/* * Copyright © 2007,2008,2009 Red Hat, Inc. * Copyright © 2010,2012 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Red Hat Author(s): Behdad Esfahbod * Google Author(s): Behdad Esfahbod */ #ifndef HB_OT_LAYOUT_COMMON_HH #define HB_OT_LAYOUT_COMMON_HH #include "hb.hh" #include "hb-ot-layout.hh" #include "hb-open-type.hh" #include "hb-set.hh" #include "hb-bimap.hh" #ifndef HB_MAX_NESTING_LEVEL #define HB_MAX_NESTING_LEVEL 6 #endif #ifndef HB_MAX_CONTEXT_LENGTH #define HB_MAX_CONTEXT_LENGTH 64 #endif #ifndef HB_CLOSURE_MAX_STAGES /* * The maximum number of times a lookup can be applied during shaping. * Used to limit the number of iterations of the closure algorithm. * This must be larger than the number of times add_pause() is * called in a collect_features call of any shaper. */ #define HB_CLOSURE_MAX_STAGES 32 #endif #ifndef HB_MAX_SCRIPTS #define HB_MAX_SCRIPTS 500 #endif #ifndef HB_MAX_LANGSYS #define HB_MAX_LANGSYS 2000 #endif #ifndef HB_MAX_FEATURES #define HB_MAX_FEATURES 750 #endif #ifndef HB_MAX_FEATURE_INDICES #define HB_MAX_FEATURE_INDICES 1500 #endif #ifndef HB_MAX_LOOKUP_INDICES #define HB_MAX_LOOKUP_INDICES 20000 #endif namespace OT { #define NOT_COVERED ((unsigned int) -1) template<typename Iterator> static inline void Coverage_serialize (hb_serialize_context_t *c, Iterator it); template<typename Iterator> static inline void ClassDef_serialize (hb_serialize_context_t *c, Iterator it); static void ClassDef_remap_and_serialize (hb_serialize_context_t *c, const hb_map_t &gid_klass_map, hb_sorted_vector_t<HBGlyphID16> &glyphs, const hb_set_t &klasses, bool use_class_zero, hb_map_t *klass_map /*INOUT*/); struct hb_prune_langsys_context_t { hb_prune_langsys_context_t (const void *table_, hb_hashmap_t<unsigned, hb_set_t *, (unsigned)-1, nullptr> *script_langsys_map_, const hb_map_t *duplicate_feature_map_, hb_set_t *new_collected_feature_indexes_) :table (table_), script_langsys_map (script_langsys_map_), duplicate_feature_map (duplicate_feature_map_), new_feature_indexes (new_collected_feature_indexes_), script_count (0),langsys_count (0) {} bool visitedScript (const void *s) { if (script_count++ > HB_MAX_SCRIPTS) return true; return visited (s, visited_script); } bool visitedLangsys (const void *l) { if (langsys_count++ > HB_MAX_LANGSYS) return true; return visited (l, visited_langsys); } private: template <typename T> bool visited (const T *p, hb_set_t &visited_set) { hb_codepoint_t delta = (hb_codepoint_t) ((uintptr_t) p - (uintptr_t) table); if (visited_set.has (delta)) return true; visited_set.add (delta); return false; } public: const void *table; hb_hashmap_t<unsigned, hb_set_t *, (unsigned)-1, nullptr> *script_langsys_map; const hb_map_t *duplicate_feature_map; hb_set_t *new_feature_indexes; private: hb_set_t visited_script; hb_set_t visited_langsys; unsigned script_count; unsigned langsys_count; }; struct hb_subset_layout_context_t : hb_dispatch_context_t<hb_subset_layout_context_t, hb_empty_t, HB_DEBUG_SUBSET> { const char *get_name () { return "SUBSET_LAYOUT"; } static return_t default_return_value () { return hb_empty_t (); } bool visitScript () { return script_count++ < HB_MAX_SCRIPTS; } bool visitLangSys () { return langsys_count++ < HB_MAX_LANGSYS; } bool visitFeatureIndex (int count) { feature_index_count += count; return feature_index_count < HB_MAX_FEATURE_INDICES; } bool visitLookupIndex() { lookup_index_count++; return lookup_index_count < HB_MAX_LOOKUP_INDICES; } hb_subset_context_t *subset_context; const hb_tag_t table_tag; const hb_map_t *lookup_index_map; const hb_hashmap_t<unsigned, hb_set_t *, (unsigned)-1, nullptr> *script_langsys_map; const hb_map_t *feature_index_map; unsigned cur_script_index; hb_subset_layout_context_t (hb_subset_context_t *c_, hb_tag_t tag_, hb_map_t *lookup_map_, hb_hashmap_t<unsigned, hb_set_t *, (unsigned)-1, nullptr> *script_langsys_map_, hb_map_t *feature_index_map_) : subset_context (c_), table_tag (tag_), lookup_index_map (lookup_map_), script_langsys_map (script_langsys_map_), feature_index_map (feature_index_map_), cur_script_index (0xFFFFu), script_count (0), langsys_count (0), feature_index_count (0), lookup_index_count (0) {} private: unsigned script_count; unsigned langsys_count; unsigned feature_index_count; unsigned lookup_index_count; }; struct hb_collect_variation_indices_context_t : hb_dispatch_context_t<hb_collect_variation_indices_context_t> { template <typename T> return_t dispatch (const T &obj) { obj.collect_variation_indices (this); return hb_empty_t (); } static return_t default_return_value () { return hb_empty_t (); } hb_set_t *layout_variation_indices; const hb_set_t *glyph_set; const hb_map_t *gpos_lookups; hb_collect_variation_indices_context_t (hb_set_t *layout_variation_indices_, const hb_set_t *glyph_set_, const hb_map_t *gpos_lookups_) : layout_variation_indices (layout_variation_indices_), glyph_set (glyph_set_), gpos_lookups (gpos_lookups_) {} }; template<typename OutputArray> struct subset_offset_array_t { subset_offset_array_t (hb_subset_context_t *subset_context_, OutputArray& out_, const void *base_) : subset_context (subset_context_), out (out_), base (base_) {} template <typename T> bool operator () (T&& offset) { auto snap = subset_context->serializer->snapshot (); auto *o = out.serialize_append (subset_context->serializer); if (unlikely (!o)) return false; bool ret = o->serialize_subset (subset_context, offset, base); if (!ret) { out.pop (); subset_context->serializer->revert (snap); } return ret; } private: hb_subset_context_t *subset_context; OutputArray &out; const void *base; }; template<typename OutputArray, typename Arg> struct subset_offset_array_arg_t { subset_offset_array_arg_t (hb_subset_context_t *subset_context_, OutputArray& out_, const void *base_, Arg &&arg_) : subset_context (subset_context_), out (out_), base (base_), arg (arg_) {} template <typename T> bool operator () (T&& offset) { auto snap = subset_context->serializer->snapshot (); auto *o = out.serialize_append (subset_context->serializer); if (unlikely (!o)) return false; bool ret = o->serialize_subset (subset_context, offset, base, arg); if (!ret) { out.pop (); subset_context->serializer->revert (snap); } return ret; } private: hb_subset_context_t *subset_context; OutputArray &out; const void *base; Arg &&arg; }; /* * Helper to subset an array of offsets. Subsets the thing pointed to by each offset * and discards the offset in the array if the subset operation results in an empty * thing. */ struct { template<typename OutputArray> subset_offset_array_t<OutputArray> operator () (hb_subset_context_t *subset_context, OutputArray& out, const void *base) const { return subset_offset_array_t<OutputArray> (subset_context, out, base); } /* Variant with one extra argument passed to serialize_subset */ template<typename OutputArray, typename Arg> subset_offset_array_arg_t<OutputArray, Arg> operator () (hb_subset_context_t *subset_context, OutputArray& out, const void *base, Arg &&arg) const { return subset_offset_array_arg_t<OutputArray, Arg> (subset_context, out, base, arg); } } HB_FUNCOBJ (subset_offset_array); template<typename OutputArray> struct subset_record_array_t { subset_record_array_t (hb_subset_layout_context_t *c_, OutputArray* out_, const void *base_) : subset_layout_context (c_), out (out_), base (base_) {} template <typename T> void operator () (T&& record) { auto snap = subset_layout_context->subset_context->serializer->snapshot (); bool ret = record.subset (subset_layout_context, base); if (!ret) subset_layout_context->subset_context->serializer->revert (snap); else out->len++; } private: hb_subset_layout_context_t *subset_layout_context; OutputArray *out; const void *base; }; /* * Helper to subset a RecordList/record array. Subsets each Record in the array and * discards the record if the subset operation returns false. */ struct { template<typename OutputArray> subset_record_array_t<OutputArray> operator () (hb_subset_layout_context_t *c, OutputArray* out, const void *base) const { return subset_record_array_t<OutputArray> (c, out, base); } } HB_FUNCOBJ (subset_record_array); template<typename OutputArray> struct serialize_math_record_array_t { serialize_math_record_array_t (hb_serialize_context_t *serialize_context_, OutputArray& out_, const void *base_) : serialize_context (serialize_context_), out (out_), base (base_) {} template <typename T> bool operator () (T&& record) { if (!serialize_context->copy (record, base)) return false; out.len++; return true; } private: hb_serialize_context_t *serialize_context; OutputArray &out; const void *base; }; /* * Helper to serialize an array of MATH records. */ struct { template<typename OutputArray> serialize_math_record_array_t<OutputArray> operator () (hb_serialize_context_t *serialize_context, OutputArray& out, const void *base) const { return serialize_math_record_array_t<OutputArray> (serialize_context, out, base); } } HB_FUNCOBJ (serialize_math_record_array); /* * * OpenType Layout Common Table Formats * */ /* * Script, ScriptList, LangSys, Feature, FeatureList, Lookup, LookupList */ struct Record_sanitize_closure_t { hb_tag_t tag; const void *list_base; }; template <typename Type> struct Record { int cmp (hb_tag_t a) const { return tag.cmp (a); } bool subset (hb_subset_layout_context_t *c, const void *base) const { TRACE_SUBSET (this); auto *out = c->subset_context->serializer->embed (this); if (unlikely (!out)) return_trace (false); bool ret = out->offset.serialize_subset (c->subset_context, offset, base, c, &tag); return_trace (ret); } bool sanitize (hb_sanitize_context_t *c, const void *base) const { TRACE_SANITIZE (this); const Record_sanitize_closure_t closure = {tag, base}; return_trace (c->check_struct (this) && offset.sanitize (c, base, &closure)); } Tag tag; /* 4-byte Tag identifier */ Offset16To<Type> offset; /* Offset from beginning of object holding * the Record */ public: DEFINE_SIZE_STATIC (6); }; template <typename Type> struct RecordArrayOf : SortedArray16Of<Record<Type>> { const Offset16To<Type>& get_offset (unsigned int i) const { return (*this)[i].offset; } Offset16To<Type>& get_offset (unsigned int i) { return (*this)[i].offset; } const Tag& get_tag (unsigned int i) const { return (*this)[i].tag; } unsigned int get_tags (unsigned int start_offset, unsigned int *record_count /* IN/OUT */, hb_tag_t *record_tags /* OUT */) const { if (record_count) { + this->sub_array (start_offset, record_count) | hb_map (&Record<Type>::tag) | hb_sink (hb_array (record_tags, *record_count)) ; } return this->len; } bool find_index (hb_tag_t tag, unsigned int *index) const { return this->bfind (tag, index, HB_NOT_FOUND_STORE, Index::NOT_FOUND_INDEX); } }; template <typename Type> struct RecordListOf : RecordArrayOf<Type> { const Type& operator [] (unsigned int i) const { return this+this->get_offset (i); } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!c->serializer->extend_min (out))) return_trace (false); + this->iter () | hb_apply (subset_record_array (l, out, this)) ; return_trace (true); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (RecordArrayOf<Type>::sanitize (c, this)); } }; struct Feature; struct RecordListOfFeature : RecordListOf<Feature> { bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); unsigned count = this->len; + hb_zip (*this, hb_range (count)) | hb_filter (l->feature_index_map, hb_second) | hb_map (hb_first) | hb_apply (subset_record_array (l, out, this)) ; return_trace (true); } }; struct Script; struct RecordListOfScript : RecordListOf<Script> { bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); unsigned count = this->len; for (auto _ : + hb_zip (*this, hb_range (count))) { auto snap = c->serializer->snapshot (); l->cur_script_index = _.second; bool ret = _.first.subset (l, this); if (!ret) c->serializer->revert (snap); else out->len++; } return_trace (true); } }; struct RangeRecord { int cmp (hb_codepoint_t g) const { return g < first ? -1 : g <= last ? 0 : +1; } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this)); } bool intersects (const hb_set_t *glyphs) const { return glyphs->intersects (first, last); } template <typename set_t> bool collect_coverage (set_t *glyphs) const { return glyphs->add_range (first, last); } HBGlyphID16 first; /* First GlyphID in the range */ HBGlyphID16 last; /* Last GlyphID in the range */ HBUINT16 value; /* Value */ public: DEFINE_SIZE_STATIC (6); }; DECLARE_NULL_NAMESPACE_BYTES (OT, RangeRecord); struct IndexArray : Array16Of<Index> { bool intersects (const hb_map_t *indexes) const { return hb_any (*this, indexes); } template <typename Iterator, hb_requires (hb_is_iterator (Iterator))> void serialize (hb_serialize_context_t *c, hb_subset_layout_context_t *l, Iterator it) { if (!it) return; if (unlikely (!c->extend_min ((*this)))) return; for (const auto _ : it) { if (!l->visitLookupIndex()) break; Index i; i = _; c->copy (i); this->len++; } } unsigned int get_indexes (unsigned int start_offset, unsigned int *_count /* IN/OUT */, unsigned int *_indexes /* OUT */) const { if (_count) { + this->sub_array (start_offset, _count) | hb_sink (hb_array (_indexes, *_count)) ; } return this->len; } void add_indexes_to (hb_set_t* output /* OUT */) const { output->add_array (as_array ()); } }; struct LangSys { unsigned int get_feature_count () const { return featureIndex.len; } hb_tag_t get_feature_index (unsigned int i) const { return featureIndex[i]; } unsigned int get_feature_indexes (unsigned int start_offset, unsigned int *feature_count /* IN/OUT */, unsigned int *feature_indexes /* OUT */) const { return featureIndex.get_indexes (start_offset, feature_count, feature_indexes); } void add_feature_indexes_to (hb_set_t *feature_indexes) const { featureIndex.add_indexes_to (feature_indexes); } bool has_required_feature () const { return reqFeatureIndex != 0xFFFFu; } unsigned int get_required_feature_index () const { if (reqFeatureIndex == 0xFFFFu) return Index::NOT_FOUND_INDEX; return reqFeatureIndex; } LangSys* copy (hb_serialize_context_t *c) const { TRACE_SERIALIZE (this); return_trace (c->embed (*this)); } bool compare (const LangSys& o, const hb_map_t *feature_index_map) const { if (reqFeatureIndex != o.reqFeatureIndex) return false; auto iter = + hb_iter (featureIndex) | hb_filter (feature_index_map) | hb_map (feature_index_map) ; auto o_iter = + hb_iter (o.featureIndex) | hb_filter (feature_index_map) | hb_map (feature_index_map) ; if (iter.len () != o_iter.len ()) return false; for (const auto _ : + hb_zip (iter, o_iter)) if (_.first != _.second) return false; return true; } void collect_features (hb_prune_langsys_context_t *c) const { if (!has_required_feature () && !get_feature_count ()) return; if (c->visitedLangsys (this)) return; if (has_required_feature () && c->duplicate_feature_map->has (reqFeatureIndex)) c->new_feature_indexes->add (get_required_feature_index ()); + hb_iter (featureIndex) | hb_filter (c->duplicate_feature_map) | hb_sink (c->new_feature_indexes) ; } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l, const Tag *tag = nullptr) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); out->reqFeatureIndex = l->feature_index_map->has (reqFeatureIndex) ? l->feature_index_map->get (reqFeatureIndex) : 0xFFFFu; if (!l->visitFeatureIndex (featureIndex.len)) return_trace (false); auto it = + hb_iter (featureIndex) | hb_filter (l->feature_index_map) | hb_map (l->feature_index_map) ; bool ret = bool (it); out->featureIndex.serialize (c->serializer, l, it); return_trace (ret); } bool sanitize (hb_sanitize_context_t *c, const Record_sanitize_closure_t * = nullptr) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && featureIndex.sanitize (c)); } Offset16 lookupOrderZ; /* = Null (reserved for an offset to a * reordering table) */ HBUINT16 reqFeatureIndex;/* Index of a feature required for this * language system--if no required features * = 0xFFFFu */ IndexArray featureIndex; /* Array of indices into the FeatureList */ public: DEFINE_SIZE_ARRAY_SIZED (6, featureIndex); }; DECLARE_NULL_NAMESPACE_BYTES (OT, LangSys); struct Script { unsigned int get_lang_sys_count () const { return langSys.len; } const Tag& get_lang_sys_tag (unsigned int i) const { return langSys.get_tag (i); } unsigned int get_lang_sys_tags (unsigned int start_offset, unsigned int *lang_sys_count /* IN/OUT */, hb_tag_t *lang_sys_tags /* OUT */) const { return langSys.get_tags (start_offset, lang_sys_count, lang_sys_tags); } const LangSys& get_lang_sys (unsigned int i) const { if (i == Index::NOT_FOUND_INDEX) return get_default_lang_sys (); return this+langSys[i].offset; } bool find_lang_sys_index (hb_tag_t tag, unsigned int *index) const { return langSys.find_index (tag, index); } bool has_default_lang_sys () const { return defaultLangSys != 0; } const LangSys& get_default_lang_sys () const { return this+defaultLangSys; } void prune_langsys (hb_prune_langsys_context_t *c, unsigned script_index) const { if (!has_default_lang_sys () && !get_lang_sys_count ()) return; if (c->visitedScript (this)) return; if (!c->script_langsys_map->has (script_index)) { hb_set_t* empty_set = hb_set_create (); if (unlikely (!c->script_langsys_map->set (script_index, empty_set))) { hb_set_destroy (empty_set); return; } } unsigned langsys_count = get_lang_sys_count (); if (has_default_lang_sys ()) { //only collect features from non-redundant langsys const LangSys& d = get_default_lang_sys (); d.collect_features (c); for (auto _ : + hb_zip (langSys, hb_range (langsys_count))) { const LangSys& l = this+_.first.offset; if (l.compare (d, c->duplicate_feature_map)) continue; l.collect_features (c); c->script_langsys_map->get (script_index)->add (_.second); } } else { for (auto _ : + hb_zip (langSys, hb_range (langsys_count))) { const LangSys& l = this+_.first.offset; l.collect_features (c); c->script_langsys_map->get (script_index)->add (_.second); } } } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l, const Tag *tag) const { TRACE_SUBSET (this); if (!l->visitScript ()) return_trace (false); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); bool defaultLang = false; if (has_default_lang_sys ()) { c->serializer->push (); const LangSys& ls = this+defaultLangSys; bool ret = ls.subset (c, l); if (!ret && tag && *tag != HB_TAG ('D', 'F', 'L', 'T')) { c->serializer->pop_discard (); out->defaultLangSys = 0; } else { c->serializer->add_link (out->defaultLangSys, c->serializer->pop_pack ()); defaultLang = true; } } const hb_set_t *active_langsys = l->script_langsys_map->get (l->cur_script_index); if (active_langsys) { unsigned count = langSys.len; + hb_zip (langSys, hb_range (count)) | hb_filter (active_langsys, hb_second) | hb_map (hb_first) | hb_filter ([=] (const Record<LangSys>& record) {return l->visitLangSys (); }) | hb_apply (subset_record_array (l, &(out->langSys), this)) ; } return_trace (bool (out->langSys.len) || defaultLang || l->table_tag == HB_OT_TAG_GSUB); } bool sanitize (hb_sanitize_context_t *c, const Record_sanitize_closure_t * = nullptr) const { TRACE_SANITIZE (this); return_trace (defaultLangSys.sanitize (c, this) && langSys.sanitize (c, this)); } protected: Offset16To<LangSys> defaultLangSys; /* Offset to DefaultLangSys table--from * beginning of Script table--may be Null */ RecordArrayOf<LangSys> langSys; /* Array of LangSysRecords--listed * alphabetically by LangSysTag */ public: DEFINE_SIZE_ARRAY_SIZED (4, langSys); }; typedef RecordListOfScript ScriptList; /* https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#size */ struct FeatureParamsSize { bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (unlikely (!c->check_struct (this))) return_trace (false); /* This subtable has some "history", if you will. Some earlier versions of * Adobe tools calculated the offset of the FeatureParams sutable from the * beginning of the FeatureList table! Now, that is dealt with in the * Feature implementation. But we still need to be able to tell junk from * real data. Note: We don't check that the nameID actually exists. * * Read Roberts wrote on 9/15/06 on opentype-list@indx.co.uk : * * Yes, it is correct that a new version of the AFDKO (version 2.0) will be * coming out soon, and that the makeotf program will build a font with a * 'size' feature that is correct by the specification. * * The specification for this feature tag is in the "OpenType Layout Tag * Registry". You can see a copy of this at: * https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-size * * Here is one set of rules to determine if the 'size' feature is built * correctly, or as by the older versions of MakeOTF. You may be able to do * better. * * Assume that the offset to the size feature is according to specification, * and make the following value checks. If it fails, assume the size * feature is calculated as versions of MakeOTF before the AFDKO 2.0 built it. * If this fails, reject the 'size' feature. The older makeOTF's calculated the * offset from the beginning of the FeatureList table, rather than from the * beginning of the 'size' Feature table. * * If "design size" == 0: * fails check * * Else if ("subfamily identifier" == 0 and * "range start" == 0 and * "range end" == 0 and * "range start" == 0 and * "menu name ID" == 0) * passes check: this is the format used when there is a design size * specified, but there is no recommended size range. * * Else if ("design size" < "range start" or * "design size" > "range end" or * "range end" <= "range start" or * "menu name ID" < 256 or * "menu name ID" > 32767 or * menu name ID is not a name ID which is actually in the name table) * fails test * Else * passes test. */ if (!designSize) return_trace (false); else if (subfamilyID == 0 && subfamilyNameID == 0 && rangeStart == 0 && rangeEnd == 0) return_trace (true); else if (designSize < rangeStart || designSize > rangeEnd || subfamilyNameID < 256 || subfamilyNameID > 32767) return_trace (false); else return_trace (true); } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); return_trace ((bool) c->serializer->embed (*this)); } HBUINT16 designSize; /* Represents the design size in 720/inch * units (decipoints). The design size entry * must be non-zero. When there is a design * size but no recommended size range, the * rest of the array will consist of zeros. */ HBUINT16 subfamilyID; /* Has no independent meaning, but serves * as an identifier that associates fonts * in a subfamily. All fonts which share a * Preferred or Font Family name and which * differ only by size range shall have the * same subfamily value, and no fonts which * differ in weight or style shall have the * same subfamily value. If this value is * zero, the remaining fields in the array * will be ignored. */ NameID subfamilyNameID;/* If the preceding value is non-zero, this * value must be set in the range 256 - 32767 * (inclusive). It records the value of a * field in the name table, which must * contain English-language strings encoded * in Windows Unicode and Macintosh Roman, * and may contain additional strings * localized to other scripts and languages. * Each of these strings is the name an * application should use, in combination * with the family name, to represent the * subfamily in a menu. Applications will * choose the appropriate version based on * their selection criteria. */ HBUINT16 rangeStart; /* Large end of the recommended usage range * (inclusive), stored in 720/inch units * (decipoints). */ HBUINT16 rangeEnd; /* Small end of the recommended usage range (exclusive), stored in 720/inch units * (decipoints). */ public: DEFINE_SIZE_STATIC (10); }; /* https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#ssxx */ struct FeatureParamsStylisticSet { bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); /* Right now minorVersion is at zero. Which means, any table supports * the uiNameID field. */ return_trace (c->check_struct (this)); } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); return_trace ((bool) c->serializer->embed (*this)); } HBUINT16 version; /* (set to 0): This corresponds to a “minor” * version number. Additional data may be * added to the end of this Feature Parameters * table in the future. */ NameID uiNameID; /* The 'name' table name ID that specifies a * string (or strings, for multiple languages) * for a user-interface label for this * feature. The values of uiLabelNameId and * sampleTextNameId are expected to be in the * font-specific name ID range (256-32767), * though that is not a requirement in this * Feature Parameters specification. The * user-interface label for the feature can * be provided in multiple languages. An * English string should be included as a * fallback. The string should be kept to a * minimal length to fit comfortably with * different application interfaces. */ public: DEFINE_SIZE_STATIC (4); }; /* https://docs.microsoft.com/en-us/typography/opentype/spec/features_ae#cv01-cv99 */ struct FeatureParamsCharacterVariants { unsigned get_characters (unsigned start_offset, unsigned *char_count, hb_codepoint_t *chars) const { if (char_count) { + characters.sub_array (start_offset, char_count) | hb_sink (hb_array (chars, *char_count)) ; } return characters.len; } unsigned get_size () const { return min_size + characters.len * HBUINT24::static_size; } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); return_trace ((bool) c->serializer->embed (*this)); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && characters.sanitize (c)); } HBUINT16 format; /* Format number is set to 0. */ NameID featUILableNameID; /* The ‘name’ table name ID that * specifies a string (or strings, * for multiple languages) for a * user-interface label for this * feature. (May be NULL.) */ NameID featUITooltipTextNameID;/* The ‘name’ table name ID that * specifies a string (or strings, * for multiple languages) that an * application can use for tooltip * text for this feature. (May be * nullptr.) */ NameID sampleTextNameID; /* The ‘name’ table name ID that * specifies sample text that * illustrates the effect of this * feature. (May be NULL.) */ HBUINT16 numNamedParameters; /* Number of named parameters. (May * be zero.) */ NameID firstParamUILabelNameID;/* The first ‘name’ table name ID * used to specify strings for * user-interface labels for the * feature parameters. (Must be zero * if numParameters is zero.) */ Array16Of<HBUINT24> characters; /* Array of the Unicode Scalar Value * of the characters for which this * feature provides glyph variants. * (May be zero.) */ public: DEFINE_SIZE_ARRAY (14, characters); }; struct FeatureParams { bool sanitize (hb_sanitize_context_t *c, hb_tag_t tag) const { #ifdef HB_NO_LAYOUT_FEATURE_PARAMS return true; #endif TRACE_SANITIZE (this); if (tag == HB_TAG ('s','i','z','e')) return_trace (u.size.sanitize (c)); if ((tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */ return_trace (u.stylisticSet.sanitize (c)); if ((tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */ return_trace (u.characterVariants.sanitize (c)); return_trace (true); } bool subset (hb_subset_context_t *c, const Tag* tag) const { TRACE_SUBSET (this); if (!tag) return_trace (false); if (*tag == HB_TAG ('s','i','z','e')) return_trace (u.size.subset (c)); if ((*tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */ return_trace (u.stylisticSet.subset (c)); if ((*tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */ return_trace (u.characterVariants.subset (c)); return_trace (false); } #ifndef HB_NO_LAYOUT_FEATURE_PARAMS const FeatureParamsSize& get_size_params (hb_tag_t tag) const { if (tag == HB_TAG ('s','i','z','e')) return u.size; return Null (FeatureParamsSize); } const FeatureParamsStylisticSet& get_stylistic_set_params (hb_tag_t tag) const { if ((tag & 0xFFFF0000u) == HB_TAG ('s','s','\0','\0')) /* ssXX */ return u.stylisticSet; return Null (FeatureParamsStylisticSet); } const FeatureParamsCharacterVariants& get_character_variants_params (hb_tag_t tag) const { if ((tag & 0xFFFF0000u) == HB_TAG ('c','v','\0','\0')) /* cvXX */ return u.characterVariants; return Null (FeatureParamsCharacterVariants); } #endif private: union { FeatureParamsSize size; FeatureParamsStylisticSet stylisticSet; FeatureParamsCharacterVariants characterVariants; } u; public: DEFINE_SIZE_MIN (0); }; struct Feature { unsigned int get_lookup_count () const { return lookupIndex.len; } hb_tag_t get_lookup_index (unsigned int i) const { return lookupIndex[i]; } unsigned int get_lookup_indexes (unsigned int start_index, unsigned int *lookup_count /* IN/OUT */, unsigned int *lookup_tags /* OUT */) const { return lookupIndex.get_indexes (start_index, lookup_count, lookup_tags); } void add_lookup_indexes_to (hb_set_t *lookup_indexes) const { lookupIndex.add_indexes_to (lookup_indexes); } const FeatureParams &get_feature_params () const { return this+featureParams; } bool intersects_lookup_indexes (const hb_map_t *lookup_indexes) const { return lookupIndex.intersects (lookup_indexes); } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l, const Tag *tag = nullptr) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); out->featureParams.serialize_subset (c, featureParams, this, tag); auto it = + hb_iter (lookupIndex) | hb_filter (l->lookup_index_map) | hb_map (l->lookup_index_map) ; out->lookupIndex.serialize (c->serializer, l, it); // The decision to keep or drop this feature is already made before we get here // so always retain it. return_trace (true); } bool sanitize (hb_sanitize_context_t *c, const Record_sanitize_closure_t *closure = nullptr) const { TRACE_SANITIZE (this); if (unlikely (!(c->check_struct (this) && lookupIndex.sanitize (c)))) return_trace (false); /* Some earlier versions of Adobe tools calculated the offset of the * FeatureParams subtable from the beginning of the FeatureList table! * * If sanitizing "failed" for the FeatureParams subtable, try it with the * alternative location. We would know sanitize "failed" if old value * of the offset was non-zero, but it's zeroed now. * * Only do this for the 'size' feature, since at the time of the faulty * Adobe tools, only the 'size' feature had FeatureParams defined. */ if (likely (featureParams.is_null ())) return_trace (true); unsigned int orig_offset = featureParams; if (unlikely (!featureParams.sanitize (c, this, closure ? closure->tag : HB_TAG_NONE))) return_trace (false); if (featureParams == 0 && closure && closure->tag == HB_TAG ('s','i','z','e') && closure->list_base && closure->list_base < this) { unsigned int new_offset_int = orig_offset - (((char *) this) - ((char *) closure->list_base)); Offset16To<FeatureParams> new_offset; /* Check that it would not overflow. */ new_offset = new_offset_int; if (new_offset == new_offset_int && c->try_set (&featureParams, new_offset_int) && !featureParams.sanitize (c, this, closure ? closure->tag : HB_TAG_NONE)) return_trace (false); } return_trace (true); } Offset16To<FeatureParams> featureParams; /* Offset to Feature Parameters table (if one * has been defined for the feature), relative * to the beginning of the Feature Table; = Null * if not required */ IndexArray lookupIndex; /* Array of LookupList indices */ public: DEFINE_SIZE_ARRAY_SIZED (4, lookupIndex); }; typedef RecordListOf<Feature> FeatureList; struct LookupFlag : HBUINT16 { enum Flags { RightToLeft = 0x0001u, IgnoreBaseGlyphs = 0x0002u, IgnoreLigatures = 0x0004u, IgnoreMarks = 0x0008u, IgnoreFlags = 0x000Eu, UseMarkFilteringSet = 0x0010u, Reserved = 0x00E0u, MarkAttachmentType = 0xFF00u }; public: DEFINE_SIZE_STATIC (2); }; } /* namespace OT */ /* This has to be outside the namespace. */ HB_MARK_AS_FLAG_T (OT::LookupFlag::Flags); namespace OT { struct Lookup { unsigned int get_subtable_count () const { return subTable.len; } template <typename TSubTable> const Array16OfOffset16To<TSubTable>& get_subtables () const { return reinterpret_cast<const Array16OfOffset16To<TSubTable> &> (subTable); } template <typename TSubTable> Array16OfOffset16To<TSubTable>& get_subtables () { return reinterpret_cast<Array16OfOffset16To<TSubTable> &> (subTable); } template <typename TSubTable> const TSubTable& get_subtable (unsigned int i) const { return this+get_subtables<TSubTable> ()[i]; } template <typename TSubTable> TSubTable& get_subtable (unsigned int i) { return this+get_subtables<TSubTable> ()[i]; } unsigned int get_size () const { const HBUINT16 &markFilteringSet = StructAfter<const HBUINT16> (subTable); if (lookupFlag & LookupFlag::UseMarkFilteringSet) return (const char *) &StructAfter<const char> (markFilteringSet) - (const char *) this; return (const char *) &markFilteringSet - (const char *) this; } unsigned int get_type () const { return lookupType; } /* lookup_props is a 32-bit integer where the lower 16-bit is LookupFlag and * higher 16-bit is mark-filtering-set if the lookup uses one. * Not to be confused with glyph_props which is very similar. */ uint32_t get_props () const { unsigned int flag = lookupFlag; if (unlikely (flag & LookupFlag::UseMarkFilteringSet)) { const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable); flag += (markFilteringSet << 16); } return flag; } template <typename TSubTable, typename context_t, typename ...Ts> typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const { unsigned int lookup_type = get_type (); TRACE_DISPATCH (this, lookup_type); unsigned int count = get_subtable_count (); for (unsigned int i = 0; i < count; i++) { typename context_t::return_t r = get_subtable<TSubTable> (i).dispatch (c, lookup_type, std::forward<Ts> (ds)...); if (c->stop_sublookup_iteration (r)) return_trace (r); } return_trace (c->default_return_value ()); } bool serialize (hb_serialize_context_t *c, unsigned int lookup_type, uint32_t lookup_props, unsigned int num_subtables) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); lookupType = lookup_type; lookupFlag = lookup_props & 0xFFFFu; if (unlikely (!subTable.serialize (c, num_subtables))) return_trace (false); if (lookupFlag & LookupFlag::UseMarkFilteringSet) { if (unlikely (!c->extend (this))) return_trace (false); HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable); markFilteringSet = lookup_props >> 16; } return_trace (true); } template <typename TSubTable> bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); out->lookupType = lookupType; out->lookupFlag = lookupFlag; const hb_set_t *glyphset = c->plan->glyphset_gsub (); unsigned int lookup_type = get_type (); + hb_iter (get_subtables <TSubTable> ()) | hb_filter ([this, glyphset, lookup_type] (const Offset16To<TSubTable> &_) { return (this+_).intersects (glyphset, lookup_type); }) | hb_apply (subset_offset_array (c, out->get_subtables<TSubTable> (), this, lookup_type)) ; if (lookupFlag & LookupFlag::UseMarkFilteringSet) { if (unlikely (!c->serializer->extend (out))) return_trace (false); const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable); HBUINT16 &outMarkFilteringSet = StructAfter<HBUINT16> (out->subTable); outMarkFilteringSet = markFilteringSet; } return_trace (out->subTable.len); } template <typename TSubTable> bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!(c->check_struct (this) && subTable.sanitize (c))) return_trace (false); unsigned subtables = get_subtable_count (); if (unlikely (!c->visit_subtables (subtables))) return_trace (false); if (lookupFlag & LookupFlag::UseMarkFilteringSet) { const HBUINT16 &markFilteringSet = StructAfter<HBUINT16> (subTable); if (!markFilteringSet.sanitize (c)) return_trace (false); } if (unlikely (!get_subtables<TSubTable> ().sanitize (c, this, get_type ()))) return_trace (false); if (unlikely (get_type () == TSubTable::Extension && !c->get_edit_count ())) { /* The spec says all subtables of an Extension lookup should * have the same type, which shall not be the Extension type * itself (but we already checked for that). * This is specially important if one has a reverse type! * * We only do this if sanitizer edit_count is zero. Otherwise, * some of the subtables might have become insane after they * were sanity-checked by the edits of subsequent subtables. * https://bugs.chromium.org/p/chromium/issues/detail?id=960331 */ unsigned int type = get_subtable<TSubTable> (0).u.extension.get_type (); for (unsigned int i = 1; i < subtables; i++) if (get_subtable<TSubTable> (i).u.extension.get_type () != type) return_trace (false); } return_trace (true); } private: HBUINT16 lookupType; /* Different enumerations for GSUB and GPOS */ HBUINT16 lookupFlag; /* Lookup qualifiers */ Array16Of<Offset16> subTable; /* Array of SubTables */ /*HBUINT16 markFilteringSetX[HB_VAR_ARRAY];*//* Index (base 0) into GDEF mark glyph sets * structure. This field is only present if bit * UseMarkFilteringSet of lookup flags is set. */ public: DEFINE_SIZE_ARRAY (6, subTable); }; typedef List16OfOffset16To<Lookup> LookupList; template <typename TLookup> struct LookupOffsetList : List16OfOffset16To<TLookup> { bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); unsigned count = this->len; + hb_zip (*this, hb_range (count)) | hb_filter (l->lookup_index_map, hb_second) | hb_map (hb_first) | hb_apply (subset_offset_array (c, *out, this)) ; return_trace (true); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (List16OfOffset16To<TLookup>::sanitize (c, this)); } }; /* * Coverage Table */ struct CoverageFormat1 { friend struct Coverage; private: unsigned int get_coverage (hb_codepoint_t glyph_id) const { unsigned int i; glyphArray.bfind (glyph_id, &i, HB_NOT_FOUND_STORE, NOT_COVERED); return i; } template <typename Iterator, hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))> bool serialize (hb_serialize_context_t *c, Iterator glyphs) { TRACE_SERIALIZE (this); return_trace (glyphArray.serialize (c, glyphs)); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (glyphArray.sanitize (c)); } bool intersects (const hb_set_t *glyphs) const { /* TODO Speed up, using hb_set_next() and bsearch()? */ for (const auto& g : glyphArray.as_array ()) if (glyphs->has (g)) return true; return false; } bool intersects_coverage (const hb_set_t *glyphs, unsigned int index) const { return glyphs->has (glyphArray[index]); } void intersected_coverage_glyphs (const hb_set_t *glyphs, hb_set_t *intersect_glyphs) const { unsigned count = glyphArray.len; for (unsigned i = 0; i < count; i++) if (glyphs->has (glyphArray[i])) intersect_glyphs->add (glyphArray[i]); } template <typename set_t> bool collect_coverage (set_t *glyphs) const { return glyphs->add_sorted_array (glyphArray.as_array ()); } public: /* Older compilers need this to be public. */ struct iter_t { void init (const struct CoverageFormat1 &c_) { c = &c_; i = 0; } void fini () {} bool more () const { return i < c->glyphArray.len; } void next () { i++; } hb_codepoint_t get_glyph () const { return c->glyphArray[i]; } bool operator != (const iter_t& o) const { return i != o.i || c != o.c; } private: const struct CoverageFormat1 *c; unsigned int i; }; private: protected: HBUINT16 coverageFormat; /* Format identifier--format = 1 */ SortedArray16Of<HBGlyphID16> glyphArray; /* Array of GlyphIDs--in numerical order */ public: DEFINE_SIZE_ARRAY (4, glyphArray); }; struct CoverageFormat2 { friend struct Coverage; private: unsigned int get_coverage (hb_codepoint_t glyph_id) const { const RangeRecord &range = rangeRecord.bsearch (glyph_id); return likely (range.first <= range.last) ? (unsigned int) range.value + (glyph_id - range.first) : NOT_COVERED; } template <typename Iterator, hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))> bool serialize (hb_serialize_context_t *c, Iterator glyphs) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); if (unlikely (!glyphs)) { rangeRecord.len = 0; return_trace (true); } /* TODO(iter) Write more efficiently? */ unsigned num_ranges = 0; hb_codepoint_t last = (hb_codepoint_t) -2; for (auto g: glyphs) { if (last + 1 != g) num_ranges++; last = g; } if (unlikely (!rangeRecord.serialize (c, num_ranges))) return_trace (false); unsigned count = 0; unsigned range = (unsigned) -1; last = (hb_codepoint_t) -2; for (auto g: glyphs) { if (last + 1 != g) { range++; rangeRecord[range].first = g; rangeRecord[range].value = count; } rangeRecord[range].last = g; last = g; count++; } return_trace (true); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (rangeRecord.sanitize (c)); } bool intersects (const hb_set_t *glyphs) const { /* TODO Speed up, using hb_set_next() and bsearch()? */ /* TODO(iter) Rewrite as dagger. */ for (const auto& range : rangeRecord.as_array ()) if (range.intersects (glyphs)) return true; return false; } bool intersects_coverage (const hb_set_t *glyphs, unsigned int index) const { /* TODO(iter) Rewrite as dagger. */ for (const auto& range : rangeRecord.as_array ()) { if (range.value <= index && index < (unsigned int) range.value + (range.last - range.first) && range.intersects (glyphs)) return true; else if (index < range.value) return false; } return false; } void intersected_coverage_glyphs (const hb_set_t *glyphs, hb_set_t *intersect_glyphs) const { for (const auto& range : rangeRecord.as_array ()) { if (!range.intersects (glyphs)) continue; for (hb_codepoint_t g = range.first; g <= range.last; g++) if (glyphs->has (g)) intersect_glyphs->add (g); } } template <typename set_t> bool collect_coverage (set_t *glyphs) const { unsigned int count = rangeRecord.len; for (unsigned int i = 0; i < count; i++) if (unlikely (!rangeRecord[i].collect_coverage (glyphs))) return false; return true; } public: /* Older compilers need this to be public. */ struct iter_t { void init (const CoverageFormat2 &c_) { c = &c_; coverage = 0; i = 0; j = c->rangeRecord.len ? c->rangeRecord[0].first : 0; if (unlikely (c->rangeRecord[0].first > c->rangeRecord[0].last)) { /* Broken table. Skip. */ i = c->rangeRecord.len; } } void fini () {} bool more () const { return i < c->rangeRecord.len; } void next () { if (j >= c->rangeRecord[i].last) { i++; if (more ()) { unsigned int old = coverage; j = c->rangeRecord[i].first; coverage = c->rangeRecord[i].value; if (unlikely (coverage != old + 1)) { /* Broken table. Skip. Important to avoid DoS. * Also, our callers depend on coverage being * consecutive and monotonically increasing, * ie. iota(). */ i = c->rangeRecord.len; return; } } return; } coverage++; j++; } hb_codepoint_t get_glyph () const { return j; } bool operator != (const iter_t& o) const { return i != o.i || j != o.j || c != o.c; } private: const struct CoverageFormat2 *c; unsigned int i, coverage; hb_codepoint_t j; }; private: protected: HBUINT16 coverageFormat; /* Format identifier--format = 2 */ SortedArray16Of<RangeRecord> rangeRecord; /* Array of glyph ranges--ordered by * Start GlyphID. rangeCount entries * long */ public: DEFINE_SIZE_ARRAY (4, rangeRecord); }; struct Coverage { /* Has interface. */ static constexpr unsigned SENTINEL = NOT_COVERED; typedef unsigned int value_t; value_t operator [] (hb_codepoint_t k) const { return get (k); } bool has (hb_codepoint_t k) const { return (*this)[k] != SENTINEL; } /* Predicate. */ bool operator () (hb_codepoint_t k) const { return has (k); } unsigned int get (hb_codepoint_t k) const { return get_coverage (k); } unsigned int get_coverage (hb_codepoint_t glyph_id) const { switch (u.format) { case 1: return u.format1.get_coverage (glyph_id); case 2: return u.format2.get_coverage (glyph_id); default:return NOT_COVERED; } } template <typename Iterator, hb_requires (hb_is_sorted_source_of (Iterator, hb_codepoint_t))> bool serialize (hb_serialize_context_t *c, Iterator glyphs) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); unsigned count = 0; unsigned num_ranges = 0; hb_codepoint_t last = (hb_codepoint_t) -2; for (auto g: glyphs) { if (last + 1 != g) num_ranges++; last = g; count++; } u.format = count <= num_ranges * 3 ? 1 : 2; switch (u.format) { case 1: return_trace (u.format1.serialize (c, glyphs)); case 2: return_trace (u.format2.serialize (c, glyphs)); default:return_trace (false); } } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); const hb_set_t &glyphset = *c->plan->glyphset_gsub (); const hb_map_t &glyph_map = *c->plan->glyph_map; auto it = + iter () | hb_filter (glyphset) | hb_map_retains_sorting (glyph_map) ; bool ret = bool (it); Coverage_serialize (c->serializer, it); return_trace (ret); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return_trace (false); switch (u.format) { case 1: return_trace (u.format1.sanitize (c)); case 2: return_trace (u.format2.sanitize (c)); default:return_trace (true); } } bool intersects (const hb_set_t *glyphs) const { switch (u.format) { case 1: return u.format1.intersects (glyphs); case 2: return u.format2.intersects (glyphs); default:return false; } } bool intersects_coverage (const hb_set_t *glyphs, unsigned int index) const { switch (u.format) { case 1: return u.format1.intersects_coverage (glyphs, index); case 2: return u.format2.intersects_coverage (glyphs, index); default:return false; } } /* Might return false if array looks unsorted. * Used for faster rejection of corrupt data. */ template <typename set_t> bool collect_coverage (set_t *glyphs) const { switch (u.format) { case 1: return u.format1.collect_coverage (glyphs); case 2: return u.format2.collect_coverage (glyphs); default:return false; } } void intersected_coverage_glyphs (const hb_set_t *glyphs, hb_set_t *intersect_glyphs) const { switch (u.format) { case 1: return u.format1.intersected_coverage_glyphs (glyphs, intersect_glyphs); case 2: return u.format2.intersected_coverage_glyphs (glyphs, intersect_glyphs); default:return ; } } struct iter_t : hb_iter_with_fallback_t<iter_t, hb_codepoint_t> { static constexpr bool is_sorted_iterator = true; iter_t (const Coverage &c_ = Null (Coverage)) { memset (this, 0, sizeof (*this)); format = c_.u.format; switch (format) { case 1: u.format1.init (c_.u.format1); return; case 2: u.format2.init (c_.u.format2); return; default: return; } } bool __more__ () const { switch (format) { case 1: return u.format1.more (); case 2: return u.format2.more (); default:return false; } } void __next__ () { switch (format) { case 1: u.format1.next (); break; case 2: u.format2.next (); break; default: break; } } typedef hb_codepoint_t __item_t__; __item_t__ __item__ () const { return get_glyph (); } hb_codepoint_t get_glyph () const { switch (format) { case 1: return u.format1.get_glyph (); case 2: return u.format2.get_glyph (); default:return 0; } } bool operator != (const iter_t& o) const { if (format != o.format) return true; switch (format) { case 1: return u.format1 != o.u.format1; case 2: return u.format2 != o.u.format2; default:return false; } } private: unsigned int format; union { CoverageFormat2::iter_t format2; /* Put this one first since it's larger; helps shut up compiler. */ CoverageFormat1::iter_t format1; } u; }; iter_t iter () const { return iter_t (*this); } protected: union { HBUINT16 format; /* Format identifier */ CoverageFormat1 format1; CoverageFormat2 format2; } u; public: DEFINE_SIZE_UNION (2, format); }; template<typename Iterator> static inline void Coverage_serialize (hb_serialize_context_t *c, Iterator it) { c->start_embed<Coverage> ()->serialize (c, it); } static void ClassDef_remap_and_serialize (hb_serialize_context_t *c, const hb_map_t &gid_klass_map, hb_sorted_vector_t<HBGlyphID16> &glyphs, const hb_set_t &klasses, bool use_class_zero, hb_map_t *klass_map /*INOUT*/) { if (!klass_map) { ClassDef_serialize (c, hb_zip (glyphs.iter (), + glyphs.iter () | hb_map (gid_klass_map))); return; } /* any glyph not assigned a class value falls into Class zero (0), * if any glyph assigned to class 0, remapping must start with 0->0*/ if (!use_class_zero) klass_map->set (0, 0); unsigned idx = klass_map->has (0) ? 1 : 0; for (const unsigned k: klasses.iter ()) { if (klass_map->has (k)) continue; klass_map->set (k, idx); idx++; } auto it = + glyphs.iter () | hb_map_retains_sorting ([&] (const HBGlyphID16& gid) -> hb_pair_t<hb_codepoint_t, unsigned> { unsigned new_klass = klass_map->get (gid_klass_map[gid]); return hb_pair ((hb_codepoint_t)gid, new_klass); }) ; c->propagate_error (glyphs, klasses); ClassDef_serialize (c, it); } /* * Class Definition Table */ struct ClassDefFormat1 { friend struct ClassDef; private: unsigned int get_class (hb_codepoint_t glyph_id) const { return classValue[(unsigned int) (glyph_id - startGlyph)]; } template<typename Iterator, hb_requires (hb_is_iterator (Iterator))> bool serialize (hb_serialize_context_t *c, Iterator it) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); if (unlikely (!it)) { classFormat = 1; startGlyph = 0; classValue.len = 0; return_trace (true); } hb_codepoint_t glyph_min = (*it).first; hb_codepoint_t glyph_max = + it | hb_map (hb_first) | hb_reduce (hb_max, 0u); unsigned glyph_count = glyph_max - glyph_min + 1; startGlyph = glyph_min; if (unlikely (!classValue.serialize (c, glyph_count))) return_trace (false); for (const hb_pair_t<hb_codepoint_t, unsigned> gid_klass_pair : + it) { unsigned idx = gid_klass_pair.first - glyph_min; classValue[idx] = gid_klass_pair.second; } return_trace (true); } bool subset (hb_subset_context_t *c, hb_map_t *klass_map = nullptr /*OUT*/, bool keep_empty_table = true, bool use_class_zero = true, const Coverage* glyph_filter = nullptr) const { TRACE_SUBSET (this); const hb_set_t &glyphset = *c->plan->glyphset_gsub (); const hb_map_t &glyph_map = *c->plan->glyph_map; hb_sorted_vector_t<HBGlyphID16> glyphs; hb_set_t orig_klasses; hb_map_t gid_org_klass_map; hb_codepoint_t start = startGlyph; hb_codepoint_t end = start + classValue.len; for (const hb_codepoint_t gid : + hb_range (start, end) | hb_filter (glyphset)) { if (glyph_filter && !glyph_filter->has(gid)) continue; unsigned klass = classValue[gid - start]; if (!klass) continue; glyphs.push (glyph_map[gid]); gid_org_klass_map.set (glyph_map[gid], klass); orig_klasses.add (klass); } unsigned glyph_count = glyph_filter ? hb_len (hb_iter (glyphset) | hb_filter (glyph_filter)) : glyphset.get_population (); use_class_zero = use_class_zero && glyph_count <= gid_org_klass_map.get_population (); ClassDef_remap_and_serialize (c->serializer, gid_org_klass_map, glyphs, orig_klasses, use_class_zero, klass_map); return_trace (keep_empty_table || (bool) glyphs); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && classValue.sanitize (c)); } template <typename set_t> bool collect_coverage (set_t *glyphs) const { unsigned int start = 0; unsigned int count = classValue.len; for (unsigned int i = 0; i < count; i++) { if (classValue[i]) continue; if (start != i) if (unlikely (!glyphs->add_range (startGlyph + start, startGlyph + i))) return false; start = i + 1; } if (start != count) if (unlikely (!glyphs->add_range (startGlyph + start, startGlyph + count))) return false; return true; } template <typename set_t> bool collect_class (set_t *glyphs, unsigned klass) const { unsigned int count = classValue.len; for (unsigned int i = 0; i < count; i++) if (classValue[i] == klass) glyphs->add (startGlyph + i); return true; } bool intersects (const hb_set_t *glyphs) const { /* TODO Speed up, using hb_set_next()? */ hb_codepoint_t start = startGlyph; hb_codepoint_t end = startGlyph + classValue.len; for (hb_codepoint_t iter = startGlyph - 1; hb_set_next (glyphs, &iter) && iter < end;) if (classValue[iter - start]) return true; return false; } bool intersects_class (const hb_set_t *glyphs, uint16_t klass) const { unsigned int count = classValue.len; if (klass == 0) { /* Match if there's any glyph that is not listed! */ hb_codepoint_t g = HB_SET_VALUE_INVALID; if (!hb_set_next (glyphs, &g)) return false; if (g < startGlyph) return true; g = startGlyph + count - 1; if (hb_set_next (glyphs, &g)) return true; /* Fall through. */ } /* TODO Speed up, using set overlap first? */ /* TODO(iter) Rewrite as dagger. */ HBUINT16 k {klass}; const HBUINT16 *arr = classValue.arrayZ; for (unsigned int i = 0; i < count; i++) if (arr[i] == k && glyphs->has (startGlyph + i)) return true; return false; } void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const { unsigned count = classValue.len; if (klass == 0) { hb_codepoint_t endGlyph = startGlyph + count -1; for (hb_codepoint_t g : glyphs->iter ()) if (g < startGlyph || g > endGlyph) intersect_glyphs->add (g); return; } for (unsigned i = 0; i < count; i++) if (classValue[i] == klass && glyphs->has (startGlyph + i)) intersect_glyphs->add (startGlyph + i); } void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const { if (glyphs->is_empty ()) return; hb_codepoint_t end_glyph = startGlyph + classValue.len - 1; if (glyphs->get_min () < startGlyph || glyphs->get_max () > end_glyph) intersect_classes->add (0); for (const auto& _ : + hb_enumerate (classValue)) { hb_codepoint_t g = startGlyph + _.first; if (glyphs->has (g)) intersect_classes->add (_.second); } } protected: HBUINT16 classFormat; /* Format identifier--format = 1 */ HBGlyphID16 startGlyph; /* First GlyphID of the classValueArray */ Array16Of<HBUINT16> classValue; /* Array of Class Values--one per GlyphID */ public: DEFINE_SIZE_ARRAY (6, classValue); }; struct ClassDefFormat2 { friend struct ClassDef; private: unsigned int get_class (hb_codepoint_t glyph_id) const { return rangeRecord.bsearch (glyph_id).value; } template<typename Iterator, hb_requires (hb_is_iterator (Iterator))> bool serialize (hb_serialize_context_t *c, Iterator it) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); if (unlikely (!it)) { classFormat = 2; rangeRecord.len = 0; return_trace (true); } unsigned num_ranges = 1; hb_codepoint_t prev_gid = (*it).first; unsigned prev_klass = (*it).second; RangeRecord range_rec; range_rec.first = prev_gid; range_rec.last = prev_gid; range_rec.value = prev_klass; RangeRecord *record = c->copy (range_rec); if (unlikely (!record)) return_trace (false); for (const auto gid_klass_pair : + (++it)) { hb_codepoint_t cur_gid = gid_klass_pair.first; unsigned cur_klass = gid_klass_pair.second; if (cur_gid != prev_gid + 1 || cur_klass != prev_klass) { if (unlikely (!record)) break; record->last = prev_gid; num_ranges++; range_rec.first = cur_gid; range_rec.last = cur_gid; range_rec.value = cur_klass; record = c->copy (range_rec); } prev_klass = cur_klass; prev_gid = cur_gid; } if (likely (record)) record->last = prev_gid; rangeRecord.len = num_ranges; return_trace (true); } bool subset (hb_subset_context_t *c, hb_map_t *klass_map = nullptr /*OUT*/, bool keep_empty_table = true, bool use_class_zero = true, const Coverage* glyph_filter = nullptr) const { TRACE_SUBSET (this); const hb_set_t &glyphset = *c->plan->glyphset_gsub (); const hb_map_t &glyph_map = *c->plan->glyph_map; hb_sorted_vector_t<HBGlyphID16> glyphs; hb_set_t orig_klasses; hb_map_t gid_org_klass_map; unsigned count = rangeRecord.len; for (unsigned i = 0; i < count; i++) { unsigned klass = rangeRecord[i].value; if (!klass) continue; hb_codepoint_t start = rangeRecord[i].first; hb_codepoint_t end = rangeRecord[i].last + 1; for (hb_codepoint_t g = start; g < end; g++) { if (!glyphset.has (g)) continue; if (glyph_filter && !glyph_filter->has (g)) continue; glyphs.push (glyph_map[g]); gid_org_klass_map.set (glyph_map[g], klass); orig_klasses.add (klass); } } unsigned glyph_count = glyph_filter ? hb_len (hb_iter (glyphset) | hb_filter (glyph_filter)) : glyphset.get_population (); use_class_zero = use_class_zero && glyph_count <= gid_org_klass_map.get_population (); ClassDef_remap_and_serialize (c->serializer, gid_org_klass_map, glyphs, orig_klasses, use_class_zero, klass_map); return_trace (keep_empty_table || (bool) glyphs); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (rangeRecord.sanitize (c)); } template <typename set_t> bool collect_coverage (set_t *glyphs) const { unsigned int count = rangeRecord.len; for (unsigned int i = 0; i < count; i++) if (rangeRecord[i].value) if (unlikely (!rangeRecord[i].collect_coverage (glyphs))) return false; return true; } template <typename set_t> bool collect_class (set_t *glyphs, unsigned int klass) const { unsigned int count = rangeRecord.len; for (unsigned int i = 0; i < count; i++) { if (rangeRecord[i].value == klass) if (unlikely (!rangeRecord[i].collect_coverage (glyphs))) return false; } return true; } bool intersects (const hb_set_t *glyphs) const { /* TODO Speed up, using hb_set_next() and bsearch()? */ unsigned int count = rangeRecord.len; for (unsigned int i = 0; i < count; i++) { const auto& range = rangeRecord[i]; if (range.intersects (glyphs) && range.value) return true; } return false; } bool intersects_class (const hb_set_t *glyphs, uint16_t klass) const { unsigned int count = rangeRecord.len; if (klass == 0) { /* Match if there's any glyph that is not listed! */ hb_codepoint_t g = HB_SET_VALUE_INVALID; for (unsigned int i = 0; i < count; i++) { if (!hb_set_next (glyphs, &g)) break; if (g < rangeRecord[i].first) return true; g = rangeRecord[i].last; } if (g != HB_SET_VALUE_INVALID && hb_set_next (glyphs, &g)) return true; /* Fall through. */ } /* TODO Speed up, using set overlap first? */ /* TODO(iter) Rewrite as dagger. */ HBUINT16 k {klass}; const RangeRecord *arr = rangeRecord.arrayZ; for (unsigned int i = 0; i < count; i++) if (arr[i].value == k && arr[i].intersects (glyphs)) return true; return false; } void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const { unsigned count = rangeRecord.len; if (klass == 0) { hb_codepoint_t g = HB_SET_VALUE_INVALID; for (unsigned int i = 0; i < count; i++) { if (!hb_set_next (glyphs, &g)) break; while (g != HB_SET_VALUE_INVALID && g < rangeRecord[i].first) { intersect_glyphs->add (g); hb_set_next (glyphs, &g); } g = rangeRecord[i].last; } while (g != HB_SET_VALUE_INVALID && hb_set_next (glyphs, &g)) intersect_glyphs->add (g); return; } hb_codepoint_t g = HB_SET_VALUE_INVALID; for (unsigned int i = 0; i < count; i++) { if (rangeRecord[i].value != klass) continue; if (g != HB_SET_VALUE_INVALID) { if (g >= rangeRecord[i].first && g <= rangeRecord[i].last) intersect_glyphs->add (g); if (g > rangeRecord[i].last) continue; } g = rangeRecord[i].first - 1; while (hb_set_next (glyphs, &g)) { if (g >= rangeRecord[i].first && g <= rangeRecord[i].last) intersect_glyphs->add (g); else if (g > rangeRecord[i].last) break; } } } void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const { if (glyphs->is_empty ()) return; unsigned count = rangeRecord.len; hb_codepoint_t g = HB_SET_VALUE_INVALID; for (unsigned int i = 0; i < count; i++) { if (!hb_set_next (glyphs, &g)) break; if (g < rangeRecord[i].first) { intersect_classes->add (0); break; } g = rangeRecord[i].last; } if (g != HB_SET_VALUE_INVALID && hb_set_next (glyphs, &g)) intersect_classes->add (0); for (const RangeRecord& record : rangeRecord.iter ()) if (record.intersects (glyphs)) intersect_classes->add (record.value); } protected: HBUINT16 classFormat; /* Format identifier--format = 2 */ SortedArray16Of<RangeRecord> rangeRecord; /* Array of glyph ranges--ordered by * Start GlyphID */ public: DEFINE_SIZE_ARRAY (4, rangeRecord); }; struct ClassDef { /* Has interface. */ static constexpr unsigned SENTINEL = 0; typedef unsigned int value_t; value_t operator [] (hb_codepoint_t k) const { return get (k); } bool has (hb_codepoint_t k) const { return (*this)[k] != SENTINEL; } /* Projection. */ hb_codepoint_t operator () (hb_codepoint_t k) const { return get (k); } unsigned int get (hb_codepoint_t k) const { return get_class (k); } unsigned int get_class (hb_codepoint_t glyph_id) const { switch (u.format) { case 1: return u.format1.get_class (glyph_id); case 2: return u.format2.get_class (glyph_id); default:return 0; } } template<typename Iterator, hb_requires (hb_is_iterator (Iterator))> bool serialize (hb_serialize_context_t *c, Iterator it_with_class_zero) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); auto it = + it_with_class_zero | hb_filter (hb_second); unsigned format = 2; if (likely (it)) { hb_codepoint_t glyph_min = (*it).first; hb_codepoint_t glyph_max = glyph_min; unsigned num_glyphs = 0; unsigned num_ranges = 1; hb_codepoint_t prev_gid = glyph_min; unsigned prev_klass = (*it).second; for (const auto gid_klass_pair : it) { hb_codepoint_t cur_gid = gid_klass_pair.first; unsigned cur_klass = gid_klass_pair.second; num_glyphs++; if (cur_gid == glyph_min) continue; if (cur_gid > glyph_max) glyph_max = cur_gid; if (cur_gid != prev_gid + 1 || cur_klass != prev_klass) num_ranges++; prev_gid = cur_gid; prev_klass = cur_klass; } if (num_glyphs && 1 + (glyph_max - glyph_min + 1) <= num_ranges * 3) format = 1; } u.format = format; switch (u.format) { case 1: return_trace (u.format1.serialize (c, it)); case 2: return_trace (u.format2.serialize (c, it)); default:return_trace (false); } } bool subset (hb_subset_context_t *c, hb_map_t *klass_map = nullptr /*OUT*/, bool keep_empty_table = true, bool use_class_zero = true, const Coverage* glyph_filter = nullptr) const { TRACE_SUBSET (this); switch (u.format) { case 1: return_trace (u.format1.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter)); case 2: return_trace (u.format2.subset (c, klass_map, keep_empty_table, use_class_zero, glyph_filter)); default:return_trace (false); } } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return_trace (false); switch (u.format) { case 1: return_trace (u.format1.sanitize (c)); case 2: return_trace (u.format2.sanitize (c)); default:return_trace (true); } } /* Might return false if array looks unsorted. * Used for faster rejection of corrupt data. */ template <typename set_t> bool collect_coverage (set_t *glyphs) const { switch (u.format) { case 1: return u.format1.collect_coverage (glyphs); case 2: return u.format2.collect_coverage (glyphs); default:return false; } } /* Might return false if array looks unsorted. * Used for faster rejection of corrupt data. */ template <typename set_t> bool collect_class (set_t *glyphs, unsigned int klass) const { switch (u.format) { case 1: return u.format1.collect_class (glyphs, klass); case 2: return u.format2.collect_class (glyphs, klass); default:return false; } } bool intersects (const hb_set_t *glyphs) const { switch (u.format) { case 1: return u.format1.intersects (glyphs); case 2: return u.format2.intersects (glyphs); default:return false; } } bool intersects_class (const hb_set_t *glyphs, unsigned int klass) const { switch (u.format) { case 1: return u.format1.intersects_class (glyphs, klass); case 2: return u.format2.intersects_class (glyphs, klass); default:return false; } } void intersected_class_glyphs (const hb_set_t *glyphs, unsigned klass, hb_set_t *intersect_glyphs) const { switch (u.format) { case 1: return u.format1.intersected_class_glyphs (glyphs, klass, intersect_glyphs); case 2: return u.format2.intersected_class_glyphs (glyphs, klass, intersect_glyphs); default:return; } } void intersected_classes (const hb_set_t *glyphs, hb_set_t *intersect_classes) const { switch (u.format) { case 1: return u.format1.intersected_classes (glyphs, intersect_classes); case 2: return u.format2.intersected_classes (glyphs, intersect_classes); default:return; } } protected: union { HBUINT16 format; /* Format identifier */ ClassDefFormat1 format1; ClassDefFormat2 format2; } u; public: DEFINE_SIZE_UNION (2, format); }; template<typename Iterator> static inline void ClassDef_serialize (hb_serialize_context_t *c, Iterator it) { c->start_embed<ClassDef> ()->serialize (c, it); } /* * Item Variation Store */ struct VarRegionAxis { float evaluate (int coord) const { int start = startCoord, peak = peakCoord, end = endCoord; /* TODO Move these to sanitize(). */ if (unlikely (start > peak || peak > end)) return 1.; if (unlikely (start < 0 && end > 0 && peak != 0)) return 1.; if (peak == 0 || coord == peak) return 1.; if (coord <= start || end <= coord) return 0.; /* Interpolate */ if (coord < peak) return float (coord - start) / (peak - start); else return float (end - coord) / (end - peak); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this)); /* TODO Handle invalid start/peak/end configs, so we don't * have to do that at runtime. */ } public: F2DOT14 startCoord; F2DOT14 peakCoord; F2DOT14 endCoord; public: DEFINE_SIZE_STATIC (6); }; struct VarRegionList { float evaluate (unsigned int region_index, const int *coords, unsigned int coord_len) const { if (unlikely (region_index >= regionCount)) return 0.; const VarRegionAxis *axes = axesZ.arrayZ + (region_index * axisCount); float v = 1.; unsigned int count = axisCount; for (unsigned int i = 0; i < count; i++) { int coord = i < coord_len ? coords[i] : 0; float factor = axes[i].evaluate (coord); if (factor == 0.f) return 0.; v *= factor; } return v; } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && axesZ.sanitize (c, axisCount * regionCount)); } bool serialize (hb_serialize_context_t *c, const VarRegionList *src, const hb_bimap_t ®ion_map) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); axisCount = src->axisCount; regionCount = region_map.get_population (); if (unlikely (hb_unsigned_mul_overflows (axisCount * regionCount, VarRegionAxis::static_size))) return_trace (false); if (unlikely (!c->extend (this))) return_trace (false); unsigned int region_count = src->regionCount; for (unsigned int r = 0; r < regionCount; r++) { unsigned int backward = region_map.backward (r); if (backward >= region_count) return_trace (false); memcpy (&axesZ[axisCount * r], &src->axesZ[axisCount * backward], VarRegionAxis::static_size * axisCount); } return_trace (true); } unsigned int get_size () const { return min_size + VarRegionAxis::static_size * axisCount * regionCount; } public: HBUINT16 axisCount; HBUINT15 regionCount; protected: UnsizedArrayOf<VarRegionAxis> axesZ; public: DEFINE_SIZE_ARRAY (4, axesZ); }; struct VarData { unsigned int get_region_index_count () const { return regionIndices.len; } unsigned int get_row_size () const { return shortCount + regionIndices.len; } unsigned int get_size () const { return min_size - regionIndices.min_size + regionIndices.get_size () + itemCount * get_row_size (); } float get_delta (unsigned int inner, const int *coords, unsigned int coord_count, const VarRegionList ®ions) const { if (unlikely (inner >= itemCount)) return 0.; unsigned int count = regionIndices.len; unsigned int scount = shortCount; const HBUINT8 *bytes = get_delta_bytes (); const HBUINT8 *row = bytes + inner * (scount + count); float delta = 0.; unsigned int i = 0; const HBINT16 *scursor = reinterpret_cast<const HBINT16 *> (row); for (; i < scount; i++) { float scalar = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count); delta += scalar * *scursor++; } const HBINT8 *bcursor = reinterpret_cast<const HBINT8 *> (scursor); for (; i < count; i++) { float scalar = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count); delta += scalar * *bcursor++; } return delta; } void get_region_scalars (const int *coords, unsigned int coord_count, const VarRegionList ®ions, float *scalars /*OUT */, unsigned int num_scalars) const { unsigned count = hb_min (num_scalars, regionIndices.len); for (unsigned int i = 0; i < count; i++) scalars[i] = regions.evaluate (regionIndices.arrayZ[i], coords, coord_count); for (unsigned int i = count; i < num_scalars; i++) scalars[i] = 0.f; } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && regionIndices.sanitize (c) && shortCount <= regionIndices.len && c->check_range (get_delta_bytes (), itemCount, get_row_size ())); } bool serialize (hb_serialize_context_t *c, const VarData *src, const hb_inc_bimap_t &inner_map, const hb_bimap_t ®ion_map) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); itemCount = inner_map.get_next_value (); /* Optimize short count */ unsigned short ri_count = src->regionIndices.len; enum delta_size_t { kZero=0, kByte, kShort }; hb_vector_t<delta_size_t> delta_sz; hb_vector_t<unsigned int> ri_map; /* maps old index to new index */ delta_sz.resize (ri_count); ri_map.resize (ri_count); unsigned int new_short_count = 0; unsigned int r; for (r = 0; r < ri_count; r++) { delta_sz[r] = kZero; for (unsigned int i = 0; i < inner_map.get_next_value (); i++) { unsigned int old = inner_map.backward (i); int16_t delta = src->get_item_delta (old, r); if (delta < -128 || 127 < delta) { delta_sz[r] = kShort; new_short_count++; break; } else if (delta != 0) delta_sz[r] = kByte; } } unsigned int short_index = 0; unsigned int byte_index = new_short_count; unsigned int new_ri_count = 0; for (r = 0; r < ri_count; r++) if (delta_sz[r]) { ri_map[r] = (delta_sz[r] == kShort)? short_index++ : byte_index++; new_ri_count++; } shortCount = new_short_count; regionIndices.len = new_ri_count; if (unlikely (!c->extend (this))) return_trace (false); for (r = 0; r < ri_count; r++) if (delta_sz[r]) regionIndices[ri_map[r]] = region_map[src->regionIndices[r]]; for (unsigned int i = 0; i < itemCount; i++) { unsigned int old = inner_map.backward (i); for (unsigned int r = 0; r < ri_count; r++) if (delta_sz[r]) set_item_delta (i, ri_map[r], src->get_item_delta (old, r)); } return_trace (true); } void collect_region_refs (hb_set_t ®ion_indices, const hb_inc_bimap_t &inner_map) const { for (unsigned int r = 0; r < regionIndices.len; r++) { unsigned int region = regionIndices[r]; if (region_indices.has (region)) continue; for (unsigned int i = 0; i < inner_map.get_next_value (); i++) if (get_item_delta (inner_map.backward (i), r) != 0) { region_indices.add (region); break; } } } protected: const HBUINT8 *get_delta_bytes () const { return &StructAfter<HBUINT8> (regionIndices); } HBUINT8 *get_delta_bytes () { return &StructAfter<HBUINT8> (regionIndices); } int16_t get_item_delta (unsigned int item, unsigned int region) const { if ( item >= itemCount || unlikely (region >= regionIndices.len)) return 0; const HBINT8 *p = (const HBINT8 *)get_delta_bytes () + item * get_row_size (); if (region < shortCount) return ((const HBINT16 *)p)[region]; else return (p + HBINT16::static_size * shortCount)[region - shortCount]; } void set_item_delta (unsigned int item, unsigned int region, int16_t delta) { HBINT8 *p = (HBINT8 *)get_delta_bytes () + item * get_row_size (); if (region < shortCount) ((HBINT16 *)p)[region] = delta; else (p + HBINT16::static_size * shortCount)[region - shortCount] = delta; } protected: HBUINT16 itemCount; HBUINT16 shortCount; Array16Of<HBUINT16> regionIndices; /*UnsizedArrayOf<HBUINT8>bytesX;*/ public: DEFINE_SIZE_ARRAY (6, regionIndices); }; struct VariationStore { private: float get_delta (unsigned int outer, unsigned int inner, const int *coords, unsigned int coord_count) const { #ifdef HB_NO_VAR return 0.f; #endif if (unlikely (outer >= dataSets.len)) return 0.f; return (this+dataSets[outer]).get_delta (inner, coords, coord_count, this+regions); } public: float get_delta (unsigned int index, const int *coords, unsigned int coord_count) const { unsigned int outer = index >> 16; unsigned int inner = index & 0xFFFF; return get_delta (outer, inner, coords, coord_count); } bool sanitize (hb_sanitize_context_t *c) const { #ifdef HB_NO_VAR return true; #endif TRACE_SANITIZE (this); return_trace (c->check_struct (this) && format == 1 && regions.sanitize (c, this) && dataSets.sanitize (c, this)); } bool serialize (hb_serialize_context_t *c, const VariationStore *src, const hb_array_t <hb_inc_bimap_t> &inner_maps) { TRACE_SERIALIZE (this); if (unlikely (!c->extend_min (this))) return_trace (false); unsigned int set_count = 0; for (unsigned int i = 0; i < inner_maps.length; i++) if (inner_maps[i].get_population ()) set_count++; format = 1; const auto &src_regions = src+src->regions; hb_set_t region_indices; for (unsigned int i = 0; i < inner_maps.length; i++) (src+src->dataSets[i]).collect_region_refs (region_indices, inner_maps[i]); if (region_indices.in_error ()) return_trace (false); region_indices.del_range ((src_regions).regionCount, hb_set_t::INVALID); /* TODO use constructor when our data-structures support that. */ hb_inc_bimap_t region_map; + hb_iter (region_indices) | hb_apply ([®ion_map] (unsigned _) { region_map.add(_); }) ; if (region_map.in_error()) return_trace (false); if (unlikely (!regions.serialize_serialize (c, &src_regions, region_map))) return_trace (false); dataSets.len = set_count; if (unlikely (!c->extend (dataSets))) return_trace (false); /* TODO: The following code could be simplified when * List16OfOffset16To::subset () can take a custom param to be passed to VarData::serialize () */ unsigned int set_index = 0; for (unsigned int i = 0; i < inner_maps.length; i++) { if (!inner_maps[i].get_population ()) continue; if (unlikely (!dataSets[set_index++] .serialize_serialize (c, &(src+src->dataSets[i]), inner_maps[i], region_map))) return_trace (false); } return_trace (true); } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); VariationStore *varstore_prime = c->serializer->start_embed<VariationStore> (); if (unlikely (!varstore_prime)) return_trace (false); const hb_set_t *variation_indices = c->plan->layout_variation_indices; if (variation_indices->is_empty ()) return_trace (false); hb_vector_t<hb_inc_bimap_t> inner_maps; inner_maps.resize ((unsigned) dataSets.len); for (unsigned i = 0; i < inner_maps.length; i++) inner_maps[i].init (); for (unsigned idx : c->plan->layout_variation_indices->iter ()) { uint16_t major = idx >> 16; uint16_t minor = idx & 0xFFFF; if (major >= inner_maps.length) { for (unsigned i = 0; i < inner_maps.length; i++) inner_maps[i].fini (); return_trace (false); } inner_maps[major].add (minor); } varstore_prime->serialize (c->serializer, this, inner_maps.as_array ()); for (unsigned i = 0; i < inner_maps.length; i++) inner_maps[i].fini (); return_trace ( !c->serializer->in_error() && varstore_prime->dataSets); } unsigned int get_region_index_count (unsigned int major) const { return (this+dataSets[major]).get_region_index_count (); } void get_region_scalars (unsigned int major, const int *coords, unsigned int coord_count, float *scalars /*OUT*/, unsigned int num_scalars) const { #ifdef HB_NO_VAR for (unsigned i = 0; i < num_scalars; i++) scalars[i] = 0.f; return; #endif (this+dataSets[major]).get_region_scalars (coords, coord_count, this+regions, &scalars[0], num_scalars); } unsigned int get_sub_table_count () const { return dataSets.len; } protected: HBUINT16 format; Offset32To<VarRegionList> regions; Array16OfOffset32To<VarData> dataSets; public: DEFINE_SIZE_ARRAY_SIZED (8, dataSets); }; /* * Feature Variations */ struct ConditionFormat1 { friend struct Condition; bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); auto *out = c->serializer->embed (this); if (unlikely (!out)) return_trace (false); return_trace (true); } private: bool evaluate (const int *coords, unsigned int coord_len) const { int coord = axisIndex < coord_len ? coords[axisIndex] : 0; return filterRangeMinValue <= coord && coord <= filterRangeMaxValue; } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this)); } protected: HBUINT16 format; /* Format identifier--format = 1 */ HBUINT16 axisIndex; F2DOT14 filterRangeMinValue; F2DOT14 filterRangeMaxValue; public: DEFINE_SIZE_STATIC (8); }; struct Condition { bool evaluate (const int *coords, unsigned int coord_len) const { switch (u.format) { case 1: return u.format1.evaluate (coords, coord_len); default:return false; } } template <typename context_t, typename ...Ts> typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const { TRACE_DISPATCH (this, u.format); if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ()); switch (u.format) { case 1: return_trace (c->dispatch (u.format1, std::forward<Ts> (ds)...)); default:return_trace (c->default_return_value ()); } } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return_trace (false); switch (u.format) { case 1: return_trace (u.format1.sanitize (c)); default:return_trace (true); } } protected: union { HBUINT16 format; /* Format identifier */ ConditionFormat1 format1; } u; public: DEFINE_SIZE_UNION (2, format); }; struct ConditionSet { bool evaluate (const int *coords, unsigned int coord_len) const { unsigned int count = conditions.len; for (unsigned int i = 0; i < count; i++) if (!(this+conditions.arrayZ[i]).evaluate (coords, coord_len)) return false; return true; } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); + conditions.iter () | hb_apply (subset_offset_array (c, out->conditions, this)) ; return_trace (bool (out->conditions)); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (conditions.sanitize (c, this)); } protected: Array16OfOffset32To<Condition> conditions; public: DEFINE_SIZE_ARRAY (2, conditions); }; struct FeatureTableSubstitutionRecord { friend struct FeatureTableSubstitution; void collect_lookups (const void *base, hb_set_t *lookup_indexes /* OUT */) const { return (base+feature).add_lookup_indexes_to (lookup_indexes); } void closure_features (const void *base, const hb_map_t *lookup_indexes, hb_set_t *feature_indexes /* OUT */) const { if ((base+feature).intersects_lookup_indexes (lookup_indexes)) feature_indexes->add (featureIndex); } bool subset (hb_subset_layout_context_t *c, const void *base) const { TRACE_SUBSET (this); if (!c->feature_index_map->has (featureIndex)) { // Feature that is being substituted is not being retained, so we don't // need this. return_trace (false); } auto *out = c->subset_context->serializer->embed (this); if (unlikely (!out)) return_trace (false); out->featureIndex = c->feature_index_map->get (featureIndex); bool ret = out->feature.serialize_subset (c->subset_context, feature, base, c); return_trace (ret); } bool sanitize (hb_sanitize_context_t *c, const void *base) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && feature.sanitize (c, base)); } protected: HBUINT16 featureIndex; Offset32To<Feature> feature; public: DEFINE_SIZE_STATIC (6); }; struct FeatureTableSubstitution { const Feature *find_substitute (unsigned int feature_index) const { unsigned int count = substitutions.len; for (unsigned int i = 0; i < count; i++) { const FeatureTableSubstitutionRecord &record = substitutions.arrayZ[i]; if (record.featureIndex == feature_index) return &(this+record.feature); } return nullptr; } void collect_lookups (const hb_set_t *feature_indexes, hb_set_t *lookup_indexes /* OUT */) const { + hb_iter (substitutions) | hb_filter (feature_indexes, &FeatureTableSubstitutionRecord::featureIndex) | hb_apply ([this, lookup_indexes] (const FeatureTableSubstitutionRecord& r) { r.collect_lookups (this, lookup_indexes); }) ; } void closure_features (const hb_map_t *lookup_indexes, hb_set_t *feature_indexes /* OUT */) const { for (const FeatureTableSubstitutionRecord& record : substitutions) record.closure_features (this, lookup_indexes, feature_indexes); } bool intersects_features (const hb_map_t *feature_index_map) const { for (const FeatureTableSubstitutionRecord& record : substitutions) { if (feature_index_map->has (record.featureIndex)) return true; } return false; } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); out->version.major = version.major; out->version.minor = version.minor; + substitutions.iter () | hb_apply (subset_record_array (l, &(out->substitutions), this)) ; return_trace (bool (out->substitutions)); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (version.sanitize (c) && likely (version.major == 1) && substitutions.sanitize (c, this)); } protected: FixedVersion<> version; /* Version--0x00010000u */ Array16Of<FeatureTableSubstitutionRecord> substitutions; public: DEFINE_SIZE_ARRAY (6, substitutions); }; struct FeatureVariationRecord { friend struct FeatureVariations; void collect_lookups (const void *base, const hb_set_t *feature_indexes, hb_set_t *lookup_indexes /* OUT */) const { return (base+substitutions).collect_lookups (feature_indexes, lookup_indexes); } void closure_features (const void *base, const hb_map_t *lookup_indexes, hb_set_t *feature_indexes /* OUT */) const { (base+substitutions).closure_features (lookup_indexes, feature_indexes); } bool intersects_features (const void *base, const hb_map_t *feature_index_map) const { return (base+substitutions).intersects_features (feature_index_map); } bool subset (hb_subset_layout_context_t *c, const void *base) const { TRACE_SUBSET (this); auto *out = c->subset_context->serializer->embed (this); if (unlikely (!out)) return_trace (false); out->conditions.serialize_subset (c->subset_context, conditions, base); out->substitutions.serialize_subset (c->subset_context, substitutions, base, c); return_trace (true); } bool sanitize (hb_sanitize_context_t *c, const void *base) const { TRACE_SANITIZE (this); return_trace (conditions.sanitize (c, base) && substitutions.sanitize (c, base)); } protected: Offset32To<ConditionSet> conditions; Offset32To<FeatureTableSubstitution> substitutions; public: DEFINE_SIZE_STATIC (8); }; struct FeatureVariations { static constexpr unsigned NOT_FOUND_INDEX = 0xFFFFFFFFu; bool find_index (const int *coords, unsigned int coord_len, unsigned int *index) const { unsigned int count = varRecords.len; for (unsigned int i = 0; i < count; i++) { const FeatureVariationRecord &record = varRecords.arrayZ[i]; if ((this+record.conditions).evaluate (coords, coord_len)) { *index = i; return true; } } *index = NOT_FOUND_INDEX; return false; } const Feature *find_substitute (unsigned int variations_index, unsigned int feature_index) const { const FeatureVariationRecord &record = varRecords[variations_index]; return (this+record.substitutions).find_substitute (feature_index); } FeatureVariations* copy (hb_serialize_context_t *c) const { TRACE_SERIALIZE (this); return_trace (c->embed (*this)); } void collect_lookups (const hb_set_t *feature_indexes, hb_set_t *lookup_indexes /* OUT */) const { for (const FeatureVariationRecord& r : varRecords) r.collect_lookups (this, feature_indexes, lookup_indexes); } void closure_features (const hb_map_t *lookup_indexes, hb_set_t *feature_indexes /* OUT */) const { for (const FeatureVariationRecord& record : varRecords) record.closure_features (this, lookup_indexes, feature_indexes); } bool subset (hb_subset_context_t *c, hb_subset_layout_context_t *l) const { TRACE_SUBSET (this); auto *out = c->serializer->start_embed (*this); if (unlikely (!out || !c->serializer->extend_min (out))) return_trace (false); out->version.major = version.major; out->version.minor = version.minor; int keep_up_to = -1; for (int i = varRecords.len - 1; i >= 0; i--) { if (varRecords[i].intersects_features (this, l->feature_index_map)) { keep_up_to = i; break; } } unsigned count = (unsigned) (keep_up_to + 1); for (unsigned i = 0; i < count; i++) { subset_record_array (l, &(out->varRecords), this) (varRecords[i]); } return_trace (bool (out->varRecords)); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (version.sanitize (c) && likely (version.major == 1) && varRecords.sanitize (c, this)); } protected: FixedVersion<> version; /* Version--0x00010000u */ Array32Of<FeatureVariationRecord> varRecords; public: DEFINE_SIZE_ARRAY_SIZED (8, varRecords); }; /* * Device Tables */ struct HintingDevice { friend struct Device; private: hb_position_t get_x_delta (hb_font_t *font) const { return get_delta (font->x_ppem, font->x_scale); } hb_position_t get_y_delta (hb_font_t *font) const { return get_delta (font->y_ppem, font->y_scale); } public: unsigned int get_size () const { unsigned int f = deltaFormat; if (unlikely (f < 1 || f > 3 || startSize > endSize)) return 3 * HBUINT16::static_size; return HBUINT16::static_size * (4 + ((endSize - startSize) >> (4 - f))); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && c->check_range (this, this->get_size ())); } HintingDevice* copy (hb_serialize_context_t *c) const { TRACE_SERIALIZE (this); return_trace (c->embed<HintingDevice> (this)); } private: int get_delta (unsigned int ppem, int scale) const { if (!ppem) return 0; int pixels = get_delta_pixels (ppem); if (!pixels) return 0; return (int) (pixels * (int64_t) scale / ppem); } int get_delta_pixels (unsigned int ppem_size) const { unsigned int f = deltaFormat; if (unlikely (f < 1 || f > 3)) return 0; if (ppem_size < startSize || ppem_size > endSize) return 0; unsigned int s = ppem_size - startSize; unsigned int byte = deltaValueZ[s >> (4 - f)]; unsigned int bits = (byte >> (16 - (((s & ((1 << (4 - f)) - 1)) + 1) << f))); unsigned int mask = (0xFFFFu >> (16 - (1 << f))); int delta = bits & mask; if ((unsigned int) delta >= ((mask + 1) >> 1)) delta -= mask + 1; return delta; } protected: HBUINT16 startSize; /* Smallest size to correct--in ppem */ HBUINT16 endSize; /* Largest size to correct--in ppem */ HBUINT16 deltaFormat; /* Format of DeltaValue array data: 1, 2, or 3 * 1 Signed 2-bit value, 8 values per uint16 * 2 Signed 4-bit value, 4 values per uint16 * 3 Signed 8-bit value, 2 values per uint16 */ UnsizedArrayOf<HBUINT16> deltaValueZ; /* Array of compressed data */ public: DEFINE_SIZE_ARRAY (6, deltaValueZ); }; struct VariationDevice { friend struct Device; private: hb_position_t get_x_delta (hb_font_t *font, const VariationStore &store) const { return font->em_scalef_x (get_delta (font, store)); } hb_position_t get_y_delta (hb_font_t *font, const VariationStore &store) const { return font->em_scalef_y (get_delta (font, store)); } VariationDevice* copy (hb_serialize_context_t *c, const hb_map_t *layout_variation_idx_map) const { TRACE_SERIALIZE (this); auto snap = c->snapshot (); auto *out = c->embed (this); if (unlikely (!out)) return_trace (nullptr); if (!layout_variation_idx_map || layout_variation_idx_map->is_empty ()) return_trace (out); /* TODO Just get() and bail if NO_VARIATION. Needs to setup the map to return that. */ if (!layout_variation_idx_map->has (varIdx)) { c->revert (snap); return_trace (nullptr); } unsigned new_idx = layout_variation_idx_map->get (varIdx); out->varIdx = new_idx; return_trace (out); } void record_variation_index (hb_set_t *layout_variation_indices) const { layout_variation_indices->add (varIdx); } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this)); } private: float get_delta (hb_font_t *font, const VariationStore &store) const { return store.get_delta (varIdx, font->coords, font->num_coords); } protected: VarIdx varIdx; HBUINT16 deltaFormat; /* Format identifier for this table: 0x0x8000 */ public: DEFINE_SIZE_STATIC (6); }; struct DeviceHeader { protected: HBUINT16 reserved1; HBUINT16 reserved2; public: HBUINT16 format; /* Format identifier */ public: DEFINE_SIZE_STATIC (6); }; struct Device { hb_position_t get_x_delta (hb_font_t *font, const VariationStore &store=Null (VariationStore)) const { switch (u.b.format) { #ifndef HB_NO_HINTING case 1: case 2: case 3: return u.hinting.get_x_delta (font); #endif #ifndef HB_NO_VAR case 0x8000: return u.variation.get_x_delta (font, store); #endif default: return 0; } } hb_position_t get_y_delta (hb_font_t *font, const VariationStore &store=Null (VariationStore)) const { switch (u.b.format) { case 1: case 2: case 3: #ifndef HB_NO_HINTING return u.hinting.get_y_delta (font); #endif #ifndef HB_NO_VAR case 0x8000: return u.variation.get_y_delta (font, store); #endif default: return 0; } } bool sanitize (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); if (!u.b.format.sanitize (c)) return_trace (false); switch (u.b.format) { #ifndef HB_NO_HINTING case 1: case 2: case 3: return_trace (u.hinting.sanitize (c)); #endif #ifndef HB_NO_VAR case 0x8000: return_trace (u.variation.sanitize (c)); #endif default: return_trace (true); } } Device* copy (hb_serialize_context_t *c, const hb_map_t *layout_variation_idx_map=nullptr) const { TRACE_SERIALIZE (this); switch (u.b.format) { #ifndef HB_NO_HINTING case 1: case 2: case 3: return_trace (reinterpret_cast<Device *> (u.hinting.copy (c))); #endif #ifndef HB_NO_VAR case 0x8000: return_trace (reinterpret_cast<Device *> (u.variation.copy (c, layout_variation_idx_map))); #endif default: return_trace (nullptr); } } void collect_variation_indices (hb_set_t *layout_variation_indices) const { switch (u.b.format) { #ifndef HB_NO_HINTING case 1: case 2: case 3: return; #endif #ifndef HB_NO_VAR case 0x8000: u.variation.record_variation_index (layout_variation_indices); return; #endif default: return; } } protected: union { DeviceHeader b; HintingDevice hinting; #ifndef HB_NO_VAR VariationDevice variation; #endif } u; public: DEFINE_SIZE_UNION (6, b); }; } /* namespace OT */ #endif /* HB_OT_LAYOUT_COMMON_HH */