/* * Copyright © 2022 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Garret Rieger */ #ifndef GRAPH_GRAPH_HH #define GRAPH_GRAPH_HH namespace graph { /** * Represents a serialized table in the form of a graph. * Provides methods for modifying and reordering the graph. */ struct graph_t { struct vertex_t { hb_serialize_context_t::object_t obj; int64_t distance = 0 ; int64_t space = 0 ; hb_vector_t parents; unsigned start = 0; unsigned end = 0; unsigned priority = 0; friend void swap (vertex_t& a, vertex_t& b) { hb_swap (a.obj, b.obj); hb_swap (a.distance, b.distance); hb_swap (a.space, b.space); hb_swap (a.parents, b.parents); hb_swap (a.start, b.start); hb_swap (a.end, b.end); hb_swap (a.priority, b.priority); } bool is_shared () const { return parents.length > 1; } unsigned incoming_edges () const { return parents.length; } void remove_parent (unsigned parent_index) { for (unsigned i = 0; i < parents.length; i++) { if (parents[i] != parent_index) continue; parents.remove (i); break; } } void remap_parents (const hb_vector_t& id_map) { for (unsigned i = 0; i < parents.length; i++) parents[i] = id_map[parents[i]]; } void remap_parent (unsigned old_index, unsigned new_index) { for (unsigned i = 0; i < parents.length; i++) { if (parents[i] == old_index) parents[i] = new_index; } } bool is_leaf () const { return !obj.real_links.length && !obj.virtual_links.length; } bool raise_priority () { if (has_max_priority ()) return false; priority++; return true; } bool has_max_priority () const { return priority >= 3; } int64_t modified_distance (unsigned order) const { // TODO(garretrieger): once priority is high enough, should try // setting distance = 0 which will force to sort immediately after // it's parent where possible. int64_t modified_distance = hb_min (hb_max(distance + distance_modifier (), 0), 0x7FFFFFFFFFF); if (has_max_priority ()) { modified_distance = 0; } return (modified_distance << 18) | (0x003FFFF & order); } int64_t distance_modifier () const { if (!priority) return 0; int64_t table_size = obj.tail - obj.head; if (priority == 1) return -table_size / 2; return -table_size; } }; /* * A topological sorting of an object graph. Ordered * in reverse serialization order (first object in the * serialization is at the end of the list). This matches * the 'packed' object stack used internally in the * serializer */ template graph_t (const T& objects) : parents_invalid (true), distance_invalid (true), positions_invalid (true), successful (true) { num_roots_for_space_.push (1); bool removed_nil = false; vertices_.alloc (objects.length); vertices_scratch_.alloc (objects.length); for (unsigned i = 0; i < objects.length; i++) { // TODO(grieger): check all links point to valid objects. // If this graph came from a serialization buffer object 0 is the // nil object. We don't need it for our purposes here so drop it. if (i == 0 && !objects[i]) { removed_nil = true; continue; } vertex_t* v = vertices_.push (); if (check_success (!vertices_.in_error ())) v->obj = *objects[i]; if (!removed_nil) continue; // Fix indices to account for removed nil object. for (auto& l : v->obj.all_links_writer ()) { l.objidx--; } } } ~graph_t () { vertices_.fini (); } bool in_error () const { return !successful || vertices_.in_error () || num_roots_for_space_.in_error (); } const vertex_t& root () const { return vertices_[root_idx ()]; } unsigned root_idx () const { // Object graphs are in reverse order, the first object is at the end // of the vector. Since the graph is topologically sorted it's safe to // assume the first object has no incoming edges. return vertices_.length - 1; } const hb_serialize_context_t::object_t& object(unsigned i) const { return vertices_[i].obj; } /* * Generates a new topological sorting of graph ordered by the shortest * distance to each node. */ void sort_shortest_distance () { positions_invalid = true; if (vertices_.length <= 1) { // Graph of 1 or less doesn't need sorting. return; } update_distances (); hb_priority_queue_t queue; hb_vector_t &sorted_graph = vertices_scratch_; if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return; hb_vector_t id_map; if (unlikely (!check_success (id_map.resize (vertices_.length)))) return; hb_vector_t removed_edges; if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return; update_parents (); queue.insert (root ().modified_distance (0), root_idx ()); int new_id = root_idx (); unsigned order = 1; while (!queue.in_error () && !queue.is_empty ()) { unsigned next_id = queue.pop_minimum().second; hb_swap (sorted_graph[new_id], vertices_[next_id]); const vertex_t& next = sorted_graph[new_id]; id_map[next_id] = new_id--; for (const auto& link : next.obj.all_links ()) { removed_edges[link.objidx]++; if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx])) // Add the order that the links were encountered to the priority. // This ensures that ties between priorities objects are broken in a consistent // way. More specifically this is set up so that if a set of objects have the same // distance they'll be added to the topological order in the order that they are // referenced from the parent object. queue.insert (vertices_[link.objidx].modified_distance (order++), link.objidx); } } check_success (!queue.in_error ()); check_success (!sorted_graph.in_error ()); if (!check_success (new_id == -1)) print_orphaned_nodes (); remap_all_obj_indices (id_map, &sorted_graph); hb_swap (vertices_, sorted_graph); } /* * Finds the set of nodes (placed into roots) that should be assigned unique spaces. * More specifically this looks for the top most 24 bit or 32 bit links in the graph. * Some special casing is done that is specific to the layout of GSUB/GPOS tables. */ void find_space_roots (hb_set_t& visited, hb_set_t& roots) { int root_index = (int) root_idx (); for (int i = root_index; i >= 0; i--) { if (visited.has (i)) continue; // Only real links can form 32 bit spaces for (auto& l : vertices_[i].obj.real_links) { if (l.is_signed || l.width < 3) continue; if (i == root_index && l.width == 3) // Ignore 24bit links from the root node, this skips past the single 24bit // pointer to the lookup list. continue; if (l.width == 3) { // A 24bit offset forms a root, unless there is 32bit offsets somewhere // in it's subgraph, then those become the roots instead. This is to make sure // that extension subtables beneath a 24bit lookup become the spaces instead // of the offset to the lookup. hb_set_t sub_roots; find_32bit_roots (l.objidx, sub_roots); if (sub_roots) { for (unsigned sub_root_idx : sub_roots) { roots.add (sub_root_idx); find_subgraph (sub_root_idx, visited); } continue; } } roots.add (l.objidx); find_subgraph (l.objidx, visited); } } } /* * Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s). * Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB * (including with 24bit offsets) table. */ bool assign_spaces () { hb_set_t visited; hb_set_t roots; find_space_roots (visited, roots); // Mark everything not in the subgraphs of the roots as visited. This prevents // subgraphs from being connected via nodes not in those subgraphs. visited.invert (); if (!roots) return false; while (roots) { unsigned next = HB_SET_VALUE_INVALID; if (unlikely (!check_success (!roots.in_error ()))) break; if (!roots.next (&next)) break; hb_set_t connected_roots; find_connected_nodes (next, roots, visited, connected_roots); if (unlikely (!check_success (!connected_roots.in_error ()))) break; isolate_subgraph (connected_roots); if (unlikely (!check_success (!connected_roots.in_error ()))) break; unsigned next_space = this->next_space (); num_roots_for_space_.push (0); for (unsigned root : connected_roots) { DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space); vertices_[root].space = next_space; num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1; distance_invalid = true; positions_invalid = true; } // TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space // into the 32 bit space as needed, instead of using isolation. } return true; } /* * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph * that originate from outside of the subgraph will be removed by duplicating the linked to * object. * * Indices stored in roots will be updated if any of the roots are duplicated to new indices. */ bool isolate_subgraph (hb_set_t& roots) { update_parents (); hb_map_t subgraph; // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these // set the subgraph incoming edge count to match all of root_idx's incoming edges hb_set_t parents; for (unsigned root_idx : roots) { subgraph.set (root_idx, wide_parents (root_idx, parents)); find_subgraph (root_idx, subgraph); } unsigned original_root_idx = root_idx (); hb_map_t index_map; bool made_changes = false; for (auto entry : subgraph.iter ()) { const auto& node = vertices_[entry.first]; unsigned subgraph_incoming_edges = entry.second; if (subgraph_incoming_edges < node.incoming_edges ()) { // Only de-dup objects with incoming links from outside the subgraph. made_changes = true; duplicate_subgraph (entry.first, index_map); } } if (!made_changes) return false; if (original_root_idx != root_idx () && parents.has (original_root_idx)) { // If the root idx has changed since parents was determined, update root idx in parents parents.add (root_idx ()); parents.del (original_root_idx); } auto new_subgraph = + subgraph.keys () | hb_map([&] (unsigned node_idx) { const unsigned *v; if (index_map.has (node_idx, &v)) return *v; return node_idx; }) ; remap_obj_indices (index_map, new_subgraph); remap_obj_indices (index_map, parents.iter (), true); // Update roots set with new indices as needed. unsigned next = HB_SET_VALUE_INVALID; while (roots.next (&next)) { const unsigned *v; if (index_map.has (next, &v)) { roots.del (next); roots.add (*v); } } return true; } void find_subgraph (unsigned node_idx, hb_map_t& subgraph) { for (const auto& link : vertices_[node_idx].obj.all_links ()) { const unsigned *v; if (subgraph.has (link.objidx, &v)) { subgraph.set (link.objidx, *v + 1); continue; } subgraph.set (link.objidx, 1); find_subgraph (link.objidx, subgraph); } } void find_subgraph (unsigned node_idx, hb_set_t& subgraph) { if (subgraph.has (node_idx)) return; subgraph.add (node_idx); for (const auto& link : vertices_[node_idx].obj.all_links ()) find_subgraph (link.objidx, subgraph); } /* * Finds the topmost children of 32bit offsets in the subgraph starting * at node_idx. Found indices are placed into 'found'. */ void find_32bit_roots (unsigned node_idx, hb_set_t& found) { for (const auto& link : vertices_[node_idx].obj.all_links ()) { if (!link.is_signed && link.width == 4) { found.add (link.objidx); continue; } find_32bit_roots (link.objidx, found); } } /* * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign * links. index_map is updated with mappings from old id to new id. If a duplication has already * been performed for a given index, then it will be skipped. */ void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map) { if (index_map.has (node_idx)) return; index_map.set (node_idx, duplicate (node_idx)); for (const auto& l : object (node_idx).all_links ()) { duplicate_subgraph (l.objidx, index_map); } } /* * Creates a copy of node_idx and returns it's new index. */ unsigned duplicate (unsigned node_idx) { positions_invalid = true; distance_invalid = true; auto* clone = vertices_.push (); auto& child = vertices_[node_idx]; if (vertices_.in_error ()) { return -1; } clone->obj.head = child.obj.head; clone->obj.tail = child.obj.tail; clone->distance = child.distance; clone->space = child.space; clone->parents.reset (); unsigned clone_idx = vertices_.length - 2; for (const auto& l : child.obj.real_links) { clone->obj.real_links.push (l); vertices_[l.objidx].parents.push (clone_idx); } for (const auto& l : child.obj.virtual_links) { clone->obj.virtual_links.push (l); vertices_[l.objidx].parents.push (clone_idx); } check_success (!clone->obj.real_links.in_error ()); check_success (!clone->obj.virtual_links.in_error ()); // The last object is the root of the graph, so swap back the root to the end. // The root's obj idx does change, however since it's root nothing else refers to it. // all other obj idx's will be unaffected. hb_swap (vertices_[vertices_.length - 2], *clone); // Since the root moved, update the parents arrays of all children on the root. for (const auto& l : root ().obj.all_links ()) vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ()); return clone_idx; } /* * Creates a copy of child and re-assigns the link from * parent to the clone. The copy is a shallow copy, objects * linked from child are not duplicated. */ bool duplicate (unsigned parent_idx, unsigned child_idx) { update_parents (); unsigned links_to_child = 0; for (const auto& l : vertices_[parent_idx].obj.all_links ()) { if (l.objidx == child_idx) links_to_child++; } if (vertices_[child_idx].incoming_edges () <= links_to_child) { // Can't duplicate this node, doing so would orphan the original one as all remaining links // to child are from parent. DEBUG_MSG (SUBSET_REPACK, nullptr, " Not duplicating %d => %d", parent_idx, child_idx); return false; } DEBUG_MSG (SUBSET_REPACK, nullptr, " Duplicating %d => %d", parent_idx, child_idx); unsigned clone_idx = duplicate (child_idx); if (clone_idx == (unsigned) -1) return false; // duplicate shifts the root node idx, so if parent_idx was root update it. if (parent_idx == clone_idx) parent_idx++; auto& parent = vertices_[parent_idx]; for (auto& l : parent.obj.all_links_writer ()) { if (l.objidx != child_idx) continue; reassign_link (l, parent_idx, clone_idx); } return true; } /* * Raises the sorting priority of all children. */ bool raise_childrens_priority (unsigned parent_idx) { DEBUG_MSG (SUBSET_REPACK, nullptr, " Raising priority of all children of %d", parent_idx); // This operation doesn't change ordering until a sort is run, so no need // to invalidate positions. It does not change graph structure so no need // to update distances or edge counts. auto& parent = vertices_[parent_idx].obj; bool made_change = false; for (auto& l : parent.all_links_writer ()) made_change |= vertices_[l.objidx].raise_priority (); return made_change; } void print_orphaned_nodes () { if (!DEBUG_ENABLED(SUBSET_REPACK)) return; DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected."); parents_invalid = true; update_parents(); for (unsigned i = 0; i < root_idx (); i++) { const auto& v = vertices_[i]; if (!v.parents) DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i); } } unsigned num_roots_for_space (unsigned space) const { return num_roots_for_space_[space]; } unsigned next_space () const { return num_roots_for_space_.length; } void move_to_new_space (const hb_set_t& indices) { num_roots_for_space_.push (0); unsigned new_space = num_roots_for_space_.length - 1; for (unsigned index : indices) { auto& node = vertices_[index]; num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1; num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1; node.space = new_space; distance_invalid = true; positions_invalid = true; } } unsigned space_for (unsigned index, unsigned* root = nullptr) const { const auto& node = vertices_[index]; if (node.space) { if (root != nullptr) *root = index; return node.space; } if (!node.parents) { if (root) *root = index; return 0; } return space_for (node.parents[0], root); } void err_other_error () { this->successful = false; } size_t total_size_in_bytes () const { size_t total_size = 0; for (unsigned i = 0; i < vertices_.length; i++) { size_t size = vertices_[i].obj.tail - vertices_[i].obj.head; total_size += size; } return total_size; } private: /* * Returns the numbers of incoming edges that are 24 or 32 bits wide. */ unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const { unsigned count = 0; hb_set_t visited; for (unsigned p : vertices_[node_idx].parents) { if (visited.has (p)) continue; visited.add (p); // Only real links can be wide for (const auto& l : vertices_[p].obj.real_links) { if (l.objidx == node_idx && (l.width == 3 || l.width == 4) && !l.is_signed) { count++; parents.add (p); } } } return count; } bool check_success (bool success) { return this->successful && (success || ((void) err_other_error (), false)); } public: /* * Creates a map from objid to # of incoming edges. */ void update_parents () { if (!parents_invalid) return; for (unsigned i = 0; i < vertices_.length; i++) vertices_[i].parents.reset (); for (unsigned p = 0; p < vertices_.length; p++) { for (auto& l : vertices_[p].obj.all_links ()) { vertices_[l.objidx].parents.push (p); } } parents_invalid = false; } /* * compute the serialized start and end positions for each vertex. */ void update_positions () { if (!positions_invalid) return; unsigned current_pos = 0; for (int i = root_idx (); i >= 0; i--) { auto& v = vertices_[i]; v.start = current_pos; current_pos += v.obj.tail - v.obj.head; v.end = current_pos; } positions_invalid = false; } /* * Finds the distance to each object in the graph * from the initial node. */ void update_distances () { if (!distance_invalid) return; // Uses Dijkstra's algorithm to find all of the shortest distances. // https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm // // Implementation Note: // Since our priority queue doesn't support fast priority decreases // we instead just add new entries into the queue when a priority changes. // Redundant ones are filtered out later on by the visited set. // According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf // for practical performance this is faster then using a more advanced queue // (such as a fibonacci queue) with a fast decrease priority. for (unsigned i = 0; i < vertices_.length; i++) { if (i == vertices_.length - 1) vertices_[i].distance = 0; else vertices_[i].distance = hb_int_max (int64_t); } hb_priority_queue_t queue; queue.insert (0, vertices_.length - 1); hb_vector_t visited; visited.resize (vertices_.length); while (!queue.in_error () && !queue.is_empty ()) { unsigned next_idx = queue.pop_minimum ().second; if (visited[next_idx]) continue; const auto& next = vertices_[next_idx]; int64_t next_distance = vertices_[next_idx].distance; visited[next_idx] = true; for (const auto& link : next.obj.all_links ()) { if (visited[link.objidx]) continue; const auto& child = vertices_[link.objidx].obj; unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide int64_t child_weight = (child.tail - child.head) + ((int64_t) 1 << (link_width * 8)) * (vertices_[link.objidx].space + 1); int64_t child_distance = next_distance + child_weight; if (child_distance < vertices_[link.objidx].distance) { vertices_[link.objidx].distance = child_distance; queue.insert (child_distance, link.objidx); } } } check_success (!queue.in_error ()); if (!check_success (queue.is_empty ())) { print_orphaned_nodes (); return; } distance_invalid = false; } private: /* * Updates a link in the graph to point to a different object. Corrects the * parents vector on the previous and new child nodes. */ void reassign_link (hb_serialize_context_t::object_t::link_t& link, unsigned parent_idx, unsigned new_idx) { unsigned old_idx = link.objidx; link.objidx = new_idx; vertices_[old_idx].remove_parent (parent_idx); vertices_[new_idx].parents.push (parent_idx); } /* * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts. */ template void remap_obj_indices (const hb_map_t& id_map, Iterator subgraph, bool only_wide = false) { if (!id_map) return; for (unsigned i : subgraph) { for (auto& link : vertices_[i].obj.all_links_writer ()) { const unsigned *v; if (!id_map.has (link.objidx, &v)) continue; if (only_wide && !(link.width == 4 && !link.is_signed)) continue; reassign_link (link, i, *v); } } } /* * Updates all objidx's in all links using the provided mapping. */ void remap_all_obj_indices (const hb_vector_t& id_map, hb_vector_t* sorted_graph) const { for (unsigned i = 0; i < sorted_graph->length; i++) { (*sorted_graph)[i].remap_parents (id_map); for (auto& link : (*sorted_graph)[i].obj.all_links_writer ()) { link.objidx = id_map[link.objidx]; } } } /* * Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped. * For this search the graph is treated as being undirected. * * Connected targets will be added to connected and removed from targets. All visited nodes * will be added to visited. */ void find_connected_nodes (unsigned start_idx, hb_set_t& targets, hb_set_t& visited, hb_set_t& connected) { if (unlikely (!check_success (!visited.in_error ()))) return; if (visited.has (start_idx)) return; visited.add (start_idx); if (targets.has (start_idx)) { targets.del (start_idx); connected.add (start_idx); } const auto& v = vertices_[start_idx]; // Graph is treated as undirected so search children and parents of start_idx for (const auto& l : v.obj.all_links ()) find_connected_nodes (l.objidx, targets, visited, connected); for (unsigned p : v.parents) find_connected_nodes (p, targets, visited, connected); } public: // TODO(garretrieger): make private, will need to move most of offset overflow code into graph. hb_vector_t vertices_; hb_vector_t vertices_scratch_; private: bool parents_invalid; bool distance_invalid; bool positions_invalid; bool successful; hb_vector_t num_roots_for_space_; }; } #endif // GRAPH_GRAPH_HH