// SPDX-License-Identifier: MIT OR MPL-2.0 OR LGPL-2.1-or-later OR GPL-2.0-or-later // Copyright 2010, SIL International, All rights reserved. #include #include "graphite2/Segment.h" #include "inc/debug.h" #include "inc/Endian.h" #include "inc/Silf.h" #include "inc/Segment.h" #include "inc/Rule.h" #include "inc/Error.h" using namespace graphite2; namespace { static const uint32 ERROROFFSET = 0xFFFFFFFF; } Silf::Silf() throw() : m_passes(0), m_pseudos(0), m_classOffsets(0), m_classData(0), m_justs(0), m_numPasses(0), m_numJusts(0), m_sPass(0), m_pPass(0), m_jPass(0), m_bPass(0), m_flags(0), m_dir(0), m_aPseudo(0), m_aBreak(0), m_aUser(0), m_aBidi(0), m_aMirror(0), m_aPassBits(0), m_iMaxComp(0), m_aCollision(0), m_aLig(0), m_numPseudo(0), m_nClass(0), m_nLinear(0), m_gEndLine(0) { memset(&m_silfinfo, 0, sizeof m_silfinfo); } Silf::~Silf() throw() { releaseBuffers(); } void Silf::releaseBuffers() throw() { delete [] m_passes; delete [] m_pseudos; free(m_classOffsets); free(m_classData); free(m_justs); m_passes= 0; m_pseudos = 0; m_classOffsets = 0; m_classData = 0; m_justs = 0; } bool Silf::readGraphite(const byte * const silf_start, size_t lSilf, Face& face, uint32 version) { const byte * p = silf_start, * const silf_end = p + lSilf; Error e; if (e.test(version >= 0x00060000, E_BADSILFVERSION)) { releaseBuffers(); return face.error(e); } if (version >= 0x00030000) { if (e.test(lSilf < 28, E_BADSIZE)) { releaseBuffers(); return face.error(e); } be::skip(p); // ruleVersion be::skip(p,2); // passOffset & pseudosOffset } else if (e.test(lSilf < 20, E_BADSIZE)) { releaseBuffers(); return face.error(e); } const uint16 maxGlyph = be::read(p); m_silfinfo.extra_ascent = be::read(p); m_silfinfo.extra_descent = be::read(p); m_numPasses = be::read(p); m_sPass = be::read(p); m_pPass = be::read(p); m_jPass = be::read(p); m_bPass = be::read(p); m_flags = be::read(p); be::skip(p,2); // max{Pre,Post}Context. m_aPseudo = be::read(p); m_aBreak = be::read(p); m_aBidi = be::read(p); m_aMirror = be::read(p); m_aPassBits = be::read(p); // Read Justification levels. m_numJusts = be::read(p); if (e.test(maxGlyph >= face.glyphs().numGlyphs(), E_BADMAXGLYPH) || e.test(p + m_numJusts * 8 >= silf_end, E_BADNUMJUSTS)) { releaseBuffers(); return face.error(e); } if (m_numJusts) { m_justs = gralloc(m_numJusts); if (e.test(!m_justs, E_OUTOFMEM)) return face.error(e); for (uint8 i = 0; i < m_numJusts; i++) { ::new(m_justs + i) Justinfo(p[0], p[1], p[2], p[3]); be::skip(p,8); } } if (e.test(p + sizeof(uint16) + sizeof(uint8)*8 >= silf_end, E_BADENDJUSTS)) { releaseBuffers(); return face.error(e); } m_aLig = be::read(p); m_aUser = be::read(p); m_iMaxComp = be::read(p); m_dir = be::read(p) - 1; m_aCollision = be::read(p); be::skip(p,3); be::skip(p, be::read(p)); // don't need critical features yet be::skip(p); // reserved if (e.test(p >= silf_end, E_BADCRITFEATURES)) { releaseBuffers(); return face.error(e); } be::skip(p, be::read(p)); // don't use scriptTag array. if (e.test(p + sizeof(uint16) + sizeof(uint32) >= silf_end, E_BADSCRIPTTAGS)) { releaseBuffers(); return face.error(e); } m_gEndLine = be::read(p); // lbGID const byte * o_passes = p; uint32 passes_start = be::read(p); const size_t num_attrs = face.glyphs().numAttrs(); if (e.test(m_aPseudo >= num_attrs, E_BADAPSEUDO) || e.test(m_aBreak >= num_attrs, E_BADABREAK) || e.test(m_aBidi >= num_attrs, E_BADABIDI) || e.test(m_aMirror>= num_attrs, E_BADAMIRROR) || e.test(m_aCollision && m_aCollision >= num_attrs - 5, E_BADACOLLISION) || e.test(m_numPasses > 128, E_BADNUMPASSES) || e.test(passes_start >= lSilf, E_BADPASSESSTART) || e.test(m_pPass < m_sPass, E_BADPASSBOUND) || e.test(m_pPass > m_numPasses, E_BADPPASS) || e.test(m_sPass > m_numPasses, E_BADSPASS) || e.test(m_jPass < m_pPass, E_BADJPASSBOUND) || e.test(m_jPass > m_numPasses, E_BADJPASS) || e.test((m_bPass != 0xFF && (m_bPass < m_jPass || m_bPass > m_numPasses)), E_BADBPASS) || e.test(m_aLig > 127, E_BADALIG)) { releaseBuffers(); return face.error(e); } be::skip(p, m_numPasses); if (e.test(unsigned(p - silf_start) + sizeof(uint16) >= passes_start, E_BADPASSESSTART)) { releaseBuffers(); return face.error(e); } m_numPseudo = be::read(p); be::skip(p, 3); // searchPseudo, pseudoSelector, pseudoShift m_pseudos = new Pseudo[m_numPseudo]; if (e.test(unsigned(p - silf_start) + m_numPseudo*(sizeof(uint32) + sizeof(uint16)) >= passes_start, E_BADNUMPSEUDO) || e.test(!m_pseudos, E_OUTOFMEM)) { releaseBuffers(); return face.error(e); } for (int i = 0; i < m_numPseudo; i++) { m_pseudos[i].uid = be::read(p); m_pseudos[i].gid = be::read(p); } const size_t clen = readClassMap(p, passes_start + silf_start - p, version, e); m_passes = new Pass[m_numPasses]; if (e || e.test(clen > unsigned(passes_start + silf_start - p), E_BADPASSESSTART) || e.test(!m_passes, E_OUTOFMEM)) { releaseBuffers(); return face.error(e); } for (size_t i = 0; i < m_numPasses; ++i) { uint32 pass_start = be::read(o_passes); uint32 pass_end = be::peek(o_passes); face.error_context((face.error_context() & 0xFF00) + EC_ASILF + unsigned(i << 16)); if (e.test(pass_start > pass_end, E_BADPASSSTART) || e.test(pass_start < passes_start, E_BADPASSSTART) || e.test(pass_end > lSilf, E_BADPASSEND)) { releaseBuffers(); return face.error(e); } enum passtype pt = PASS_TYPE_UNKNOWN; if (i >= m_jPass) pt = PASS_TYPE_JUSTIFICATION; else if (i >= m_pPass) pt = PASS_TYPE_POSITIONING; else if (i >= m_sPass) pt = PASS_TYPE_SUBSTITUTE; else pt = PASS_TYPE_LINEBREAK; m_passes[i].init(this); if (!m_passes[i].readPass(silf_start + pass_start, pass_end - pass_start, pass_start, face, pt, version, e)) { releaseBuffers(); return false; } } // fill in gr_faceinfo m_silfinfo.upem = face.glyphs().unitsPerEm(); m_silfinfo.has_bidi_pass = (m_bPass != 0xFF); m_silfinfo.justifies = (m_numJusts != 0) || (m_jPass < m_pPass); m_silfinfo.line_ends = (m_flags & 1); m_silfinfo.space_contextuals = gr_faceinfo::gr_space_contextuals((m_flags >> 2) & 0x7); return true; } template inline uint32 Silf::readClassOffsets(const byte *&p, size_t data_len, Error &e) { const T cls_off = 2*sizeof(uint16) + sizeof(T)*(m_nClass+1); const uint32 max_off = (be::peek(p + sizeof(T)*m_nClass) - cls_off)/sizeof(uint16); // Check that the last+1 offset is less than or equal to the class map length. if (e.test(be::peek(p) != cls_off, E_MISALIGNEDCLASSES) || e.test(max_off > (data_len - cls_off)/sizeof(uint16), E_HIGHCLASSOFFSET)) return ERROROFFSET; // Read in all the offsets. m_classOffsets = gralloc(m_nClass+1); if (e.test(!m_classOffsets, E_OUTOFMEM)) return ERROROFFSET; for (uint32 * o = m_classOffsets, * const o_end = o + m_nClass + 1; o != o_end; ++o) { *o = (be::read(p) - cls_off)/sizeof(uint16); if (e.test(*o > max_off, E_HIGHCLASSOFFSET)) return ERROROFFSET; } return max_off; } size_t Silf::readClassMap(const byte *p, size_t data_len, uint32 version, Error &e) { if (e.test(data_len < sizeof(uint16)*2, E_BADCLASSSIZE)) return ERROROFFSET; m_nClass = be::read(p); m_nLinear = be::read(p); // Check that numLinear < numClass, // that there is at least enough data for numClasses offsets. if (e.test(m_nLinear > m_nClass, E_TOOMANYLINEAR) || e.test((m_nClass + 1) * (version >= 0x00040000 ? sizeof(uint32) : sizeof(uint16)) > (data_len - 4), E_CLASSESTOOBIG)) return ERROROFFSET; uint32 max_off; if (version >= 0x00040000) max_off = readClassOffsets(p, data_len, e); else max_off = readClassOffsets(p, data_len, e); if (max_off == ERROROFFSET) return ERROROFFSET; if (e.test((int)max_off < m_nLinear + (m_nClass - m_nLinear) * 6, E_CLASSESTOOBIG)) return ERROROFFSET; // Check the linear offsets are sane, these must be monotonically increasing. assert(m_nClass >= m_nLinear); for (const uint32 *o = m_classOffsets, * const o_end = o + m_nLinear; o != o_end; ++o) if (e.test(o[0] > o[1], E_BADCLASSOFFSET)) return ERROROFFSET; // Fortunately the class data is all uint16s so we can decode these now m_classData = gralloc(max_off); if (e.test(!m_classData, E_OUTOFMEM)) return ERROROFFSET; for (uint16 *d = m_classData, * const d_end = d + max_off; d != d_end; ++d) *d = be::read(p); // Check the lookup class invariants for each non-linear class for (const uint32 *o = m_classOffsets + m_nLinear, * const o_end = m_classOffsets + m_nClass; o != o_end; ++o) { const uint16 * lookup = m_classData + *o; if (e.test(*o + 4 > max_off, E_HIGHCLASSOFFSET) // LookupClass doesn't stretch over max_off || e.test(lookup[0] == 0 // A LookupClass with no looks is a suspicious thing ... || lookup[0] * 2 + *o + 4 > max_off // numIDs lookup pairs fits within (start of LookupClass' lookups array, max_off] || lookup[3] + lookup[1] != lookup[0], E_BADCLASSLOOKUPINFO) // rangeShift: numIDs - searchRange || e.test(((o[1] - *o) & 1) != 0, ERROROFFSET)) // glyphs are in pairs so difference must be even. return ERROROFFSET; } return max_off; } uint16 Silf::findPseudo(uint32 uid) const { for (int i = 0; i < m_numPseudo; i++) if (m_pseudos[i].uid == uid) return m_pseudos[i].gid; return 0; } uint16 Silf::findClassIndex(uint16 cid, uint16 gid) const { if (cid > m_nClass) return -1; const uint16 * cls = m_classData + m_classOffsets[cid]; if (cid < m_nLinear) // output class being used for input, shouldn't happen { for (unsigned int i = 0, n = m_classOffsets[cid + 1] - m_classOffsets[cid]; i < n; ++i, ++cls) if (*cls == gid) return i; return -1; } else { const uint16 * min = cls + 4, // lookups array * max = min + cls[0]*2; // lookups aray is numIDs (cls[0]) uint16 pairs long do { const uint16 * p = min + (-2 & ((max-min)/2)); if (p[0] > gid) max = p; else min = p; } while (max - min > 2); return min[0] == gid ? min[1] : -1; } } uint16 Silf::getClassGlyph(uint16 cid, unsigned int index) const { if (cid > m_nClass) return 0; uint32 loc = m_classOffsets[cid]; if (cid < m_nLinear) { if (index < m_classOffsets[cid + 1] - loc) return m_classData[index + loc]; } else // input class being used for output. Shouldn't happen { for (unsigned int i = loc + 4; i < m_classOffsets[cid + 1]; i += 2) if (m_classData[i + 1] == index) return m_classData[i]; } return 0; } bool Silf::runGraphite(Segment *seg, uint8 firstPass, uint8 lastPass, int dobidi) const { assert(seg != 0); size_t maxSize = seg->slotCount() * MAX_SEG_GROWTH_FACTOR; SlotMap map(*seg, m_dir, maxSize); FiniteStateMachine fsm(map, seg->getFace()->logger()); vm::Machine m(map); uint8 lbidi = m_bPass; #if !defined GRAPHITE2_NTRACING json * const dbgout = seg->getFace()->logger(); #endif if (lastPass == 0) { if (firstPass == lastPass && lbidi == 0xFF) return true; lastPass = m_numPasses; } if ((firstPass < lbidi || (dobidi && firstPass == lbidi)) && (lastPass >= lbidi || (dobidi && lastPass + 1 == lbidi))) lastPass++; else lbidi = 0xFF; for (size_t i = firstPass; i < lastPass; ++i) { // bidi and mirroring if (i == lbidi) { #if !defined GRAPHITE2_NTRACING if (dbgout) { *dbgout << json::item << json::object // << "pindex" << i // for debugging << "id" << -1 << "slotsdir" << (seg->currdir() ? "rtl" : "ltr") << "passdir" << (m_dir & 1 ? "rtl" : "ltr") << "slots" << json::array; seg->positionSlots(0, 0, 0, seg->currdir()); for(Slot * s = seg->first(); s; s = s->next()) *dbgout << dslot(seg, s); *dbgout << json::close << "rules" << json::array << json::close << json::close; } #endif if (seg->currdir() != (m_dir & 1)) seg->reverseSlots(); if (m_aMirror && (seg->dir() & 3) == 3) seg->doMirror(m_aMirror); --i; lbidi = lastPass; --lastPass; continue; } #if !defined GRAPHITE2_NTRACING if (dbgout) { *dbgout << json::item << json::object // << "pindex" << i // for debugging << "id" << i+1 << "slotsdir" << (seg->currdir() ? "rtl" : "ltr") << "passdir" << ((m_dir & 1) ^ m_passes[i].reverseDir() ? "rtl" : "ltr") << "slots" << json::array; seg->positionSlots(0, 0, 0, seg->currdir()); for(Slot * s = seg->first(); s; s = s->next()) *dbgout << dslot(seg, s); *dbgout << json::close; } #endif // test whether to reorder, prepare for positioning bool reverse = (lbidi == 0xFF) && (seg->currdir() != ((m_dir & 1) ^ m_passes[i].reverseDir())); if ((i >= 32 || (seg->passBits() & (1 << i)) == 0 || m_passes[i].collisionLoops()) && !m_passes[i].runGraphite(m, fsm, reverse)) return false; // only subsitution passes can change segment length, cached subsegments are short for their text if (m.status() != vm::Machine::finished || (seg->slotCount() && seg->slotCount() > maxSize)) return false; } return true; }