range in this set. Any character in * the range will be removed if it is in this set, or will be * added if it is not in this set. If end > start * then an empty range is xor'ed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) { if (isFrozen() || isBogus()) { return *this; } if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; exclusiveOr(range, 2, 0); } releasePattern(); return *this; } UnicodeSet& UnicodeSet::complement(UChar32 c) { return complement(c, c); } /** * This is equivalent to * complement(MIN_VALUE, MAX_VALUE). */ UnicodeSet& UnicodeSet::complement(void) { if (isFrozen() || isBogus()) { return *this; } if (list[0] == UNICODESET_LOW) { uprv_memmove(list, list + 1, (size_t)(len-1)*sizeof(UChar32)); --len; } else { if (!ensureCapacity(len+1)) { return *this; } uprv_memmove(list + 1, list, (size_t)len*sizeof(UChar32)); list[0] = UNICODESET_LOW; ++len; } releasePattern(); return *this; } /** * Complement the specified string in this set. * The set will not contain the specified string once the call * returns. * * @param s the string to complement * @return this object, for chaining */ UnicodeSet& UnicodeSet::complement(const UnicodeString& s) { if (isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (stringsContains(s)) { strings->removeElement((void*) &s); } else { _add(s); } releasePattern(); } else { complement((UChar32)cp, (UChar32)cp); } return *this; } /** * Adds all of the elements in the specified set to this set if * they're not already present. This operation effectively * modifies this set so that its value is the union of the two * sets. The behavior of this operation is unspecified if the specified * collection is modified while the operation is in progress. * * @param c set whose elements are to be added to this set. * @see #add(char, char) */ UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) { if ( c.len>0 && c.list!=NULL ) { add(c.list, c.len, 0); } // Add strings in order if ( c.strings!=NULL ) { for (int32_t i=0; isize(); ++i) { const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i); if (!stringsContains(*s)) { _add(*s); } } } return *this; } /** * Retains only the elements in this set that are contained in the * specified set. In other words, removes from this set all of * its elements that are not contained in the specified set. This * operation effectively modifies this set so that its value is * the intersection of the two sets. * * @param c set that defines which elements this set will retain. */ UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } retain(c.list, c.len, 0); if (hasStrings()) { if (!c.hasStrings()) { strings->removeAllElements(); } else { strings->retainAll(*c.strings); } } return *this; } /** * Removes from this set all of its elements that are contained in the * specified set. This operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c set that defines which elements will be removed from * this set. */ UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } retain(c.list, c.len, 2); if (hasStrings() && c.hasStrings()) { strings->removeAll(*c.strings); } return *this; } /** * Complements in this set all elements contained in the specified * set. Any character in the other set will be removed if it is * in this set, or will be added if it is not in this set. * * @param c set that defines which elements will be xor'ed from * this set. */ UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } exclusiveOr(c.list, c.len, 0); if (c.strings != nullptr) { for (int32_t i=0; isize(); ++i) { void* e = c.strings->elementAt(i); if (strings == nullptr || !strings->removeElement(e)) { _add(*(const UnicodeString*)e); } } } return *this; } /** * Removes all of the elements from this set. This set will be * empty after this call returns. */ UnicodeSet& UnicodeSet::clear(void) { if (isFrozen()) { return *this; } list[0] = UNICODESET_HIGH; len = 1; releasePattern(); if (strings != NULL) { strings->removeAllElements(); } // Remove bogus fFlags = 0; return *this; } /** * Iteration method that returns the number of ranges contained in * this set. * @see #getRangeStart * @see #getRangeEnd */ int32_t UnicodeSet::getRangeCount() const { return len/2; } /** * Iteration method that returns the first character in the * specified range of this set. * @see #getRangeCount * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeStart(int32_t index) const { return list[index*2]; } /** * Iteration method that returns the last character in the * specified range of this set. * @see #getRangeStart * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeEnd(int32_t index) const { return list[index*2 + 1] - 1; } const UnicodeString* UnicodeSet::getString(int32_t index) const { return (const UnicodeString*) strings->elementAt(index); } /** * Reallocate this objects internal structures to take up the least * possible space, without changing this object's value. */ UnicodeSet& UnicodeSet::compact() { if (isFrozen() || isBogus()) { return *this; } // Delete buffer first to defragment memory less. if (buffer != stackList) { uprv_free(buffer); buffer = NULL; bufferCapacity = 0; } if (list == stackList) { // pass } else if (len <= INITIAL_CAPACITY) { uprv_memcpy(stackList, list, len * sizeof(UChar32)); uprv_free(list); list = stackList; capacity = INITIAL_CAPACITY; } else if ((len + 7) < capacity) { // If we have more than a little unused capacity, shrink it to len. UChar32* temp = (UChar32*) uprv_realloc(list, sizeof(UChar32) * len); if (temp) { list = temp; capacity = len; } // else what the heck happened?! We allocated less memory! // Oh well. We'll keep our original array. } if (strings != nullptr && strings->isEmpty()) { delete strings; strings = nullptr; } return *this; } #ifdef DEBUG_SERIALIZE #include #endif /** * Deserialize constructor. */ UnicodeSet::UnicodeSet(const uint16_t data[], int32_t dataLen, ESerialization serialization, UErrorCode &ec) { if(U_FAILURE(ec)) { setToBogus(); return; } if( (serialization != kSerialized) || (data==NULL) || (dataLen < 1)) { ec = U_ILLEGAL_ARGUMENT_ERROR; setToBogus(); return; } // bmp? int32_t headerSize = ((data[0]&0x8000)) ?2:1; int32_t bmpLength = (headerSize==1)?data[0]:data[1]; int32_t newLength = (((data[0]&0x7FFF)-bmpLength)/2)+bmpLength; #ifdef DEBUG_SERIALIZE printf("dataLen %d headerSize %d bmpLen %d len %d. data[0]=%X/%X/%X/%X\n", dataLen,headerSize,bmpLength,newLength, data[0],data[1],data[2],data[3]); #endif if(!ensureCapacity(newLength + 1)) { // +1 for HIGH return; } // copy bmp int32_t i; for(i = 0; i< bmpLength;i++) { list[i] = data[i+headerSize]; #ifdef DEBUG_SERIALIZE printf("<<16@%d[%d] %X\n", i+headerSize, i, list[i]); #endif } // copy smp for(i=bmpLength;i0 && dest==NULL)) { ec=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* count necessary 16-bit units */ length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH // assert(length>=0); if (length==0) { /* empty set */ if (destCapacity>0) { *dest=0; } else { ec=U_BUFFER_OVERFLOW_ERROR; } return 1; } /* now length>0 */ if (this->list[length-1]<=0xffff) { /* all BMP */ bmpLength=length; } else if (this->list[0]>=0x10000) { /* all supplementary */ bmpLength=0; length*=2; } else { /* some BMP, some supplementary */ for (bmpLength=0; bmpLengthlist[bmpLength]<=0xffff; ++bmpLength) {} length=bmpLength+2*(length-bmpLength); } #ifdef DEBUG_SERIALIZE printf(">> bmpLength%d length%d len%d\n", bmpLength, length, len); #endif /* length: number of 16-bit array units */ if (length>0x7fff) { /* there are only 15 bits for the length in the first serialized word */ ec=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } /* * total serialized length: * number of 16-bit array units (length) + * 1 length unit (always) + * 1 bmpLength unit (if there are supplementary values) */ destLength=length+((length>bmpLength)?2:1); if (destLength<=destCapacity) { const UChar32 *p; int32_t i; #ifdef DEBUG_SERIALIZE printf("writeHdr\n"); #endif *dest=(uint16_t)length; if (length>bmpLength) { *dest|=0x8000; *++dest=(uint16_t)bmpLength; } ++dest; /* write the BMP part of the array */ p=this->list; for (i=0; i>16); *dest++=(uint16_t)*p++; } } else { ec=U_BUFFER_OVERFLOW_ERROR; } return destLength; } //---------------------------------------------------------------- // Implementation: Utility methods //---------------------------------------------------------------- /** * Allocate our strings vector and return true if successful. */ UBool UnicodeSet::allocateStrings(UErrorCode &status) { if (U_FAILURE(status)) { return false; } strings = new UVector(uprv_deleteUObject, uhash_compareUnicodeString, 1, status); if (strings == NULL) { // Check for memory allocation error. status = U_MEMORY_ALLOCATION_ERROR; return false; } if (U_FAILURE(status)) { delete strings; strings = NULL; return false; } return true; } int32_t UnicodeSet::nextCapacity(int32_t minCapacity) { // Grow exponentially to reduce the frequency of allocations. if (minCapacity < INITIAL_CAPACITY) { return minCapacity + INITIAL_CAPACITY; } else if (minCapacity <= 2500) { return 5 * minCapacity; } else { int32_t newCapacity = 2 * minCapacity; if (newCapacity > MAX_LENGTH) { newCapacity = MAX_LENGTH; } return newCapacity; } } bool UnicodeSet::ensureCapacity(int32_t newLen) { if (newLen > MAX_LENGTH) { newLen = MAX_LENGTH; } if (newLen <= capacity) { return true; } int32_t newCapacity = nextCapacity(newLen); UChar32* temp = (UChar32*) uprv_malloc(newCapacity * sizeof(UChar32)); if (temp == NULL) { setToBogus(); // set the object to bogus state if an OOM failure occurred. return false; } // Copy only the actual contents. uprv_memcpy(temp, list, len * sizeof(UChar32)); if (list != stackList) { uprv_free(list); } list = temp; capacity = newCapacity; return true; } bool UnicodeSet::ensureBufferCapacity(int32_t newLen) { if (newLen > MAX_LENGTH) { newLen = MAX_LENGTH; } if (newLen <= bufferCapacity) { return true; } int32_t newCapacity = nextCapacity(newLen); UChar32* temp = (UChar32*) uprv_malloc(newCapacity * sizeof(UChar32)); if (temp == NULL) { setToBogus(); return false; } // The buffer has no contents to be copied. // It is always filled from scratch after this call. if (buffer != stackList) { uprv_free(buffer); } buffer = temp; bufferCapacity = newCapacity; return true; } /** * Swap list and buffer. */ void UnicodeSet::swapBuffers(void) { // swap list and buffer UChar32* temp = list; list = buffer; buffer = temp; int32_t c = capacity; capacity = bufferCapacity; bufferCapacity = c; } void UnicodeSet::setToBogus() { clear(); // Remove everything in the set. fFlags = kIsBogus; } //---------------------------------------------------------------- // Implementation: Fundamental operators //---------------------------------------------------------------- static inline UChar32 max(UChar32 a, UChar32 b) { return (a > b) ? a : b; } // polarity = 0, 3 is normal: x xor y // polarity = 1, 2: x xor ~y == x === y void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus()) { return; } if (!ensureBufferCapacity(len + otherLen)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b; if (polarity == 1 || polarity == 2) { b = UNICODESET_LOW; if (other[j] == UNICODESET_LOW) { // skip base if already LOW ++j; b = other[j]; } } else { b = other[j++]; } // simplest of all the routines // sort the values, discarding identicals! for (;;) { if (a < b) { buffer[k++] = a; a = list[i++]; } else if (b < a) { buffer[k++] = b; b = other[j++]; } else if (a != UNICODESET_HIGH) { // at this point, a == b // discard both values! a = list[i++]; b = other[j++]; } else { // DONE! buffer[k++] = UNICODESET_HIGH; len = k; break; } } swapBuffers(); releasePattern(); } // polarity = 0 is normal: x union y // polarity = 2: x union ~y // polarity = 1: ~x union y // polarity = 3: ~x union ~y void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus() || other==NULL) { return; } if (!ensureBufferCapacity(len + otherLen)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; take lower if unequal if (a < b) { // take a // Back up over overlapping ranges in buffer[] if (k > 0 && a <= buffer[k-1]) { // Pick latter end value in buffer[] vs. list[] a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; // Common if/else code factored out polarity ^= 1; } else if (b < a) { // take b if (k > 0 && b <= buffer[k-1]) { b = max(other[j], buffer[--k]); } else { buffer[k++] = b; b = other[j]; } j++; polarity ^= 2; } else { // a == b, take a, drop b if (a == UNICODESET_HIGH) goto loop_end; // This is symmetrical; it doesn't matter if // we backtrack with a or b. - liu if (k > 0 && a <= buffer[k-1]) { a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take higher if unequal, and drop other if (b <= a) { // take a if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; } else { // take b if (b == UNICODESET_HIGH) goto loop_end; buffer[k++] = b; } a = list[i++]; polarity ^= 1; // factored common code b = other[j++]; polarity ^= 2; break; case 1: // a second, b first; if b < a, overlap if (a < b) { // no overlap, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, drop b b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, drop a a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); releasePattern(); } // polarity = 0 is normal: x intersect y // polarity = 2: x intersect ~y == set-minus // polarity = 1: ~x intersect y // polarity = 3: ~x intersect ~y void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus()) { return; } if (!ensureBufferCapacity(len + otherLen)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; drop the smaller if (a < b) { // drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // drop b b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take lower if unequal if (a < b) { // take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 1: // a second, b first; if (a < b) { // NO OVERLAP, drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, drop b b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); releasePattern(); } /** * Append the toPattern() representation of a * string to the given StringBuffer. */ void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool escapeUnprintable) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += U16_LENGTH(cp)) { _appendToPat(buf, cp = s.char32At(i), escapeUnprintable); } } /** * Append the toPattern() representation of a * character to the given StringBuffer. */ void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool escapeUnprintable) { if (escapeUnprintable ? ICU_Utility::isUnprintable(c) : ICU_Utility::shouldAlwaysBeEscaped(c)) { // Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything // unprintable ICU_Utility::escape(buf, c); return; } // Okay to let ':' pass through switch (c) { case u'[': case u']': case u'-': case u'^': case u'&': case u'\\': case u'{': case u'}': case u':': case SymbolTable::SYMBOL_REF: buf.append(u'\\'); break; default: // Escape whitespace if (PatternProps::isWhiteSpace(c)) { buf.append(u'\\'); } break; } buf.append(c); } void UnicodeSet::_appendToPat(UnicodeString &result, UChar32 start, UChar32 end, UBool escapeUnprintable) { _appendToPat(result, start, escapeUnprintable); if (start != end) { if ((start+1) != end || // Avoid writing what looks like a lead+trail surrogate pair. start == 0xdbff) { result.append(u'-'); } _appendToPat(result, end, escapeUnprintable); } } /** * Append a string representation of this set to result. This will be * a cleaned version of the string passed to applyPattern(), if there * is one. Otherwise it will be generated. */ UnicodeString& UnicodeSet::_toPattern(UnicodeString& result, UBool escapeUnprintable) const { if (pat != NULL) { int32_t i; int32_t backslashCount = 0; for (i=0; i= 2 && // getRangeStart(0) == MIN_VALUE && // getRangeEnd(last) == MAX_VALUE) // Invariant: list[len-1] == HIGH == MAX_VALUE + 1 // If limit == len then len is even and the last range ends with MAX_VALUE. // // *But* do not write the inverse (complement) if there are strings. // Since ICU 70, the '^' performs a code point complement which removes all strings. if (len >= 4 && list[0] == 0 && limit == len && !hasStrings()) { // Emit the inverse result.append(u'^'); // Offsetting the inversion list index by one lets us // iterate over the ranges of the set complement. i = 1; --limit; } // Emit the ranges as pairs. while (i < limit) { UChar32 start = list[i]; // getRangeStart() UChar32 end = list[i + 1] - 1; // getRangeEnd() = range limit minus one if (!(0xd800 <= end && end <= 0xdbff)) { _appendToPat(result, start, end, escapeUnprintable); i += 2; } else { // The range ends with a lead surrogate. // Avoid writing what looks like a lead+trail surrogate pair. // 1. Postpone ranges that start with a lead surrogate code point. int32_t firstLead = i; while ((i += 2) < limit && list[i] <= 0xdbff) {} int32_t firstAfterLead = i; // 2. Write following ranges that start with a trail surrogate code point. while (i < limit && (start = list[i]) <= 0xdfff) { _appendToPat(result, start, list[i + 1] - 1, escapeUnprintable); i += 2; } // 3. Now write the postponed ranges. for (int j = firstLead; j < firstAfterLead; j += 2) { _appendToPat(result, list[j], list[j + 1] - 1, escapeUnprintable); } } } if (strings != nullptr) { for (int32_t i = 0; isize(); ++i) { result.append(u'{'); _appendToPat(result, *(const UnicodeString*) strings->elementAt(i), escapeUnprintable); result.append(u'}'); } } return result.append(u']'); } /** * Release existing cached pattern */ void UnicodeSet::releasePattern() { if (pat) { uprv_free(pat); pat = NULL; patLen = 0; } } /** * Set the new pattern to cache. */ void UnicodeSet::setPattern(const char16_t *newPat, int32_t newPatLen) { releasePattern(); pat = (UChar *)uprv_malloc((newPatLen + 1) * sizeof(UChar)); if (pat) { patLen = newPatLen; u_memcpy(pat, newPat, patLen); pat[patLen] = 0; } // else we don't care if malloc failed. This was just a nice cache. // We can regenerate an equivalent pattern later when requested. } UnicodeSet *UnicodeSet::freeze() { if(!isFrozen() && !isBogus()) { compact(); // Optimize contains() and span() and similar functions. if (hasStrings()) { stringSpan = new UnicodeSetStringSpan(*this, *strings, UnicodeSetStringSpan::ALL); if (stringSpan == nullptr) { setToBogus(); return this; } else if (!stringSpan->needsStringSpanUTF16()) { // All strings are irrelevant for span() etc. because // all of each string's code points are contained in this set. // Do not check needsStringSpanUTF8() because UTF-8 has at most as // many relevant strings as UTF-16. // (Thus needsStringSpanUTF8() implies needsStringSpanUTF16().) delete stringSpan; stringSpan = NULL; } } if (stringSpan == NULL) { // No span-relevant strings: Optimize for code point spans. bmpSet=new BMPSet(list, len); if (bmpSet == NULL) { // Check for memory allocation error. setToBogus(); } } } return this; } int32_t UnicodeSet::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { return (int32_t)(bmpSet->span(s, s+length, spanCondition)-s); } if(length<0) { length=u_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->span(s, length, spanCondition); } else if(hasStrings()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::FWD_UTF16_NOT_CONTAINED : UnicodeSetStringSpan::FWD_UTF16_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF16()) { return strSpan.span(s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev=0; do { U16_NEXT(s, start, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=start)0 && bmpSet!=NULL) { return (int32_t)(bmpSet->spanBack(s, s+length, spanCondition)-s); } if(length<0) { length=u_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanBack(s, length, spanCondition); } else if(hasStrings()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::BACK_UTF16_NOT_CONTAINED : UnicodeSetStringSpan::BACK_UTF16_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF16()) { return strSpan.spanBack(s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U16_PREV(s, 0, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=length)>0); return prev; } int32_t UnicodeSet::spanUTF8(const char *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { const uint8_t *s0=(const uint8_t *)s; return (int32_t)(bmpSet->spanUTF8(s0, length, spanCondition)-s0); } if(length<0) { length=(int32_t)uprv_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanUTF8((const uint8_t *)s, length, spanCondition); } else if(hasStrings()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::FWD_UTF8_NOT_CONTAINED : UnicodeSetStringSpan::FWD_UTF8_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF8()) { return strSpan.spanUTF8((const uint8_t *)s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev=0; do { U8_NEXT_OR_FFFD(s, start, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=start)0 && bmpSet!=NULL) { const uint8_t *s0=(const uint8_t *)s; return bmpSet->spanBackUTF8(s0, length, spanCondition); } if(length<0) { length=(int32_t)uprv_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanBackUTF8((const uint8_t *)s, length, spanCondition); } else if(hasStrings()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::BACK_UTF8_NOT_CONTAINED : UnicodeSetStringSpan::BACK_UTF8_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF8()) { return strSpan.spanBackUTF8((const uint8_t *)s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U8_PREV_OR_FFFD(s, 0, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=length)>0); return prev; } U_NAMESPACE_END