// // Copyright (C) 2015 LunarG, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #include "SPVRemapper.h" #include "doc.h" #if !defined (use_cpp11) // ... not supported before C++11 #else // defined (use_cpp11) #include #include #include "../glslang/Include/Common.h" namespace spv { // By default, just abort on error. Can be overridden via RegisterErrorHandler spirvbin_t::errorfn_t spirvbin_t::errorHandler = [](const std::string&) { exit(5); }; // By default, eat log messages. Can be overridden via RegisterLogHandler spirvbin_t::logfn_t spirvbin_t::logHandler = [](const std::string&) { }; // This can be overridden to provide other message behavior if needed void spirvbin_t::msg(int minVerbosity, int indent, const std::string& txt) const { if (verbose >= minVerbosity) logHandler(std::string(indent, ' ') + txt); } // hash opcode, with special handling for OpExtInst std::uint32_t spirvbin_t::asOpCodeHash(unsigned word) { const spv::Op opCode = asOpCode(word); std::uint32_t offset = 0; switch (opCode) { case spv::OpExtInst: offset += asId(word + 4); break; default: break; } return opCode * 19 + offset; // 19 = small prime } spirvbin_t::range_t spirvbin_t::literalRange(spv::Op opCode) const { static const int maxCount = 1<<30; switch (opCode) { case spv::OpTypeFloat: // fall through... case spv::OpTypePointer: return range_t(2, 3); case spv::OpTypeInt: return range_t(2, 4); // TODO: case spv::OpTypeImage: // TODO: case spv::OpTypeSampledImage: case spv::OpTypeSampler: return range_t(3, 8); case spv::OpTypeVector: // fall through case spv::OpTypeMatrix: // ... case spv::OpTypePipe: return range_t(3, 4); case spv::OpConstant: return range_t(3, maxCount); default: return range_t(0, 0); } } spirvbin_t::range_t spirvbin_t::typeRange(spv::Op opCode) const { static const int maxCount = 1<<30; if (isConstOp(opCode)) return range_t(1, 2); switch (opCode) { case spv::OpTypeVector: // fall through case spv::OpTypeMatrix: // ... case spv::OpTypeSampler: // ... case spv::OpTypeArray: // ... case spv::OpTypeRuntimeArray: // ... case spv::OpTypePipe: return range_t(2, 3); case spv::OpTypeStruct: // fall through case spv::OpTypeFunction: return range_t(2, maxCount); case spv::OpTypePointer: return range_t(3, 4); default: return range_t(0, 0); } } spirvbin_t::range_t spirvbin_t::constRange(spv::Op opCode) const { static const int maxCount = 1<<30; switch (opCode) { case spv::OpTypeArray: // fall through... case spv::OpTypeRuntimeArray: return range_t(3, 4); case spv::OpConstantComposite: return range_t(3, maxCount); default: return range_t(0, 0); } } // Return the size of a type in 32-bit words. This currently only // handles ints and floats, and is only invoked by queries which must be // integer types. If ever needed, it can be generalized. unsigned spirvbin_t::typeSizeInWords(spv::Id id) const { const unsigned typeStart = idPos(id); const spv::Op opCode = asOpCode(typeStart); if (errorLatch) return 0; switch (opCode) { case spv::OpTypeInt: // fall through... case spv::OpTypeFloat: return (spv[typeStart+2]+31)/32; default: return 0; } } // Looks up the type of a given const or variable ID, and // returns its size in 32-bit words. unsigned spirvbin_t::idTypeSizeInWords(spv::Id id) const { const auto tid_it = idTypeSizeMap.find(id); if (tid_it == idTypeSizeMap.end()) { error("type size for ID not found"); return 0; } return tid_it->second; } // Is this an opcode we should remove when using --strip? bool spirvbin_t::isStripOp(spv::Op opCode) const { switch (opCode) { case spv::OpSource: case spv::OpSourceExtension: case spv::OpName: case spv::OpMemberName: case spv::OpLine: return true; default: return false; } } // Return true if this opcode is flow control bool spirvbin_t::isFlowCtrl(spv::Op opCode) const { switch (opCode) { case spv::OpBranchConditional: case spv::OpBranch: case spv::OpSwitch: case spv::OpLoopMerge: case spv::OpSelectionMerge: case spv::OpLabel: case spv::OpFunction: case spv::OpFunctionEnd: return true; default: return false; } } // Return true if this opcode defines a type bool spirvbin_t::isTypeOp(spv::Op opCode) const { switch (opCode) { case spv::OpTypeVoid: case spv::OpTypeBool: case spv::OpTypeInt: case spv::OpTypeFloat: case spv::OpTypeVector: case spv::OpTypeMatrix: case spv::OpTypeImage: case spv::OpTypeSampler: case spv::OpTypeArray: case spv::OpTypeRuntimeArray: case spv::OpTypeStruct: case spv::OpTypeOpaque: case spv::OpTypePointer: case spv::OpTypeFunction: case spv::OpTypeEvent: case spv::OpTypeDeviceEvent: case spv::OpTypeReserveId: case spv::OpTypeQueue: case spv::OpTypeSampledImage: case spv::OpTypePipe: return true; default: return false; } } // Return true if this opcode defines a constant bool spirvbin_t::isConstOp(spv::Op opCode) const { switch (opCode) { case spv::OpConstantSampler: error("unimplemented constant type"); return true; case spv::OpConstantNull: case spv::OpConstantTrue: case spv::OpConstantFalse: case spv::OpConstantComposite: case spv::OpConstant: return true; default: return false; } } const auto inst_fn_nop = [](spv::Op, unsigned) { return false; }; const auto op_fn_nop = [](spv::Id&) { }; // g++ doesn't like these defined in the class proper in an anonymous namespace. // Dunno why. Also MSVC doesn't like the constexpr keyword. Also dunno why. // Defining them externally seems to please both compilers, so, here they are. const spv::Id spirvbin_t::unmapped = spv::Id(-10000); const spv::Id spirvbin_t::unused = spv::Id(-10001); const int spirvbin_t::header_size = 5; spv::Id spirvbin_t::nextUnusedId(spv::Id id) { while (isNewIdMapped(id)) // search for an unused ID ++id; return id; } spv::Id spirvbin_t::localId(spv::Id id, spv::Id newId) { //assert(id != spv::NoResult && newId != spv::NoResult); if (id > bound()) { error(std::string("ID out of range: ") + std::to_string(id)); return spirvbin_t::unused; } if (id >= idMapL.size()) idMapL.resize(id+1, unused); if (newId != unmapped && newId != unused) { if (isOldIdUnused(id)) { error(std::string("ID unused in module: ") + std::to_string(id)); return spirvbin_t::unused; } if (!isOldIdUnmapped(id)) { error(std::string("ID already mapped: ") + std::to_string(id) + " -> " + std::to_string(localId(id))); return spirvbin_t::unused; } if (isNewIdMapped(newId)) { error(std::string("ID already used in module: ") + std::to_string(newId)); return spirvbin_t::unused; } msg(4, 4, std::string("map: ") + std::to_string(id) + " -> " + std::to_string(newId)); setMapped(newId); largestNewId = std::max(largestNewId, newId); } return idMapL[id] = newId; } // Parse a literal string from the SPIR binary and return it as an std::string // Due to C++11 RValue references, this doesn't copy the result string. std::string spirvbin_t::literalString(unsigned word) const { std::string literal; literal.reserve(16); const char* bytes = reinterpret_cast(spv.data() + word); while (bytes && *bytes) literal += *bytes++; return literal; } void spirvbin_t::applyMap() { msg(3, 2, std::string("Applying map: ")); // Map local IDs through the ID map process(inst_fn_nop, // ignore instructions [this](spv::Id& id) { id = localId(id); if (errorLatch) return; assert(id != unused && id != unmapped); } ); } // Find free IDs for anything we haven't mapped void spirvbin_t::mapRemainder() { msg(3, 2, std::string("Remapping remainder: ")); spv::Id unusedId = 1; // can't use 0: that's NoResult spirword_t maxBound = 0; for (spv::Id id = 0; id < idMapL.size(); ++id) { if (isOldIdUnused(id)) continue; // Find a new mapping for any used but unmapped IDs if (isOldIdUnmapped(id)) { localId(id, unusedId = nextUnusedId(unusedId)); if (errorLatch) return; } if (isOldIdUnmapped(id)) { error(std::string("old ID not mapped: ") + std::to_string(id)); return; } // Track max bound maxBound = std::max(maxBound, localId(id) + 1); if (errorLatch) return; } bound(maxBound); // reset header ID bound to as big as it now needs to be } // Mark debug instructions for stripping void spirvbin_t::stripDebug() { // Strip instructions in the stripOp set: debug info. process( [&](spv::Op opCode, unsigned start) { // remember opcodes we want to strip later if (isStripOp(opCode)) stripInst(start); return true; }, op_fn_nop); } // Mark instructions that refer to now-removed IDs for stripping void spirvbin_t::stripDeadRefs() { process( [&](spv::Op opCode, unsigned start) { // strip opcodes pointing to removed data switch (opCode) { case spv::OpName: case spv::OpMemberName: case spv::OpDecorate: case spv::OpMemberDecorate: if (idPosR.find(asId(start+1)) == idPosR.end()) stripInst(start); break; default: break; // leave it alone } return true; }, op_fn_nop); strip(); } // Update local maps of ID, type, etc positions void spirvbin_t::buildLocalMaps() { msg(2, 2, std::string("build local maps: ")); mapped.clear(); idMapL.clear(); // preserve nameMap, so we don't clear that. fnPos.clear(); fnCalls.clear(); typeConstPos.clear(); idPosR.clear(); entryPoint = spv::NoResult; largestNewId = 0; idMapL.resize(bound(), unused); int fnStart = 0; spv::Id fnRes = spv::NoResult; // build local Id and name maps process( [&](spv::Op opCode, unsigned start) { unsigned word = start+1; spv::Id typeId = spv::NoResult; if (spv::InstructionDesc[opCode].hasType()) typeId = asId(word++); // If there's a result ID, remember the size of its type if (spv::InstructionDesc[opCode].hasResult()) { const spv::Id resultId = asId(word++); idPosR[resultId] = start; if (typeId != spv::NoResult) { const unsigned idTypeSize = typeSizeInWords(typeId); if (errorLatch) return false; if (idTypeSize != 0) idTypeSizeMap[resultId] = idTypeSize; } } if (opCode == spv::Op::OpName) { const spv::Id target = asId(start+1); const std::string name = literalString(start+2); nameMap[name] = target; } else if (opCode == spv::Op::OpFunctionCall) { ++fnCalls[asId(start + 3)]; } else if (opCode == spv::Op::OpEntryPoint) { entryPoint = asId(start + 2); } else if (opCode == spv::Op::OpFunction) { if (fnStart != 0) { error("nested function found"); return false; } fnStart = start; fnRes = asId(start + 2); } else if (opCode == spv::Op::OpFunctionEnd) { assert(fnRes != spv::NoResult); if (fnStart == 0) { error("function end without function start"); return false; } fnPos[fnRes] = range_t(fnStart, start + asWordCount(start)); fnStart = 0; } else if (isConstOp(opCode)) { if (errorLatch) return false; assert(asId(start + 2) != spv::NoResult); typeConstPos.insert(start); } else if (isTypeOp(opCode)) { assert(asId(start + 1) != spv::NoResult); typeConstPos.insert(start); } return false; }, [this](spv::Id& id) { localId(id, unmapped); } ); } // Validate the SPIR header void spirvbin_t::validate() const { msg(2, 2, std::string("validating: ")); if (spv.size() < header_size) { error("file too short: "); return; } if (magic() != spv::MagicNumber) { error("bad magic number"); return; } // field 1 = version // field 2 = generator magic // field 3 = result bound if (schemaNum() != 0) { error("bad schema, must be 0"); return; } } int spirvbin_t::processInstruction(unsigned word, instfn_t instFn, idfn_t idFn) { const auto instructionStart = word; const unsigned wordCount = asWordCount(instructionStart); const int nextInst = word++ + wordCount; spv::Op opCode = asOpCode(instructionStart); if (nextInst > int(spv.size())) { error("spir instruction terminated too early"); return -1; } // Base for computing number of operands; will be updated as more is learned unsigned numOperands = wordCount - 1; if (instFn(opCode, instructionStart)) return nextInst; // Read type and result ID from instruction desc table if (spv::InstructionDesc[opCode].hasType()) { idFn(asId(word++)); --numOperands; } if (spv::InstructionDesc[opCode].hasResult()) { idFn(asId(word++)); --numOperands; } // Extended instructions: currently, assume everything is an ID. // TODO: add whatever data we need for exceptions to that if (opCode == spv::OpExtInst) { word += 2; // instruction set, and instruction from set numOperands -= 2; for (unsigned op=0; op < numOperands; ++op) idFn(asId(word++)); // ID return nextInst; } // Circular buffer so we can look back at previous unmapped values during the mapping pass. static const unsigned idBufferSize = 4; spv::Id idBuffer[idBufferSize]; unsigned idBufferPos = 0; // Store IDs from instruction in our map for (int op = 0; numOperands > 0; ++op, --numOperands) { // SpecConstantOp is special: it includes the operands of another opcode which is // given as a literal in the 3rd word. We will switch over to pretending that the // opcode being processed is the literal opcode value of the SpecConstantOp. See the // SPIRV spec for details. This way we will handle IDs and literals as appropriate for // the embedded op. if (opCode == spv::OpSpecConstantOp) { if (op == 0) { opCode = asOpCode(word++); // this is the opcode embedded in the SpecConstantOp. --numOperands; } } switch (spv::InstructionDesc[opCode].operands.getClass(op)) { case spv::OperandId: case spv::OperandScope: case spv::OperandMemorySemantics: idBuffer[idBufferPos] = asId(word); idBufferPos = (idBufferPos + 1) % idBufferSize; idFn(asId(word++)); break; case spv::OperandVariableIds: for (unsigned i = 0; i < numOperands; ++i) idFn(asId(word++)); return nextInst; case spv::OperandVariableLiterals: // for clarity // if (opCode == spv::OpDecorate && asDecoration(word - 1) == spv::DecorationBuiltIn) { // ++word; // --numOperands; // } // word += numOperands; return nextInst; case spv::OperandVariableLiteralId: { if (opCode == OpSwitch) { // word-2 is the position of the selector ID. OpSwitch Literals match its type. // In case the IDs are currently being remapped, we get the word[-2] ID from // the circular idBuffer. const unsigned literalSizePos = (idBufferPos+idBufferSize-2) % idBufferSize; const unsigned literalSize = idTypeSizeInWords(idBuffer[literalSizePos]); const unsigned numLiteralIdPairs = (nextInst-word) / (1+literalSize); if (errorLatch) return -1; for (unsigned arg=0; arg instPos; instPos.reserve(unsigned(spv.size()) / 16); // initial estimate; can grow if needed. // Build local table of instruction start positions process( [&](spv::Op, unsigned start) { instPos.push_back(start); return true; }, op_fn_nop); if (errorLatch) return; // Window size for context-sensitive canonicalization values // Empirical best size from a single data set. TODO: Would be a good tunable. // We essentially perform a little convolution around each instruction, // to capture the flavor of nearby code, to hopefully match to similar // code in other modules. static const unsigned windowSize = 2; for (unsigned entry = 0; entry < unsigned(instPos.size()); ++entry) { const unsigned start = instPos[entry]; const spv::Op opCode = asOpCode(start); if (opCode == spv::OpFunction) fnId = asId(start + 2); if (opCode == spv::OpFunctionEnd) fnId = spv::NoResult; if (fnId != spv::NoResult) { // if inside a function if (spv::InstructionDesc[opCode].hasResult()) { const unsigned word = start + (spv::InstructionDesc[opCode].hasType() ? 2 : 1); const spv::Id resId = asId(word); std::uint32_t hashval = fnId * 17; // small prime for (unsigned i = entry-1; i >= entry-windowSize; --i) { if (asOpCode(instPos[i]) == spv::OpFunction) break; hashval = hashval * 30103 + asOpCodeHash(instPos[i]); // 30103 = semiarbitrary prime } for (unsigned i = entry; i <= entry + windowSize; ++i) { if (asOpCode(instPos[i]) == spv::OpFunctionEnd) break; hashval = hashval * 30103 + asOpCodeHash(instPos[i]); // 30103 = semiarbitrary prime } if (isOldIdUnmapped(resId)) { localId(resId, nextUnusedId(hashval % softTypeIdLimit + firstMappedID)); if (errorLatch) return; } } } } spv::Op thisOpCode(spv::OpNop); std::unordered_map opCounter; int idCounter(0); fnId = spv::NoResult; process( [&](spv::Op opCode, unsigned start) { switch (opCode) { case spv::OpFunction: // Reset counters at each function idCounter = 0; opCounter.clear(); fnId = asId(start + 2); break; case spv::OpImageSampleImplicitLod: case spv::OpImageSampleExplicitLod: case spv::OpImageSampleDrefImplicitLod: case spv::OpImageSampleDrefExplicitLod: case spv::OpImageSampleProjImplicitLod: case spv::OpImageSampleProjExplicitLod: case spv::OpImageSampleProjDrefImplicitLod: case spv::OpImageSampleProjDrefExplicitLod: case spv::OpDot: case spv::OpCompositeExtract: case spv::OpCompositeInsert: case spv::OpVectorShuffle: case spv::OpLabel: case spv::OpVariable: case spv::OpAccessChain: case spv::OpLoad: case spv::OpStore: case spv::OpCompositeConstruct: case spv::OpFunctionCall: ++opCounter[opCode]; idCounter = 0; thisOpCode = opCode; break; default: thisOpCode = spv::OpNop; } return false; }, [&](spv::Id& id) { if (thisOpCode != spv::OpNop) { ++idCounter; const std::uint32_t hashval = // Explicitly cast operands to unsigned int to avoid integer // promotion to signed int followed by integer overflow, // which would result in undefined behavior. static_cast(opCounter[thisOpCode]) * thisOpCode * 50047 + idCounter + static_cast(fnId) * 117; if (isOldIdUnmapped(id)) localId(id, nextUnusedId(hashval % softTypeIdLimit + firstMappedID)); } }); } // EXPERIMENTAL: forward IO and uniform load/stores into operands // This produces invalid Schema-0 SPIRV void spirvbin_t::forwardLoadStores() { idset_t fnLocalVars; // set of function local vars idmap_t idMap; // Map of load result IDs to what they load // EXPERIMENTAL: Forward input and access chain loads into consumptions process( [&](spv::Op opCode, unsigned start) { // Add inputs and uniforms to the map if ((opCode == spv::OpVariable && asWordCount(start) == 4) && (spv[start+3] == spv::StorageClassUniform || spv[start+3] == spv::StorageClassUniformConstant || spv[start+3] == spv::StorageClassInput)) fnLocalVars.insert(asId(start+2)); if (opCode == spv::OpAccessChain && fnLocalVars.count(asId(start+3)) > 0) fnLocalVars.insert(asId(start+2)); if (opCode == spv::OpLoad && fnLocalVars.count(asId(start+3)) > 0) { idMap[asId(start+2)] = asId(start+3); stripInst(start); } return false; }, [&](spv::Id& id) { if (idMap.find(id) != idMap.end()) id = idMap[id]; } ); if (errorLatch) return; // EXPERIMENTAL: Implicit output stores fnLocalVars.clear(); idMap.clear(); process( [&](spv::Op opCode, unsigned start) { // Add inputs and uniforms to the map if ((opCode == spv::OpVariable && asWordCount(start) == 4) && (spv[start+3] == spv::StorageClassOutput)) fnLocalVars.insert(asId(start+2)); if (opCode == spv::OpStore && fnLocalVars.count(asId(start+1)) > 0) { idMap[asId(start+2)] = asId(start+1); stripInst(start); } return false; }, op_fn_nop); if (errorLatch) return; process( inst_fn_nop, [&](spv::Id& id) { if (idMap.find(id) != idMap.end()) id = idMap[id]; } ); if (errorLatch) return; strip(); // strip out data we decided to eliminate } // optimize loads and stores void spirvbin_t::optLoadStore() { idset_t fnLocalVars; // candidates for removal (only locals) idmap_t idMap; // Map of load result IDs to what they load blockmap_t blockMap; // Map of IDs to blocks they first appear in int blockNum = 0; // block count, to avoid crossing flow control // Find all the function local pointers stored at most once, and not via access chains process( [&](spv::Op opCode, unsigned start) { const int wordCount = asWordCount(start); // Count blocks, so we can avoid crossing flow control if (isFlowCtrl(opCode)) ++blockNum; // Add local variables to the map if ((opCode == spv::OpVariable && spv[start+3] == spv::StorageClassFunction && asWordCount(start) == 4)) { fnLocalVars.insert(asId(start+2)); return true; } // Ignore process vars referenced via access chain if ((opCode == spv::OpAccessChain || opCode == spv::OpInBoundsAccessChain) && fnLocalVars.count(asId(start+3)) > 0) { fnLocalVars.erase(asId(start+3)); idMap.erase(asId(start+3)); return true; } if (opCode == spv::OpLoad && fnLocalVars.count(asId(start+3)) > 0) { const spv::Id varId = asId(start+3); // Avoid loads before stores if (idMap.find(varId) == idMap.end()) { fnLocalVars.erase(varId); idMap.erase(varId); } // don't do for volatile references if (wordCount > 4 && (spv[start+4] & spv::MemoryAccessVolatileMask)) { fnLocalVars.erase(varId); idMap.erase(varId); } // Handle flow control if (blockMap.find(varId) == blockMap.end()) { blockMap[varId] = blockNum; // track block we found it in. } else if (blockMap[varId] != blockNum) { fnLocalVars.erase(varId); // Ignore if crosses flow control idMap.erase(varId); } return true; } if (opCode == spv::OpStore && fnLocalVars.count(asId(start+1)) > 0) { const spv::Id varId = asId(start+1); if (idMap.find(varId) == idMap.end()) { idMap[varId] = asId(start+2); } else { // Remove if it has more than one store to the same pointer fnLocalVars.erase(varId); idMap.erase(varId); } // don't do for volatile references if (wordCount > 3 && (spv[start+3] & spv::MemoryAccessVolatileMask)) { fnLocalVars.erase(asId(start+3)); idMap.erase(asId(start+3)); } // Handle flow control if (blockMap.find(varId) == blockMap.end()) { blockMap[varId] = blockNum; // track block we found it in. } else if (blockMap[varId] != blockNum) { fnLocalVars.erase(varId); // Ignore if crosses flow control idMap.erase(varId); } return true; } return false; }, // If local var id used anywhere else, don't eliminate [&](spv::Id& id) { if (fnLocalVars.count(id) > 0) { fnLocalVars.erase(id); idMap.erase(id); } } ); if (errorLatch) return; process( [&](spv::Op opCode, unsigned start) { if (opCode == spv::OpLoad && fnLocalVars.count(asId(start+3)) > 0) idMap[asId(start+2)] = idMap[asId(start+3)]; return false; }, op_fn_nop); if (errorLatch) return; // Chase replacements to their origins, in case there is a chain such as: // 2 = store 1 // 3 = load 2 // 4 = store 3 // 5 = load 4 // We want to replace uses of 5 with 1. for (const auto& idPair : idMap) { spv::Id id = idPair.first; while (idMap.find(id) != idMap.end()) // Chase to end of chain id = idMap[id]; idMap[idPair.first] = id; // replace with final result } // Remove the load/store/variables for the ones we've discovered process( [&](spv::Op opCode, unsigned start) { if ((opCode == spv::OpLoad && fnLocalVars.count(asId(start+3)) > 0) || (opCode == spv::OpStore && fnLocalVars.count(asId(start+1)) > 0) || (opCode == spv::OpVariable && fnLocalVars.count(asId(start+2)) > 0)) { stripInst(start); return true; } return false; }, [&](spv::Id& id) { if (idMap.find(id) != idMap.end()) id = idMap[id]; } ); if (errorLatch) return; strip(); // strip out data we decided to eliminate } // remove bodies of uncalled functions void spirvbin_t::dceFuncs() { msg(3, 2, std::string("Removing Dead Functions: ")); // TODO: There are more efficient ways to do this. bool changed = true; while (changed) { changed = false; for (auto fn = fnPos.begin(); fn != fnPos.end(); ) { if (fn->first == entryPoint) { // don't DCE away the entry point! ++fn; continue; } const auto call_it = fnCalls.find(fn->first); if (call_it == fnCalls.end() || call_it->second == 0) { changed = true; stripRange.push_back(fn->second); // decrease counts of called functions process( [&](spv::Op opCode, unsigned start) { if (opCode == spv::Op::OpFunctionCall) { const auto call_it = fnCalls.find(asId(start + 3)); if (call_it != fnCalls.end()) { if (--call_it->second <= 0) fnCalls.erase(call_it); } } return true; }, op_fn_nop, fn->second.first, fn->second.second); if (errorLatch) return; fn = fnPos.erase(fn); } else ++fn; } } } // remove unused function variables + decorations void spirvbin_t::dceVars() { msg(3, 2, std::string("DCE Vars: ")); std::unordered_map varUseCount; // Count function variable use process( [&](spv::Op opCode, unsigned start) { if (opCode == spv::OpVariable) { ++varUseCount[asId(start+2)]; return true; } else if (opCode == spv::OpEntryPoint) { const int wordCount = asWordCount(start); for (int i = 4; i < wordCount; i++) { ++varUseCount[asId(start+i)]; } return true; } else return false; }, [&](spv::Id& id) { if (varUseCount[id]) ++varUseCount[id]; } ); if (errorLatch) return; // Remove single-use function variables + associated decorations and names process( [&](spv::Op opCode, unsigned start) { spv::Id id = spv::NoResult; if (opCode == spv::OpVariable) id = asId(start+2); if (opCode == spv::OpDecorate || opCode == spv::OpName) id = asId(start+1); if (id != spv::NoResult && varUseCount[id] == 1) stripInst(start); return true; }, op_fn_nop); } // remove unused types void spirvbin_t::dceTypes() { std::vector isType(bound(), false); // for speed, make O(1) way to get to type query (map is log(n)) for (const auto typeStart : typeConstPos) isType[asTypeConstId(typeStart)] = true; std::unordered_map typeUseCount; // This is not the most efficient algorithm, but this is an offline tool, and // it's easy to write this way. Can be improved opportunistically if needed. bool changed = true; while (changed) { changed = false; strip(); typeUseCount.clear(); // Count total type usage process(inst_fn_nop, [&](spv::Id& id) { if (isType[id]) ++typeUseCount[id]; } ); if (errorLatch) return; // Remove single reference types for (const auto typeStart : typeConstPos) { const spv::Id typeId = asTypeConstId(typeStart); if (typeUseCount[typeId] == 1) { changed = true; --typeUseCount[typeId]; stripInst(typeStart); } } if (errorLatch) return; } } #ifdef NOTDEF bool spirvbin_t::matchType(const spirvbin_t::globaltypes_t& globalTypes, spv::Id lt, spv::Id gt) const { // Find the local type id "lt" and global type id "gt" const auto lt_it = typeConstPosR.find(lt); if (lt_it == typeConstPosR.end()) return false; const auto typeStart = lt_it->second; // Search for entry in global table const auto gtype = globalTypes.find(gt); if (gtype == globalTypes.end()) return false; const auto& gdata = gtype->second; // local wordcount and opcode const int wordCount = asWordCount(typeStart); const spv::Op opCode = asOpCode(typeStart); // no type match if opcodes don't match, or operand count doesn't match if (opCode != opOpCode(gdata[0]) || wordCount != opWordCount(gdata[0])) return false; const unsigned numOperands = wordCount - 2; // all types have a result const auto cmpIdRange = [&](range_t range) { for (int x=range.first; xsecond; } // Hash types to canonical values. This can return ID collisions (it's a bit // inevitable): it's up to the caller to handle that gracefully. std::uint32_t spirvbin_t::hashType(unsigned typeStart) const { const unsigned wordCount = asWordCount(typeStart); const spv::Op opCode = asOpCode(typeStart); switch (opCode) { case spv::OpTypeVoid: return 0; case spv::OpTypeBool: return 1; case spv::OpTypeInt: return 3 + (spv[typeStart+3]); case spv::OpTypeFloat: return 5; case spv::OpTypeVector: return 6 + hashType(idPos(spv[typeStart+2])) * (spv[typeStart+3] - 1); case spv::OpTypeMatrix: return 30 + hashType(idPos(spv[typeStart+2])) * (spv[typeStart+3] - 1); case spv::OpTypeImage: return 120 + hashType(idPos(spv[typeStart+2])) + spv[typeStart+3] + // dimensionality spv[typeStart+4] * 8 * 16 + // depth spv[typeStart+5] * 4 * 16 + // arrayed spv[typeStart+6] * 2 * 16 + // multisampled spv[typeStart+7] * 1 * 16; // format case spv::OpTypeSampler: return 500; case spv::OpTypeSampledImage: return 502; case spv::OpTypeArray: return 501 + hashType(idPos(spv[typeStart+2])) * spv[typeStart+3]; case spv::OpTypeRuntimeArray: return 5000 + hashType(idPos(spv[typeStart+2])); case spv::OpTypeStruct: { std::uint32_t hash = 10000; for (unsigned w=2; w < wordCount; ++w) hash += w * hashType(idPos(spv[typeStart+w])); return hash; } case spv::OpTypeOpaque: return 6000 + spv[typeStart+2]; case spv::OpTypePointer: return 100000 + hashType(idPos(spv[typeStart+3])); case spv::OpTypeFunction: { std::uint32_t hash = 200000; for (unsigned w=2; w < wordCount; ++w) hash += w * hashType(idPos(spv[typeStart+w])); return hash; } case spv::OpTypeEvent: return 300000; case spv::OpTypeDeviceEvent: return 300001; case spv::OpTypeReserveId: return 300002; case spv::OpTypeQueue: return 300003; case spv::OpTypePipe: return 300004; case spv::OpConstantTrue: return 300007; case spv::OpConstantFalse: return 300008; case spv::OpConstantComposite: { std::uint32_t hash = 300011 + hashType(idPos(spv[typeStart+1])); for (unsigned w=3; w < wordCount; ++w) hash += w * hashType(idPos(spv[typeStart+w])); return hash; } case spv::OpConstant: { std::uint32_t hash = 400011 + hashType(idPos(spv[typeStart+1])); for (unsigned w=3; w < wordCount; ++w) hash += w * spv[typeStart+w]; return hash; } case spv::OpConstantNull: { std::uint32_t hash = 500009 + hashType(idPos(spv[typeStart+1])); return hash; } case spv::OpConstantSampler: { std::uint32_t hash = 600011 + hashType(idPos(spv[typeStart+1])); for (unsigned w=3; w < wordCount; ++w) hash += w * spv[typeStart+w]; return hash; } default: error("unknown type opcode"); return 0; } } void spirvbin_t::mapTypeConst() { globaltypes_t globalTypeMap; msg(3, 2, std::string("Remapping Consts & Types: ")); static const std::uint32_t softTypeIdLimit = 3011; // small prime. TODO: get from options static const std::uint32_t firstMappedID = 8; // offset into ID space for (auto& typeStart : typeConstPos) { const spv::Id resId = asTypeConstId(typeStart); const std::uint32_t hashval = hashType(typeStart); if (errorLatch) return; if (isOldIdUnmapped(resId)) { localId(resId, nextUnusedId(hashval % softTypeIdLimit + firstMappedID)); if (errorLatch) return; } } } // Strip a single binary by removing ranges given in stripRange void spirvbin_t::strip() { if (stripRange.empty()) // nothing to do return; // Sort strip ranges in order of traversal std::sort(stripRange.begin(), stripRange.end()); // Allocate a new binary big enough to hold old binary // We'll step this iterator through the strip ranges as we go through the binary auto strip_it = stripRange.begin(); int strippedPos = 0; for (unsigned word = 0; word < unsigned(spv.size()); ++word) { while (strip_it != stripRange.end() && word >= strip_it->second) ++strip_it; if (strip_it == stripRange.end() || word < strip_it->first || word >= strip_it->second) spv[strippedPos++] = spv[word]; } spv.resize(strippedPos); stripRange.clear(); buildLocalMaps(); } // Strip a single binary by removing ranges given in stripRange void spirvbin_t::remap(std::uint32_t opts) { options = opts; // Set up opcode tables from SpvDoc spv::Parameterize(); validate(); // validate header buildLocalMaps(); // build ID maps msg(3, 4, std::string("ID bound: ") + std::to_string(bound())); if (options & STRIP) stripDebug(); if (errorLatch) return; strip(); // strip out data we decided to eliminate if (errorLatch) return; if (options & OPT_LOADSTORE) optLoadStore(); if (errorLatch) return; if (options & OPT_FWD_LS) forwardLoadStores(); if (errorLatch) return; if (options & DCE_FUNCS) dceFuncs(); if (errorLatch) return; if (options & DCE_VARS) dceVars(); if (errorLatch) return; if (options & DCE_TYPES) dceTypes(); if (errorLatch) return; strip(); // strip out data we decided to eliminate if (errorLatch) return; stripDeadRefs(); // remove references to things we DCEed if (errorLatch) return; // after the last strip, we must clean any debug info referring to now-deleted data if (options & MAP_TYPES) mapTypeConst(); if (errorLatch) return; if (options & MAP_NAMES) mapNames(); if (errorLatch) return; if (options & MAP_FUNCS) mapFnBodies(); if (errorLatch) return; if (options & MAP_ALL) { mapRemainder(); // map any unmapped IDs if (errorLatch) return; applyMap(); // Now remap each shader to the new IDs we've come up with if (errorLatch) return; } } // remap from a memory image void spirvbin_t::remap(std::vector& in_spv, std::uint32_t opts) { spv.swap(in_spv); remap(opts); spv.swap(in_spv); } } // namespace SPV #endif // defined (use_cpp11)