// © 2021 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include <utility> #include <ctgmath> #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "brkeng.h" #include "charstr.h" #include "cmemory.h" #include "lstmbe.h" #include "putilimp.h" #include "uassert.h" #include "ubrkimpl.h" #include "uresimp.h" #include "uvectr32.h" #include "uvector.h" #include "unicode/brkiter.h" #include "unicode/resbund.h" #include "unicode/ubrk.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/utf.h" U_NAMESPACE_BEGIN // Uncomment the following #define to debug. // #define LSTM_DEBUG 1 // #define LSTM_VECTORIZER_DEBUG 1 /** * Interface for reading 1D array. */ class ReadArray1D { public: virtual ~ReadArray1D(); virtual int32_t d1() const = 0; virtual float get(int32_t i) const = 0; #ifdef LSTM_DEBUG void print() const { printf("\n["); for (int32_t i = 0; i < d1(); i++) { printf("%0.8e ", get(i)); if (i % 4 == 3) printf("\n"); } printf("]\n"); } #endif }; ReadArray1D::~ReadArray1D() { } /** * Interface for reading 2D array. */ class ReadArray2D { public: virtual ~ReadArray2D(); virtual int32_t d1() const = 0; virtual int32_t d2() const = 0; virtual float get(int32_t i, int32_t j) const = 0; }; ReadArray2D::~ReadArray2D() { } /** * A class to index a float array as a 1D Array without owning the pointer or * copy the data. */ class ConstArray1D : public ReadArray1D { public: ConstArray1D() : data_(nullptr), d1_(0) {} ConstArray1D(const float* data, int32_t d1) : data_(data), d1_(d1) {} virtual ~ConstArray1D(); // Init the object, the object does not own the data nor copy. // It is designed to directly use data from memory mapped resources. void init(const int32_t* data, int32_t d1) { U_ASSERT(IEEE_754 == 1); data_ = reinterpret_cast<const float*>(data); d1_ = d1; } // ReadArray1D methods. virtual int32_t d1() const override { return d1_; } virtual float get(int32_t i) const override { U_ASSERT(i < d1_); return data_[i]; } private: const float* data_; int32_t d1_; }; ConstArray1D::~ConstArray1D() { } /** * A class to index a float array as a 2D Array without owning the pointer or * copy the data. */ class ConstArray2D : public ReadArray2D { public: ConstArray2D() : data_(nullptr), d1_(0), d2_(0) {} ConstArray2D(const float* data, int32_t d1, int32_t d2) : data_(data), d1_(d1), d2_(d2) {} virtual ~ConstArray2D(); // Init the object, the object does not own the data nor copy. // It is designed to directly use data from memory mapped resources. void init(const int32_t* data, int32_t d1, int32_t d2) { U_ASSERT(IEEE_754 == 1); data_ = reinterpret_cast<const float*>(data); d1_ = d1; d2_ = d2; } // ReadArray2D methods. inline int32_t d1() const override { return d1_; } inline int32_t d2() const override { return d2_; } float get(int32_t i, int32_t j) const override { U_ASSERT(i < d1_); U_ASSERT(j < d2_); return data_[i * d2_ + j]; } // Expose the ith row as a ConstArray1D inline ConstArray1D row(int32_t i) const { U_ASSERT(i < d1_); return ConstArray1D(data_ + i * d2_, d2_); } private: const float* data_; int32_t d1_; int32_t d2_; }; ConstArray2D::~ConstArray2D() { } /** * A class to allocate data as a writable 1D array. * This is the main class implement matrix operation. */ class Array1D : public ReadArray1D { public: Array1D() : memory_(nullptr), data_(nullptr), d1_(0) {} Array1D(int32_t d1, UErrorCode &status) : memory_(uprv_malloc(d1 * sizeof(float))), data_((float*)memory_), d1_(d1) { if (U_SUCCESS(status)) { if (memory_ == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return; } clear(); } } virtual ~Array1D(); // A special constructor which does not own the memory but writeable // as a slice of an array. Array1D(float* data, int32_t d1) : memory_(nullptr), data_(data), d1_(d1) {} // ReadArray1D methods. virtual int32_t d1() const override { return d1_; } virtual float get(int32_t i) const override { U_ASSERT(i < d1_); return data_[i]; } // Return the index which point to the max data in the array. inline int32_t maxIndex() const { int32_t index = 0; float max = data_[0]; for (int32_t i = 1; i < d1_; i++) { if (data_[i] > max) { max = data_[i]; index = i; } } return index; } // Slice part of the array to a new one. inline Array1D slice(int32_t from, int32_t size) const { U_ASSERT(from >= 0); U_ASSERT(from < d1_); U_ASSERT(from + size <= d1_); return Array1D(data_ + from, size); } // Add dot product of a 1D array and a 2D array into this one. inline Array1D& addDotProduct(const ReadArray1D& a, const ReadArray2D& b) { U_ASSERT(a.d1() == b.d1()); U_ASSERT(b.d2() == d1()); for (int32_t i = 0; i < d1(); i++) { for (int32_t j = 0; j < a.d1(); j++) { data_[i] += a.get(j) * b.get(j, i); } } return *this; } // Hadamard Product the values of another array of the same size into this one. inline Array1D& hadamardProduct(const ReadArray1D& a) { U_ASSERT(a.d1() == d1()); for (int32_t i = 0; i < d1(); i++) { data_[i] *= a.get(i); } return *this; } // Add the Hadamard Product of two arrays of the same size into this one. inline Array1D& addHadamardProduct(const ReadArray1D& a, const ReadArray1D& b) { U_ASSERT(a.d1() == d1()); U_ASSERT(b.d1() == d1()); for (int32_t i = 0; i < d1(); i++) { data_[i] += a.get(i) * b.get(i); } return *this; } // Add the values of another array of the same size into this one. inline Array1D& add(const ReadArray1D& a) { U_ASSERT(a.d1() == d1()); for (int32_t i = 0; i < d1(); i++) { data_[i] += a.get(i); } return *this; } // Assign the values of another array of the same size into this one. inline Array1D& assign(const ReadArray1D& a) { U_ASSERT(a.d1() == d1()); for (int32_t i = 0; i < d1(); i++) { data_[i] = a.get(i); } return *this; } // Apply tanh to all the elements in the array. inline Array1D& tanh() { return tanh(*this); } // Apply tanh of a and store into this array. inline Array1D& tanh(const Array1D& a) { U_ASSERT(a.d1() == d1()); for (int32_t i = 0; i < d1_; i++) { data_[i] = std::tanh(a.get(i)); } return *this; } // Apply sigmoid to all the elements in the array. inline Array1D& sigmoid() { for (int32_t i = 0; i < d1_; i++) { data_[i] = 1.0f/(1.0f + expf(-data_[i])); } return *this; } inline Array1D& clear() { uprv_memset(data_, 0, d1_ * sizeof(float)); return *this; } private: void* memory_; float* data_; int32_t d1_; }; Array1D::~Array1D() { uprv_free(memory_); } class Array2D : public ReadArray2D { public: Array2D() : memory_(nullptr), data_(nullptr), d1_(0), d2_(0) {} Array2D(int32_t d1, int32_t d2, UErrorCode &status) : memory_(uprv_malloc(d1 * d2 * sizeof(float))), data_((float*)memory_), d1_(d1), d2_(d2) { if (U_SUCCESS(status)) { if (memory_ == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return; } clear(); } } virtual ~Array2D(); // ReadArray2D methods. virtual int32_t d1() const override { return d1_; } virtual int32_t d2() const override { return d2_; } virtual float get(int32_t i, int32_t j) const override { U_ASSERT(i < d1_); U_ASSERT(j < d2_); return data_[i * d2_ + j]; } inline Array1D row(int32_t i) const { U_ASSERT(i < d1_); return Array1D(data_ + i * d2_, d2_); } inline Array2D& clear() { uprv_memset(data_, 0, d1_ * d2_ * sizeof(float)); return *this; } private: void* memory_; float* data_; int32_t d1_; int32_t d2_; }; Array2D::~Array2D() { uprv_free(memory_); } typedef enum { BEGIN, INSIDE, END, SINGLE } LSTMClass; typedef enum { UNKNOWN, CODE_POINTS, GRAPHEME_CLUSTER, } EmbeddingType; struct LSTMData : public UMemory { LSTMData(UResourceBundle* rb, UErrorCode &status); ~LSTMData(); UHashtable* fDict; EmbeddingType fType; const UChar* fName; ConstArray2D fEmbedding; ConstArray2D fForwardW; ConstArray2D fForwardU; ConstArray1D fForwardB; ConstArray2D fBackwardW; ConstArray2D fBackwardU; ConstArray1D fBackwardB; ConstArray2D fOutputW; ConstArray1D fOutputB; private: UResourceBundle* fBundle; }; LSTMData::LSTMData(UResourceBundle* rb, UErrorCode &status) : fDict(nullptr), fType(UNKNOWN), fName(nullptr), fBundle(rb) { if (U_FAILURE(status)) { return; } if (IEEE_754 != 1) { status = U_UNSUPPORTED_ERROR; return; } LocalUResourceBundlePointer embeddings_res( ures_getByKey(rb, "embeddings", nullptr, &status)); int32_t embedding_size = ures_getInt(embeddings_res.getAlias(), &status); LocalUResourceBundlePointer hunits_res( ures_getByKey(rb, "hunits", nullptr, &status)); if (U_FAILURE(status)) return; int32_t hunits = ures_getInt(hunits_res.getAlias(), &status); const UChar* type = ures_getStringByKey(rb, "type", nullptr, &status); if (U_FAILURE(status)) return; if (u_strCompare(type, -1, u"codepoints", -1, false) == 0) { fType = CODE_POINTS; } else if (u_strCompare(type, -1, u"graphclust", -1, false) == 0) { fType = GRAPHEME_CLUSTER; } fName = ures_getStringByKey(rb, "model", nullptr, &status); LocalUResourceBundlePointer dataRes(ures_getByKey(rb, "data", nullptr, &status)); if (U_FAILURE(status)) return; int32_t data_len = 0; const int32_t* data = ures_getIntVector(dataRes.getAlias(), &data_len, &status); fDict = uhash_open(uhash_hashUChars, uhash_compareUChars, nullptr, &status); StackUResourceBundle stackTempBundle; ResourceDataValue value; ures_getValueWithFallback(rb, "dict", stackTempBundle.getAlias(), value, status); ResourceArray stringArray = value.getArray(status); int32_t num_index = stringArray.getSize(); if (U_FAILURE(status)) { return; } // put dict into hash int32_t stringLength; for (int32_t idx = 0; idx < num_index; idx++) { stringArray.getValue(idx, value); const UChar* str = value.getString(stringLength, status); uhash_putiAllowZero(fDict, (void*)str, idx, &status); if (U_FAILURE(status)) return; #ifdef LSTM_VECTORIZER_DEBUG printf("Assign ["); while (*str != 0x0000) { printf("U+%04x ", *str); str++; } printf("] map to %d\n", idx-1); #endif } int32_t mat1_size = (num_index + 1) * embedding_size; int32_t mat2_size = embedding_size * 4 * hunits; int32_t mat3_size = hunits * 4 * hunits; int32_t mat4_size = 4 * hunits; int32_t mat5_size = mat2_size; int32_t mat6_size = mat3_size; int32_t mat7_size = mat4_size; int32_t mat8_size = 2 * hunits * 4; #if U_DEBUG int32_t mat9_size = 4; U_ASSERT(data_len == mat1_size + mat2_size + mat3_size + mat4_size + mat5_size + mat6_size + mat7_size + mat8_size + mat9_size); #endif fEmbedding.init(data, (num_index + 1), embedding_size); data += mat1_size; fForwardW.init(data, embedding_size, 4 * hunits); data += mat2_size; fForwardU.init(data, hunits, 4 * hunits); data += mat3_size; fForwardB.init(data, 4 * hunits); data += mat4_size; fBackwardW.init(data, embedding_size, 4 * hunits); data += mat5_size; fBackwardU.init(data, hunits, 4 * hunits); data += mat6_size; fBackwardB.init(data, 4 * hunits); data += mat7_size; fOutputW.init(data, 2 * hunits, 4); data += mat8_size; fOutputB.init(data, 4); } LSTMData::~LSTMData() { uhash_close(fDict); ures_close(fBundle); } class Vectorizer : public UMemory { public: Vectorizer(UHashtable* dict) : fDict(dict) {} virtual ~Vectorizer(); virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, UVector32 &offsets, UVector32 &indices, UErrorCode &status) const = 0; protected: int32_t stringToIndex(const UChar* str) const { UBool found = false; int32_t ret = uhash_getiAndFound(fDict, (const void*)str, &found); if (!found) { ret = fDict->count; } #ifdef LSTM_VECTORIZER_DEBUG printf("["); while (*str != 0x0000) { printf("U+%04x ", *str); str++; } printf("] map to %d\n", ret); #endif return ret; } private: UHashtable* fDict; }; Vectorizer::~Vectorizer() { } class CodePointsVectorizer : public Vectorizer { public: CodePointsVectorizer(UHashtable* dict) : Vectorizer(dict) {} virtual ~CodePointsVectorizer(); virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, UVector32 &offsets, UVector32 &indices, UErrorCode &status) const override; }; CodePointsVectorizer::~CodePointsVectorizer() { } void CodePointsVectorizer::vectorize( UText *text, int32_t startPos, int32_t endPos, UVector32 &offsets, UVector32 &indices, UErrorCode &status) const { if (offsets.ensureCapacity(endPos - startPos, status) && indices.ensureCapacity(endPos - startPos, status)) { if (U_FAILURE(status)) return; utext_setNativeIndex(text, startPos); int32_t current; UChar str[2] = {0, 0}; while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < endPos) { // Since the LSTMBreakEngine is currently only accept chars in BMP, // we can ignore the possibility of hitting supplementary code // point. str[0] = (UChar) utext_next32(text); U_ASSERT(!U_IS_SURROGATE(str[0])); offsets.addElement(current, status); indices.addElement(stringToIndex(str), status); } } } class GraphemeClusterVectorizer : public Vectorizer { public: GraphemeClusterVectorizer(UHashtable* dict) : Vectorizer(dict) { } virtual ~GraphemeClusterVectorizer(); virtual void vectorize(UText *text, int32_t startPos, int32_t endPos, UVector32 &offsets, UVector32 &indices, UErrorCode &status) const override; }; GraphemeClusterVectorizer::~GraphemeClusterVectorizer() { } constexpr int32_t MAX_GRAPHEME_CLSTER_LENGTH = 10; void GraphemeClusterVectorizer::vectorize( UText *text, int32_t startPos, int32_t endPos, UVector32 &offsets, UVector32 &indices, UErrorCode &status) const { if (U_FAILURE(status)) return; if (!offsets.ensureCapacity(endPos - startPos, status) || !indices.ensureCapacity(endPos - startPos, status)) { return; } if (U_FAILURE(status)) return; LocalPointer<BreakIterator> graphemeIter(BreakIterator::createCharacterInstance(Locale(), status)); if (U_FAILURE(status)) return; graphemeIter->setText(text, status); if (U_FAILURE(status)) return; if (startPos != 0) { graphemeIter->preceding(startPos); } int32_t last = startPos; int32_t current = startPos; UChar str[MAX_GRAPHEME_CLSTER_LENGTH]; while ((current = graphemeIter->next()) != BreakIterator::DONE) { if (current >= endPos) { break; } if (current > startPos) { utext_extract(text, last, current, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); if (U_FAILURE(status)) return; offsets.addElement(last, status); indices.addElement(stringToIndex(str), status); if (U_FAILURE(status)) return; } last = current; } if (U_FAILURE(status) || last >= endPos) { return; } utext_extract(text, last, endPos, str, MAX_GRAPHEME_CLSTER_LENGTH, &status); if (U_SUCCESS(status)) { offsets.addElement(last, status); indices.addElement(stringToIndex(str), status); } } // Computing LSTM as stated in // https://en.wikipedia.org/wiki/Long_short-term_memory#LSTM_with_a_forget_gate // ifco is temp array allocate outside which does not need to be // input/output value but could avoid unnecessary memory alloc/free if passing // in. void compute( int32_t hunits, const ReadArray2D& W, const ReadArray2D& U, const ReadArray1D& b, const ReadArray1D& x, Array1D& h, Array1D& c, Array1D& ifco) { // ifco = x * W + h * U + b ifco.assign(b) .addDotProduct(x, W) .addDotProduct(h, U); ifco.slice(0*hunits, hunits).sigmoid(); // i: sigmod ifco.slice(1*hunits, hunits).sigmoid(); // f: sigmoid ifco.slice(2*hunits, hunits).tanh(); // c_: tanh ifco.slice(3*hunits, hunits).sigmoid(); // o: sigmod c.hadamardProduct(ifco.slice(hunits, hunits)) .addHadamardProduct(ifco.slice(0, hunits), ifco.slice(2*hunits, hunits)); h.tanh(c) .hadamardProduct(ifco.slice(3*hunits, hunits)); } // Minimum word size static const int32_t MIN_WORD = 2; // Minimum number of characters for two words static const int32_t MIN_WORD_SPAN = MIN_WORD * 2; int32_t LSTMBreakEngine::divideUpDictionaryRange( UText *text, int32_t startPos, int32_t endPos, UVector32 &foundBreaks, UErrorCode& status) const { if (U_FAILURE(status)) return 0; int32_t beginFoundBreakSize = foundBreaks.size(); utext_setNativeIndex(text, startPos); utext_moveIndex32(text, MIN_WORD_SPAN); if (utext_getNativeIndex(text) >= endPos) { return 0; // Not enough characters for two words } utext_setNativeIndex(text, startPos); UVector32 offsets(status); UVector32 indices(status); if (U_FAILURE(status)) return 0; fVectorizer->vectorize(text, startPos, endPos, offsets, indices, status); if (U_FAILURE(status)) return 0; int32_t* offsetsBuf = offsets.getBuffer(); int32_t* indicesBuf = indices.getBuffer(); int32_t input_seq_len = indices.size(); int32_t hunits = fData->fForwardU.d1(); // ----- Begin of all the Array memory allocation needed for this function // Allocate temp array used inside compute() Array1D ifco(4 * hunits, status); Array1D c(hunits, status); Array1D logp(4, status); // TODO: limit size of hBackward. If input_seq_len is too big, we could // run out of memory. // Backward LSTM Array2D hBackward(input_seq_len, hunits, status); // Allocate fbRow and slice the internal array in two. Array1D fbRow(2 * hunits, status); // ----- End of all the Array memory allocation needed for this function if (U_FAILURE(status)) return 0; // To save the needed memory usage, the following is different from the // Python or ICU4X implementation. We first perform the Backward LSTM // and then merge the iteration of the forward LSTM and the output layer // together because we only neetdto remember the h[t-1] for Forward LSTM. for (int32_t i = input_seq_len - 1; i >= 0; i--) { Array1D hRow = hBackward.row(i); if (i != input_seq_len - 1) { hRow.assign(hBackward.row(i+1)); } #ifdef LSTM_DEBUG printf("hRow %d\n", i); hRow.print(); printf("indicesBuf[%d] = %d\n", i, indicesBuf[i]); printf("fData->fEmbedding.row(indicesBuf[%d]):\n", i); fData->fEmbedding.row(indicesBuf[i]).print(); #endif // LSTM_DEBUG compute(hunits, fData->fBackwardW, fData->fBackwardU, fData->fBackwardB, fData->fEmbedding.row(indicesBuf[i]), hRow, c, ifco); } Array1D forwardRow = fbRow.slice(0, hunits); // point to first half of data in fbRow. Array1D backwardRow = fbRow.slice(hunits, hunits); // point to second half of data n fbRow. // The following iteration merge the forward LSTM and the output layer // together. c.clear(); // reuse c since it is the same size. for (int32_t i = 0; i < input_seq_len; i++) { #ifdef LSTM_DEBUG printf("forwardRow %d\n", i); forwardRow.print(); #endif // LSTM_DEBUG // Forward LSTM // Calculate the result into forwardRow, which point to the data in the first half // of fbRow. compute(hunits, fData->fForwardW, fData->fForwardU, fData->fForwardB, fData->fEmbedding.row(indicesBuf[i]), forwardRow, c, ifco); // assign the data from hBackward.row(i) to second half of fbRowa. backwardRow.assign(hBackward.row(i)); logp.assign(fData->fOutputB).addDotProduct(fbRow, fData->fOutputW); #ifdef LSTM_DEBUG printf("backwardRow %d\n", i); backwardRow.print(); printf("logp %d\n", i); logp.print(); #endif // LSTM_DEBUG // current = argmax(logp) LSTMClass current = (LSTMClass)logp.maxIndex(); // BIES logic. if (current == BEGIN || current == SINGLE) { if (i != 0) { foundBreaks.addElement(offsetsBuf[i], status); if (U_FAILURE(status)) return 0; } } } return foundBreaks.size() - beginFoundBreakSize; } Vectorizer* createVectorizer(const LSTMData* data, UErrorCode &status) { if (U_FAILURE(status)) { return nullptr; } switch (data->fType) { case CODE_POINTS: return new CodePointsVectorizer(data->fDict); break; case GRAPHEME_CLUSTER: return new GraphemeClusterVectorizer(data->fDict); break; default: break; } UPRV_UNREACHABLE_EXIT; } LSTMBreakEngine::LSTMBreakEngine(const LSTMData* data, const UnicodeSet& set, UErrorCode &status) : DictionaryBreakEngine(), fData(data), fVectorizer(createVectorizer(fData, status)) { if (U_FAILURE(status)) { fData = nullptr; // If failure, we should not delete fData in destructor because the caller will do so. return; } setCharacters(set); } LSTMBreakEngine::~LSTMBreakEngine() { delete fData; delete fVectorizer; } const UChar* LSTMBreakEngine::name() const { return fData->fName; } UnicodeString defaultLSTM(UScriptCode script, UErrorCode& status) { // open root from brkitr tree. UResourceBundle *b = ures_open(U_ICUDATA_BRKITR, "", &status); b = ures_getByKeyWithFallback(b, "lstm", b, &status); UnicodeString result = ures_getUnicodeStringByKey(b, uscript_getShortName(script), &status); ures_close(b); return result; } U_CAPI const LSTMData* U_EXPORT2 CreateLSTMDataForScript(UScriptCode script, UErrorCode& status) { if (script != USCRIPT_KHMER && script != USCRIPT_LAO && script != USCRIPT_MYANMAR && script != USCRIPT_THAI) { return nullptr; } UnicodeString name = defaultLSTM(script, status); if (U_FAILURE(status)) return nullptr; CharString namebuf; namebuf.appendInvariantChars(name, status).truncate(namebuf.lastIndexOf('.')); LocalUResourceBundlePointer rb( ures_openDirect(U_ICUDATA_BRKITR, namebuf.data(), &status)); if (U_FAILURE(status)) return nullptr; return CreateLSTMData(rb.orphan(), status); } U_CAPI const LSTMData* U_EXPORT2 CreateLSTMData(UResourceBundle* rb, UErrorCode& status) { return new LSTMData(rb, status); } U_CAPI const LanguageBreakEngine* U_EXPORT2 CreateLSTMBreakEngine(UScriptCode script, const LSTMData* data, UErrorCode& status) { UnicodeString unicodeSetString; switch(script) { case USCRIPT_THAI: unicodeSetString = UnicodeString(u"[[:Thai:]&[:LineBreak=SA:]]"); break; case USCRIPT_MYANMAR: unicodeSetString = UnicodeString(u"[[:Mymr:]&[:LineBreak=SA:]]"); break; default: delete data; return nullptr; } UnicodeSet unicodeSet; unicodeSet.applyPattern(unicodeSetString, status); const LanguageBreakEngine* engine = new LSTMBreakEngine(data, unicodeSet, status); if (U_FAILURE(status) || engine == nullptr) { if (engine != nullptr) { delete engine; } else { status = U_MEMORY_ALLOCATION_ERROR; } return nullptr; } return engine; } U_CAPI void U_EXPORT2 DeleteLSTMData(const LSTMData* data) { delete data; } U_CAPI const UChar* U_EXPORT2 LSTMDataName(const LSTMData* data) { return data->fName; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_BREAK_ITERATION */