#ifndef OT_GLYF_COMPOSITEGLYPH_HH #define OT_GLYF_COMPOSITEGLYPH_HH #include "../../hb-open-type.hh" namespace OT { namespace glyf_impl { struct CompositeGlyphRecord { protected: enum composite_glyph_flag_t { ARG_1_AND_2_ARE_WORDS = 0x0001, ARGS_ARE_XY_VALUES = 0x0002, ROUND_XY_TO_GRID = 0x0004, WE_HAVE_A_SCALE = 0x0008, MORE_COMPONENTS = 0x0020, WE_HAVE_AN_X_AND_Y_SCALE = 0x0040, WE_HAVE_A_TWO_BY_TWO = 0x0080, WE_HAVE_INSTRUCTIONS = 0x0100, USE_MY_METRICS = 0x0200, OVERLAP_COMPOUND = 0x0400, SCALED_COMPONENT_OFFSET = 0x0800, UNSCALED_COMPONENT_OFFSET = 0x1000, #ifndef HB_NO_BEYOND_64K GID_IS_24BIT = 0x2000 #endif }; public: unsigned int get_size () const { unsigned int size = min_size; /* glyphIndex is 24bit instead of 16bit */ #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) size += HBGlyphID24::static_size - HBGlyphID16::static_size; #endif /* arg1 and 2 are int16 */ if (flags & ARG_1_AND_2_ARE_WORDS) size += 4; /* arg1 and 2 are int8 */ else size += 2; /* One x 16 bit (scale) */ if (flags & WE_HAVE_A_SCALE) size += 2; /* Two x 16 bit (xscale, yscale) */ else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4; /* Four x 16 bit (xscale, scale01, scale10, yscale) */ else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8; return size; } void drop_instructions_flag () { flags = (uint16_t) flags & ~WE_HAVE_INSTRUCTIONS; } void set_overlaps_flag () { flags = (uint16_t) flags | OVERLAP_COMPOUND; } bool has_instructions () const { return flags & WE_HAVE_INSTRUCTIONS; } bool has_more () const { return flags & MORE_COMPONENTS; } bool is_use_my_metrics () const { return flags & USE_MY_METRICS; } bool is_anchored () const { return !(flags & ARGS_ARE_XY_VALUES); } void get_anchor_points (unsigned int &point1, unsigned int &point2) const { const auto *p = &StructAfter (flags); #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) p += HBGlyphID24::static_size; else #endif p += HBGlyphID16::static_size; if (flags & ARG_1_AND_2_ARE_WORDS) { point1 = ((const HBUINT16 *) p)[0]; point2 = ((const HBUINT16 *) p)[1]; } else { point1 = p[0]; point2 = p[1]; } } void transform_points (contour_point_vector_t &points) const { float matrix[4]; contour_point_t trans; if (get_transformation (matrix, trans)) { if (scaled_offsets ()) { points.translate (trans); points.transform (matrix); } else { points.transform (matrix); points.translate (trans); } } } unsigned compile_with_deltas (const contour_point_t &p_delta, char *out) const { const HBINT8 *p = &StructAfter (flags); #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) p += HBGlyphID24::static_size; else #endif p += HBGlyphID16::static_size; unsigned len = get_size (); unsigned len_before_val = (const char *)p - (const char *)this; if (flags & ARG_1_AND_2_ARE_WORDS) { // no overflow, copy and update value with deltas memcpy (out, this, len); const HBINT16 *px = reinterpret_cast (p); HBINT16 *o = reinterpret_cast (out + len_before_val); o[0] = px[0] + roundf (p_delta.x); o[1] = px[1] + roundf (p_delta.y); } else { int new_x = p[0] + roundf (p_delta.x); int new_y = p[1] + roundf (p_delta.y); if (new_x <= 127 && new_x >= -128 && new_y <= 127 && new_y >= -128) { memcpy (out, this, len); HBINT8 *o = reinterpret_cast (out + len_before_val); o[0] = new_x; o[1] = new_y; } else { // int8 overflows after deltas applied memcpy (out, this, len_before_val); //update flags CompositeGlyphRecord *o = reinterpret_cast (out); o->flags = flags | ARG_1_AND_2_ARE_WORDS; out += len_before_val; HBINT16 new_value; new_value = new_x; memcpy (out, &new_value, HBINT16::static_size); out += HBINT16::static_size; new_value = new_y; memcpy (out, &new_value, HBINT16::static_size); out += HBINT16::static_size; memcpy (out, p+2, len - len_before_val - 2); len += 2; } } return len; } protected: bool scaled_offsets () const { return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; } bool get_transformation (float (&matrix)[4], contour_point_t &trans) const { matrix[0] = matrix[3] = 1.f; matrix[1] = matrix[2] = 0.f; const auto *p = &StructAfter (flags); #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) p += HBGlyphID24::static_size; else #endif p += HBGlyphID16::static_size; int tx, ty; if (flags & ARG_1_AND_2_ARE_WORDS) { tx = *(const HBINT16 *) p; p += HBINT16::static_size; ty = *(const HBINT16 *) p; p += HBINT16::static_size; } else { tx = *p++; ty = *p++; } if (is_anchored ()) tx = ty = 0; trans.init ((float) tx, (float) ty); { const F2DOT14 *points = (const F2DOT14 *) p; if (flags & WE_HAVE_A_SCALE) { matrix[0] = matrix[3] = points[0].to_float (); return true; } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) { matrix[0] = points[0].to_float (); matrix[3] = points[1].to_float (); return true; } else if (flags & WE_HAVE_A_TWO_BY_TWO) { matrix[0] = points[0].to_float (); matrix[1] = points[1].to_float (); matrix[2] = points[2].to_float (); matrix[3] = points[3].to_float (); return true; } } return tx || ty; } public: hb_codepoint_t get_gid () const { #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) return StructAfter (flags); else #endif return StructAfter (flags); } void set_gid (hb_codepoint_t gid) { #ifndef HB_NO_BEYOND_64K if (flags & GID_IS_24BIT) StructAfter (flags) = gid; else #endif /* TODO assert? */ StructAfter (flags) = gid; } protected: HBUINT16 flags; HBUINT24 pad; public: DEFINE_SIZE_MIN (4); }; struct composite_iter_t : hb_iter_with_fallback_t { typedef const CompositeGlyphRecord *__item_t__; composite_iter_t (hb_bytes_t glyph_, __item_t__ current_) : glyph (glyph_), current (nullptr), current_size (0) { set_current (current_); } composite_iter_t () : glyph (hb_bytes_t ()), current (nullptr), current_size (0) {} item_t __item__ () const { return *current; } bool __more__ () const { return current; } void __next__ () { if (!current->has_more ()) { current = nullptr; return; } set_current (&StructAtOffset (current, current_size)); } composite_iter_t __end__ () const { return composite_iter_t (); } bool operator != (const composite_iter_t& o) const { return current != o.current; } void set_current (__item_t__ current_) { if (!glyph.check_range (current_, CompositeGlyphRecord::min_size)) { current = nullptr; current_size = 0; return; } unsigned size = current_->get_size (); if (!glyph.check_range (current_, size)) { current = nullptr; current_size = 0; return; } current = current_; current_size = size; } private: hb_bytes_t glyph; __item_t__ current; unsigned current_size; }; struct CompositeGlyph { const GlyphHeader &header; hb_bytes_t bytes; CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) : header (header_), bytes (bytes_) {} composite_iter_t iter () const { return composite_iter_t (bytes, &StructAfter (header)); } unsigned int instructions_length (hb_bytes_t bytes) const { unsigned int start = bytes.length; unsigned int end = bytes.length; const CompositeGlyphRecord *last = nullptr; for (auto &item : iter ()) last = &item; if (unlikely (!last)) return 0; if (last->has_instructions ()) start = (char *) last - &bytes + last->get_size (); if (unlikely (start > end)) return 0; return end - start; } /* Trimming for composites not implemented. * If removing hints it falls out of that. */ const hb_bytes_t trim_padding () const { return bytes; } void drop_hints () { for (const auto &_ : iter ()) const_cast (_).drop_instructions_flag (); } /* Chop instructions off the end */ void drop_hints_bytes (hb_bytes_t &dest_start) const { dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); } void set_overlaps_flag () { CompositeGlyphRecord& glyph_chain = const_cast ( StructAfter (header)); if (!bytes.check_range(&glyph_chain, CompositeGlyphRecord::min_size)) return; glyph_chain.set_overlaps_flag (); } bool compile_bytes_with_deltas (const hb_bytes_t &source_bytes, const contour_point_vector_t &deltas, hb_bytes_t &dest_bytes /* OUT */) { if (source_bytes.length <= GlyphHeader::static_size || header.numberOfContours != -1) { dest_bytes = hb_bytes_t (); return true; } unsigned source_len = source_bytes.length - GlyphHeader::static_size; /* try to allocate more memories than source glyph bytes * in case that there might be an overflow for int8 value * and we would need to use int16 instead */ char *o = (char *) hb_calloc (source_len + source_len/2, sizeof (char)); if (unlikely (!o)) return false; const CompositeGlyphRecord *c = reinterpret_cast (source_bytes.arrayZ + GlyphHeader::static_size); auto it = composite_iter_t (hb_bytes_t ((const char *)c, source_len), c); char *p = o; unsigned i = 0, source_comp_len = 0; for (const auto &component : it) { /* last 4 points in deltas are phantom points and should not be included */ if (i >= deltas.length - 4) return false; unsigned comp_len = component.get_size (); if (component.is_anchored ()) { memcpy (p, &component, comp_len); p += comp_len; } else { unsigned new_len = component.compile_with_deltas (deltas[i], p); p += new_len; } i++; source_comp_len += comp_len; } //copy instructions if any if (source_len > source_comp_len) { unsigned instr_len = source_len - source_comp_len; memcpy (p, (const char *)c + source_comp_len, instr_len); p += instr_len; } unsigned len = p - o; dest_bytes = hb_bytes_t (o, len); return true; } }; } /* namespace glyf_impl */ } /* namespace OT */ #endif /* OT_GLYF_COMPOSITEGLYPH_HH */