// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * * Copyright (C) 2008-2011, International Business Machines * Corporation, Google and others. All Rights Reserved. * ******************************************************************************* */ // Author : eldawy@google.com (Mohamed Eldawy) // ucnvsel.cpp // // Purpose: To generate a list of encodings capable of handling // a given Unicode text // // Started 09-April-2008 /** * \file * * This is an implementation of an encoding selector. * The goal is, given a unicode string, find the encodings * this string can be mapped to. To make processing faster * a trie is built when you call ucnvsel_open() that * stores all encodings a codepoint can map to */ #include "unicode/ucnvsel.h" #if !UCONFIG_NO_CONVERSION #include #include "unicode/uchar.h" #include "unicode/uniset.h" #include "unicode/ucnv.h" #include "unicode/ustring.h" #include "unicode/uchriter.h" #include "utrie2.h" #include "propsvec.h" #include "uassert.h" #include "ucmndata.h" #include "udataswp.h" #include "uenumimp.h" #include "cmemory.h" #include "cstring.h" U_NAMESPACE_USE struct UConverterSelector { UTrie2 *trie; // 16 bit trie containing offsets into pv uint32_t* pv; // table of bits! int32_t pvCount; char** encodings; // which encodings did user ask to use? int32_t encodingsCount; int32_t encodingStrLength; uint8_t* swapped; UBool ownPv, ownEncodingStrings; }; static void generateSelectorData(UConverterSelector* result, UPropsVectors *upvec, const USet* excludedCodePoints, const UConverterUnicodeSet whichSet, UErrorCode* status) { if (U_FAILURE(*status)) { return; } int32_t columns = (result->encodingsCount+31)/32; // set errorValue to all-ones for (int32_t col = 0; col < columns; col++) { upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, col, static_cast(~0), static_cast(~0), status); } for (int32_t i = 0; i < result->encodingsCount; ++i) { uint32_t mask; uint32_t column; int32_t item_count; int32_t j; UConverter* test_converter = ucnv_open(result->encodings[i], status); if (U_FAILURE(*status)) { return; } USet* unicode_point_set; unicode_point_set = uset_open(1, 0); // empty set ucnv_getUnicodeSet(test_converter, unicode_point_set, whichSet, status); if (U_FAILURE(*status)) { ucnv_close(test_converter); return; } column = i / 32; mask = 1 << (i%32); // now iterate over intervals on set i! item_count = uset_getItemCount(unicode_point_set); for (j = 0; j < item_count; ++j) { UChar32 start_char; UChar32 end_char; UErrorCode smallStatus = U_ZERO_ERROR; uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, &smallStatus); if (U_FAILURE(smallStatus)) { // this will be reached for the converters that fill the set with // strings. Those should be ignored by our system } else { upvec_setValue(upvec, start_char, end_char, column, static_cast(~0), mask, status); } } ucnv_close(test_converter); uset_close(unicode_point_set); if (U_FAILURE(*status)) { return; } } // handle excluded encodings! Simply set their values to all 1's in the upvec if (excludedCodePoints) { int32_t item_count = uset_getItemCount(excludedCodePoints); for (int32_t j = 0; j < item_count; ++j) { UChar32 start_char; UChar32 end_char; uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, status); for (int32_t col = 0; col < columns; col++) { upvec_setValue(upvec, start_char, end_char, col, static_cast(~0), static_cast(~0), status); } } } // alright. Now, let's put things in the same exact form you'd get when you // unserialize things. result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); result->pvCount *= columns; // number of uint32_t = rows * columns result->ownPv = true; } /* open a selector. If converterListSize is 0, build for all converters. If excludedCodePoints is NULL, don't exclude any codepoints */ U_CAPI UConverterSelector* U_EXPORT2 ucnvsel_open(const char* const* converterList, int32_t converterListSize, const USet* excludedCodePoints, const UConverterUnicodeSet whichSet, UErrorCode* status) { // check if already failed if (U_FAILURE(*status)) { return NULL; } // ensure args make sense! if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } // allocate a new converter LocalUConverterSelectorPointer newSelector( (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); if (newSelector.isNull()) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); if (converterListSize == 0) { converterList = NULL; converterListSize = ucnv_countAvailable(); } newSelector->encodings = (char**)uprv_malloc(converterListSize * sizeof(char*)); if (!newSelector->encodings) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() // make a backup copy of the list of converters int32_t totalSize = 0; int32_t i; for (i = 0; i < converterListSize; i++) { totalSize += (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; } // 4-align the totalSize to 4-align the size of the serialized form int32_t encodingStrPadding = totalSize & 3; if (encodingStrPadding != 0) { encodingStrPadding = 4 - encodingStrPadding; } newSelector->encodingStrLength = totalSize += encodingStrPadding; char* allStrings = (char*) uprv_malloc(totalSize); if (!allStrings) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } for (i = 0; i < converterListSize; i++) { newSelector->encodings[i] = allStrings; uprv_strcpy(newSelector->encodings[i], converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); allStrings += uprv_strlen(newSelector->encodings[i]) + 1; } while (encodingStrPadding > 0) { *allStrings++ = 0; --encodingStrPadding; } newSelector->ownEncodingStrings = true; newSelector->encodingsCount = converterListSize; UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); upvec_close(upvec); if (U_FAILURE(*status)) { return NULL; } return newSelector.orphan(); } /* close opened selector */ U_CAPI void U_EXPORT2 ucnvsel_close(UConverterSelector *sel) { if (!sel) { return; } if (sel->ownEncodingStrings) { uprv_free(sel->encodings[0]); } uprv_free(sel->encodings); if (sel->ownPv) { uprv_free(sel->pv); } utrie2_close(sel->trie); uprv_free(sel->swapped); uprv_free(sel); } static const UDataInfo dataInfo = { sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, U_SIZEOF_UCHAR, 0, { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ { 1, 0, 0, 0 }, /* formatVersion */ { 0, 0, 0, 0 } /* dataVersion */ }; enum { UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader UCNVSEL_INDEX_COUNT = 16 }; /* * Serialized form of a UConverterSelector, formatVersion 1: * * The serialized form begins with a standard ICU DataHeader with a UDataInfo * as the template above. * This is followed by: * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding */ /* serialize a selector */ U_CAPI int32_t U_EXPORT2 ucnvsel_serialize(const UConverterSelector* sel, void* buffer, int32_t bufferCapacity, UErrorCode* status) { // check if already failed if (U_FAILURE(*status)) { return 0; } // ensure args make sense! uint8_t *p = (uint8_t *)buffer; if (bufferCapacity < 0 || (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) ) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } // add up the size of the serialized form int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { return 0; } *status = U_ZERO_ERROR; DataHeader header; uprv_memset(&header, 0, sizeof(header)); header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); header.dataHeader.magic1 = 0xda; header.dataHeader.magic2 = 0x27; uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); int32_t indexes[UCNVSEL_INDEX_COUNT] = { serializedTrieSize, sel->pvCount, sel->encodingsCount, sel->encodingStrLength }; int32_t totalSize = header.dataHeader.headerSize + (int32_t)sizeof(indexes) + serializedTrieSize + sel->pvCount * 4 + sel->encodingStrLength; indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; if (totalSize > bufferCapacity) { *status = U_BUFFER_OVERFLOW_ERROR; return totalSize; } // ok, save! int32_t length = header.dataHeader.headerSize; uprv_memcpy(p, &header, sizeof(header)); uprv_memset(p + sizeof(header), 0, length - sizeof(header)); p += length; length = (int32_t)sizeof(indexes); uprv_memcpy(p, indexes, length); p += length; utrie2_serialize(sel->trie, p, serializedTrieSize, status); p += serializedTrieSize; length = sel->pvCount * 4; uprv_memcpy(p, sel->pv, length); p += length; uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); p += sel->encodingStrLength; return totalSize; } /** * swap a selector into the desired Endianness and Asciiness of * the system. Just as FYI, selectors are always saved in the format * of the system that created them. They are only converted if used * on another system. In other words, selectors created on different * system can be different even if the params are identical (endianness * and Asciiness differences only) * * @param ds pointer to data swapper containing swapping info * @param inData pointer to incoming data * @param length length of inData in bytes * @param outData pointer to output data. Capacity should * be at least equal to capacity of inData * @param status an in/out ICU UErrorCode * @return 0 on failure, number of bytes swapped on success * number of bytes swapped can be smaller than length */ static int32_t ucnvsel_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *status) { /* udata_swapDataHeader checks the arguments */ int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); if(U_FAILURE(*status)) { return 0; } /* check data format and format version */ const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); if(!( pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ pInfo->dataFormat[1] == 0x53 && pInfo->dataFormat[2] == 0x65 && pInfo->dataFormat[3] == 0x6c )) { udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3]); *status = U_INVALID_FORMAT_ERROR; return 0; } if(pInfo->formatVersion[0] != 1) { udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", pInfo->formatVersion[0]); *status = U_UNSUPPORTED_ERROR; return 0; } if(length >= 0) { length -= headerSize; if(length < 16*4) { udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", length); *status = U_INDEX_OUTOFBOUNDS_ERROR; return 0; } } const uint8_t *inBytes = (const uint8_t *)inData + headerSize; uint8_t *outBytes = (uint8_t *)outData + headerSize; /* read the indexes */ const int32_t *inIndexes = (const int32_t *)inBytes; int32_t indexes[16]; int32_t i; for(i = 0; i < 16; ++i) { indexes[i] = udata_readInt32(ds, inIndexes[i]); } /* get the total length of the data */ int32_t size = indexes[UCNVSEL_INDEX_SIZE]; if(length >= 0) { if(length < size) { udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", length); *status = U_INDEX_OUTOFBOUNDS_ERROR; return 0; } /* copy the data for inaccessible bytes */ if(inBytes != outBytes) { uprv_memcpy(outBytes, inBytes, size); } int32_t offset = 0, count; /* swap the int32_t indexes[] */ count = UCNVSEL_INDEX_COUNT*4; ds->swapArray32(ds, inBytes, count, outBytes, status); offset += count; /* swap the UTrie2 */ count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); offset += count; /* swap the uint32_t pv[] */ count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); offset += count; /* swap the encoding names */ count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); offset += count; U_ASSERT(offset == size); } return headerSize + size; } /* unserialize a selector */ U_CAPI UConverterSelector* U_EXPORT2 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { // check if already failed if (U_FAILURE(*status)) { return NULL; } // ensure args make sense! const uint8_t *p = (const uint8_t *)buffer; if (length <= 0 || (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) ) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } // header if (length < 32) { // not even enough space for a minimal header *status = U_INDEX_OUTOFBOUNDS_ERROR; return NULL; } const DataHeader *pHeader = (const DataHeader *)p; if (!( pHeader->dataHeader.magic1==0xda && pHeader->dataHeader.magic2==0x27 && pHeader->info.dataFormat[0] == 0x43 && pHeader->info.dataFormat[1] == 0x53 && pHeader->info.dataFormat[2] == 0x65 && pHeader->info.dataFormat[3] == 0x6c )) { /* header not valid or dataFormat not recognized */ *status = U_INVALID_FORMAT_ERROR; return NULL; } if (pHeader->info.formatVersion[0] != 1) { *status = U_UNSUPPORTED_ERROR; return NULL; } uint8_t* swapped = NULL; if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || pHeader->info.charsetFamily != U_CHARSET_FAMILY ) { // swap the data UDataSwapper *ds = udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); if (U_FAILURE(*status)) { udata_closeSwapper(ds); return NULL; } if (length < totalSize) { udata_closeSwapper(ds); *status = U_INDEX_OUTOFBOUNDS_ERROR; return NULL; } swapped = (uint8_t*)uprv_malloc(totalSize); if (swapped == NULL) { udata_closeSwapper(ds); *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } ucnvsel_swap(ds, p, length, swapped, status); udata_closeSwapper(ds); if (U_FAILURE(*status)) { uprv_free(swapped); return NULL; } p = swapped; pHeader = (const DataHeader *)p; } if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { // not even enough space for the header and the indexes uprv_free(swapped); *status = U_INDEX_OUTOFBOUNDS_ERROR; return NULL; } p += pHeader->dataHeader.headerSize; length -= pHeader->dataHeader.headerSize; // indexes const int32_t *indexes = (const int32_t *)p; if (length < indexes[UCNVSEL_INDEX_SIZE]) { uprv_free(swapped); *status = U_INDEX_OUTOFBOUNDS_ERROR; return NULL; } p += UCNVSEL_INDEX_COUNT * 4; // create and populate the selector object UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); char **encodings = (char **)uprv_malloc( indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); if (sel == NULL || encodings == NULL) { uprv_free(swapped); uprv_free(sel); uprv_free(encodings); *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(sel, 0, sizeof(UConverterSelector)); sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; sel->encodings = encodings; sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; sel->swapped = swapped; // trie sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, status); p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; if (U_FAILURE(*status)) { ucnvsel_close(sel); return NULL; } // bit vectors sel->pv = (uint32_t *)p; p += sel->pvCount * 4; // encoding names char* s = (char*)p; for (int32_t i = 0; i < sel->encodingsCount; ++i) { sel->encodings[i] = s; s += uprv_strlen(s) + 1; } p += sel->encodingStrLength; return sel; } // a bunch of functions for the enumeration thingie! Nothing fancy here. Just // iterate over the selected encodings struct Enumerator { int16_t* index; int16_t length; int16_t cur; const UConverterSelector* sel; }; U_CDECL_BEGIN static void U_CALLCONV ucnvsel_close_selector_iterator(UEnumeration *enumerator) { uprv_free(((Enumerator*)(enumerator->context))->index); uprv_free(enumerator->context); uprv_free(enumerator); } static int32_t U_CALLCONV ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { // check if already failed if (U_FAILURE(*status)) { return 0; } return ((Enumerator*)(enumerator->context))->length; } static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, int32_t* resultLength, UErrorCode* status) { // check if already failed if (U_FAILURE(*status)) { return NULL; } int16_t cur = ((Enumerator*)(enumerator->context))->cur; const UConverterSelector* sel; const char* result; if (cur >= ((Enumerator*)(enumerator->context))->length) { return NULL; } sel = ((Enumerator*)(enumerator->context))->sel; result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; ((Enumerator*)(enumerator->context))->cur++; if (resultLength) { *resultLength = (int32_t)uprv_strlen(result); } return result; } static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, UErrorCode* status) { // check if already failed if (U_FAILURE(*status)) { return ; } ((Enumerator*)(enumerator->context))->cur = 0; } U_CDECL_END static const UEnumeration defaultEncodings = { NULL, NULL, ucnvsel_close_selector_iterator, ucnvsel_count_encodings, uenum_unextDefault, ucnvsel_next_encoding, ucnvsel_reset_iterator }; // internal fn to intersect two sets of masks // returns whether the mask has reduced to all zeros static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { int32_t i; uint32_t oredDest = 0; for (i = 0 ; i < len ; ++i) { oredDest |= (dest[i] &= source1[i]); } return oredDest == 0; } // internal fn to count how many 1's are there in a mask // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html static int16_t countOnes(uint32_t* mask, int32_t len) { int32_t i, totalOnes = 0; for (i = 0 ; i < len ; ++i) { uint32_t ent = mask[i]; for (; ent; totalOnes++) { ent &= ent - 1; // clear the least significant bit set } } return static_cast(totalOnes); } /* internal function! */ static UEnumeration *selectForMask(const UConverterSelector* sel, uint32_t *theMask, UErrorCode *status) { LocalMemory mask(theMask); // this is the context we will use. Store a table of indices to which // encodings are legit. LocalMemory result(static_cast(uprv_malloc(sizeof(Enumerator)))); if (result.isNull()) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } result->index = nullptr; // this will be allocated later! result->length = result->cur = 0; result->sel = sel; LocalMemory en(static_cast(uprv_malloc(sizeof(UEnumeration)))); if (en.isNull()) { // TODO(markus): Combine Enumerator and UEnumeration into one struct. *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration)); int32_t columns = (sel->encodingsCount+31)/32; int16_t numOnes = countOnes(mask.getAlias(), columns); // now, we know the exact space we need for index if (numOnes > 0) { result->index = static_cast(uprv_malloc(numOnes * sizeof(int16_t))); if (result->index == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } int32_t i, j; int16_t k = 0; for (j = 0 ; j < columns; j++) { uint32_t v = mask[j]; for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { if ((v & 1) != 0) { result->index[result->length++] = k; } v >>= 1; } } } //otherwise, index will remain NULL (and will never be touched by //the enumerator code anyway) en->context = result.orphan(); return en.orphan(); } /* check a string against the selector - UTF16 version */ U_CAPI UEnumeration * U_EXPORT2 ucnvsel_selectForString(const UConverterSelector* sel, const UChar *s, int32_t length, UErrorCode *status) { // check if already failed if (U_FAILURE(*status)) { return NULL; } // ensure args make sense! if (sel == NULL || (s == NULL && length != 0)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } int32_t columns = (sel->encodingsCount+31)/32; uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); if (mask == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(mask, ~0, columns *4); if(s!=NULL) { const UChar *limit; if (length >= 0) { limit = s + length; } else { limit = NULL; } while (limit == NULL ? *s != 0 : s != limit) { UChar32 c; uint16_t pvIndex; UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); if (intersectMasks(mask, sel->pv+pvIndex, columns)) { break; } } } return selectForMask(sel, mask, status); } /* check a string against the selector - UTF8 version */ U_CAPI UEnumeration * U_EXPORT2 ucnvsel_selectForUTF8(const UConverterSelector* sel, const char *s, int32_t length, UErrorCode *status) { // check if already failed if (U_FAILURE(*status)) { return NULL; } // ensure args make sense! if (sel == NULL || (s == NULL && length != 0)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } int32_t columns = (sel->encodingsCount+31)/32; uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); if (mask == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(mask, ~0, columns *4); if (length < 0) { length = (int32_t)uprv_strlen(s); } if(s!=NULL) { const char *limit = s + length; while (s != limit) { uint16_t pvIndex; UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); if (intersectMasks(mask, sel->pv+pvIndex, columns)) { break; } } } return selectForMask(sel, mask, status); } #endif // !UCONFIG_NO_CONVERSION