#include #include #include #ifdef __ARM_NEON # include #endif #include "Dither.hpp" #include "ForceInline.hpp" #include "Math.hpp" #include "ProcessCommon.hpp" #include "ProcessRGB.hpp" #include "Tables.hpp" #include "Vector.hpp" #if defined __SSE4_1__ || defined __AVX2__ || defined _MSC_VER # ifdef _MSC_VER # include # include # define _bswap(x) _byteswap_ulong(x) # define _bswap64(x) _byteswap_uint64(x) # else # include # endif #endif #ifndef _bswap # define _bswap(x) __builtin_bswap32(x) # define _bswap64(x) __builtin_bswap64(x) #endif static const uint32_t MaxError = 1065369600; // ((38+76+14) * 255)^2 // common T-/H-mode table static uint8_t tableTH[8] = { 3, 6, 11, 16, 23, 32, 41, 64 }; // thresholds for the early compression-mode decision scheme // default: 0.03, 0.09, and 0.38 float ecmd_threshold[3] = { 0.03f, 0.09f, 0.38f }; static const uint8_t ModeUndecided = 0; static const uint8_t ModePlanar = 0x1; static const uint8_t ModeTH = 0x2; const unsigned int R = 2; const unsigned int G = 1; const unsigned int B = 0; struct Luma { #ifdef __AVX2__ float max, min; uint8_t minIdx = 255, maxIdx = 255; __m128i luma8; #elif defined __ARM_NEON && defined __aarch64__ float max, min; uint8_t minIdx = 255, maxIdx = 255; uint8x16_t luma8; #else uint8_t max = 0, min = 255, maxIdx = 0, minIdx = 0; uint8_t val[16]; #endif }; #ifdef __AVX2__ struct Plane { uint64_t plane; uint64_t error; __m256i sum4; }; #endif #if defined __AVX2__ || (defined __ARM_NEON && defined __aarch64__) struct Channels { #ifdef __AVX2__ __m128i r8, g8, b8; #elif defined __ARM_NEON && defined __aarch64__ uint8x16x2_t r, g, b; #endif }; #endif namespace { static etcpak_force_inline uint8_t clamp( uint8_t min, int16_t val, uint8_t max ) { return val < min ? min : ( val > max ? max : val ); } static etcpak_force_inline uint8_t clampMin( uint8_t min, int16_t val ) { return val < min ? min : val; } static etcpak_force_inline uint8_t clampMax( int16_t val, uint8_t max ) { return val > max ? max : val; } // slightly faster than std::sort static void insertionSort( uint8_t* arr1, uint8_t* arr2 ) { for( uint8_t i = 1; i < 16; ++i ) { uint8_t value = arr1[i]; uint8_t hole = i; for( ; hole > 0 && value < arr1[hole - 1]; --hole ) { arr1[hole] = arr1[hole - 1]; arr2[hole] = arr2[hole - 1]; } arr1[hole] = value; arr2[hole] = i; } } //converts indices from |a0|a1|e0|e1|i0|i1|m0|m1|b0|b1|f0|f1|j0|j1|n0|n1|c0|c1|g0|g1|k0|k1|o0|o1|d0|d1|h0|h1|l0|l1|p0|p1| previously used by T- and H-modes // into |p0|o0|n0|m0|l0|k0|j0|i0|h0|g0|f0|e0|d0|c0|b0|a0|p1|o1|n1|m1|l1|k1|j1|i1|h1|g1|f1|e1|d1|c1|b1|a1| which should be used for all modes. // NO WARRANTY --- SEE STATEMENT IN TOP OF FILE (C) Ericsson AB 2005-2013. All Rights Reserved. static etcpak_force_inline int indexConversion( int pixelIndices ) { int correctIndices = 0; int LSB[4][4]; int MSB[4][4]; int shift = 0; for( int y = 3; y >= 0; y-- ) { for( int x = 3; x >= 0; x-- ) { LSB[x][y] = ( pixelIndices >> shift ) & 1; shift++; MSB[x][y] = ( pixelIndices >> shift ) & 1; shift++; } } shift = 0; for( int x = 0; x < 4; x++ ) { for( int y = 0; y < 4; y++ ) { correctIndices |= ( LSB[x][y] << shift ); correctIndices |= ( MSB[x][y] << ( 16 + shift ) ); shift++; } } return correctIndices; } // Swapping two RGB-colors // NO WARRANTY --- SEE STATEMENT IN TOP OF FILE (C) Ericsson AB 2005-2013. All Rights Reserved. static etcpak_force_inline void swapColors( uint8_t( colors )[2][3] ) { uint8_t temp = colors[0][R]; colors[0][R] = colors[1][R]; colors[1][R] = temp; temp = colors[0][G]; colors[0][G] = colors[1][G]; colors[1][G] = temp; temp = colors[0][B]; colors[0][B] = colors[1][B]; colors[1][B] = temp; } // calculates quantized colors for T or H modes void compressColor( uint8_t( currColor )[2][3], uint8_t( quantColor )[2][3], bool t_mode ) { if( t_mode ) { quantColor[0][R] = clampMax( 15 * ( currColor[0][R] + 8 ) / 255, 15 ); quantColor[0][G] = clampMax( 15 * ( currColor[0][G] + 8 ) / 255, 15 ); quantColor[0][B] = clampMax( 15 * ( currColor[0][B] + 8 ) / 255, 15 ); } else // clamped to [1,14] to get a wider range { quantColor[0][R] = clamp( 1, 15 * ( currColor[0][R] + 8 ) / 255, 14 ); quantColor[0][G] = clamp( 1, 15 * ( currColor[0][G] + 8 ) / 255, 14 ); quantColor[0][B] = clamp( 1, 15 * ( currColor[0][B] + 8 ) / 255, 14 ); } // clamped to [1,14] to get a wider range quantColor[1][R] = clamp( 1, 15 * ( currColor[1][R] + 8 ) / 255, 14 ); quantColor[1][G] = clamp( 1, 15 * ( currColor[1][G] + 8 ) / 255, 14 ); quantColor[1][B] = clamp( 1, 15 * ( currColor[1][B] + 8 ) / 255, 14 ); } // three decoding functions come from ETCPACK v2.74 and are slightly changed. static etcpak_force_inline void decompressColor( uint8_t( colorsRGB444 )[2][3], uint8_t( colors )[2][3] ) { // The color should be retrieved as: // // c = round(255/(r_bits^2-1))*comp_color // // This is similar to bit replication // // Note -- this code only work for bit replication from 4 bits and up --- 3 bits needs // two copy operations. colors[0][R] = ( colorsRGB444[0][R] << 4 ) | colorsRGB444[0][R]; colors[0][G] = ( colorsRGB444[0][G] << 4 ) | colorsRGB444[0][G]; colors[0][B] = ( colorsRGB444[0][B] << 4 ) | colorsRGB444[0][B]; colors[1][R] = ( colorsRGB444[1][R] << 4 ) | colorsRGB444[1][R]; colors[1][G] = ( colorsRGB444[1][G] << 4 ) | colorsRGB444[1][G]; colors[1][B] = ( colorsRGB444[1][B] << 4 ) | colorsRGB444[1][B]; } // calculates the paint colors from the block colors // using a distance d and one of the H- or T-patterns. static void calculatePaintColors59T( uint8_t d, uint8_t( colors )[2][3], uint8_t( pColors )[4][3] ) { ////////////////////////////////////////////// // // C3 C1 C4----C1---C2 // | | | // | | | // |-------| | // | | | // | | | // C4 C2 C3 // ////////////////////////////////////////////// // C4 pColors[3][R] = clampMin( 0, colors[1][R] - tableTH[d] ); pColors[3][G] = clampMin( 0, colors[1][G] - tableTH[d] ); pColors[3][B] = clampMin( 0, colors[1][B] - tableTH[d] ); // C3 pColors[0][R] = colors[0][R]; pColors[0][G] = colors[0][G]; pColors[0][B] = colors[0][B]; // C2 pColors[1][R] = clampMax( colors[1][R] + tableTH[d], 255 ); pColors[1][G] = clampMax( colors[1][G] + tableTH[d], 255 ); pColors[1][B] = clampMax( colors[1][B] + tableTH[d], 255 ); // C1 pColors[2][R] = colors[1][R]; pColors[2][G] = colors[1][G]; pColors[2][B] = colors[1][B]; } static void calculatePaintColors58H( uint8_t d, uint8_t( colors )[2][3], uint8_t( pColors )[4][3] ) { pColors[3][R] = clampMin( 0, colors[1][R] - tableTH[d] ); pColors[3][G] = clampMin( 0, colors[1][G] - tableTH[d] ); pColors[3][B] = clampMin( 0, colors[1][B] - tableTH[d] ); // C1 pColors[0][R] = clampMax( colors[0][R] + tableTH[d], 255 ); pColors[0][G] = clampMax( colors[0][G] + tableTH[d], 255 ); pColors[0][B] = clampMax( colors[0][B] + tableTH[d], 255 ); // C2 pColors[1][R] = clampMin( 0, colors[0][R] - tableTH[d] ); pColors[1][G] = clampMin( 0, colors[0][G] - tableTH[d] ); pColors[1][B] = clampMin( 0, colors[0][B] - tableTH[d] ); // C3 pColors[2][R] = clampMax( colors[1][R] + tableTH[d], 255 ); pColors[2][G] = clampMax( colors[1][G] + tableTH[d], 255 ); pColors[2][B] = clampMax( colors[1][B] + tableTH[d], 255 ); } #if defined _MSC_VER && !defined __clang__ static etcpak_force_inline unsigned long _bit_scan_forward( unsigned long mask ) { unsigned long ret; _BitScanForward( &ret, mask ); return ret; } #endif typedef std::array v4i; #ifdef __AVX2__ static etcpak_force_inline __m256i Sum4_AVX2( const uint8_t* data) noexcept { __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); __m256i t0 = _mm256_cvtepu8_epi16(dm0); __m256i t1 = _mm256_cvtepu8_epi16(dm1); __m256i t2 = _mm256_cvtepu8_epi16(dm2); __m256i t3 = _mm256_cvtepu8_epi16(dm3); __m256i sum0 = _mm256_add_epi16(t0, t1); __m256i sum1 = _mm256_add_epi16(t2, t3); __m256i s0 = _mm256_permute2x128_si256(sum0, sum1, (0) | (3 << 4)); // 0, 0, 3, 3 __m256i s1 = _mm256_permute2x128_si256(sum0, sum1, (1) | (2 << 4)); // 1, 1, 2, 2 __m256i s2 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(1, 3, 0, 2)); __m256i s3 = _mm256_permute4x64_epi64(s0, _MM_SHUFFLE(0, 2, 1, 3)); __m256i s4 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(3, 1, 0, 2)); __m256i s5 = _mm256_permute4x64_epi64(s1, _MM_SHUFFLE(2, 0, 1, 3)); __m256i sum5 = _mm256_add_epi16(s2, s3); // 3, 0, 3, 0 __m256i sum6 = _mm256_add_epi16(s4, s5); // 2, 1, 1, 2 return _mm256_add_epi16(sum5, sum6); // 3+2, 0+1, 3+1, 3+2 } static etcpak_force_inline __m256i Average_AVX2( const __m256i data) noexcept { __m256i a = _mm256_add_epi16(data, _mm256_set1_epi16(4)); return _mm256_srli_epi16(a, 3); } static etcpak_force_inline __m128i CalcErrorBlock_AVX2( const __m256i data, const v4i a[8]) noexcept { // __m256i a0 = _mm256_load_si256((__m256i*)a[0].data()); __m256i a1 = _mm256_load_si256((__m256i*)a[4].data()); // err = 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); __m256i a4 = _mm256_madd_epi16(a0, a0); __m256i a5 = _mm256_madd_epi16(a1, a1); __m256i a6 = _mm256_hadd_epi32(a4, a5); __m256i a7 = _mm256_slli_epi32(a6, 3); __m256i a8 = _mm256_add_epi32(a7, _mm256_set1_epi32(0x3FFFFFFF)); // Big value to prevent negative values, but small enough to prevent overflow // average is not swapped // err -= block[0] * 2 * average[0]; // err -= block[1] * 2 * average[1]; // err -= block[2] * 2 * average[2]; __m256i a2 = _mm256_slli_epi16(a0, 1); __m256i a3 = _mm256_slli_epi16(a1, 1); __m256i b0 = _mm256_madd_epi16(a2, data); __m256i b1 = _mm256_madd_epi16(a3, data); __m256i b2 = _mm256_hadd_epi32(b0, b1); __m256i b3 = _mm256_sub_epi32(a8, b2); __m256i b4 = _mm256_hadd_epi32(b3, b3); __m256i b5 = _mm256_permutevar8x32_epi32(b4, _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0)); return _mm256_castsi256_si128(b5); } static etcpak_force_inline void ProcessAverages_AVX2(const __m256i d, v4i a[8] ) noexcept { __m256i t = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(31)), _mm256_set1_epi16(128)); __m256i c = _mm256_srli_epi16(_mm256_add_epi16(t, _mm256_srli_epi16(t, 8)), 8); __m256i c1 = _mm256_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); __m256i diff = _mm256_sub_epi16(c, c1); diff = _mm256_max_epi16(diff, _mm256_set1_epi16(-4)); diff = _mm256_min_epi16(diff, _mm256_set1_epi16(3)); __m256i co = _mm256_add_epi16(c1, diff); c = _mm256_blend_epi16(co, c, 0xF0); __m256i a0 = _mm256_or_si256(_mm256_slli_epi16(c, 3), _mm256_srli_epi16(c, 2)); _mm256_store_si256((__m256i*)a[4].data(), a0); __m256i t0 = _mm256_add_epi16(_mm256_mullo_epi16(d, _mm256_set1_epi16(15)), _mm256_set1_epi16(128)); __m256i t1 = _mm256_srli_epi16(_mm256_add_epi16(t0, _mm256_srli_epi16(t0, 8)), 8); __m256i t2 = _mm256_or_si256(t1, _mm256_slli_epi16(t1, 4)); _mm256_store_si256((__m256i*)a[0].data(), t2); } static etcpak_force_inline uint64_t EncodeAverages_AVX2( const v4i a[8], size_t idx ) noexcept { uint64_t d = ( idx << 24 ); size_t base = idx << 1; __m128i a0 = _mm_load_si128((const __m128i*)a[base].data()); __m128i r0, r1; if( ( idx & 0x2 ) == 0 ) { r0 = _mm_srli_epi16(a0, 4); __m128i a1 = _mm_unpackhi_epi64(r0, r0); r1 = _mm_slli_epi16(a1, 4); } else { __m128i a1 = _mm_and_si128(a0, _mm_set1_epi16(-8)); r0 = _mm_unpackhi_epi64(a1, a1); __m128i a2 = _mm_sub_epi16(a1, r0); __m128i a3 = _mm_srai_epi16(a2, 3); r1 = _mm_and_si128(a3, _mm_set1_epi16(0x07)); } __m128i r2 = _mm_or_si128(r0, r1); // do missing swap for average values __m128i r3 = _mm_shufflelo_epi16(r2, _MM_SHUFFLE(3, 0, 1, 2)); __m128i r4 = _mm_packus_epi16(r3, _mm_setzero_si128()); d |= _mm_cvtsi128_si32(r4); return d; } static etcpak_force_inline uint64_t CheckSolid_AVX2( const uint8_t* src ) noexcept { __m256i d0 = _mm256_loadu_si256(((__m256i*)src) + 0); __m256i d1 = _mm256_loadu_si256(((__m256i*)src) + 1); __m256i c = _mm256_broadcastd_epi32(_mm256_castsi256_si128(d0)); __m256i c0 = _mm256_cmpeq_epi8(d0, c); __m256i c1 = _mm256_cmpeq_epi8(d1, c); __m256i m = _mm256_and_si256(c0, c1); if (!_mm256_testc_si256(m, _mm256_set1_epi32(-1))) { return 0; } return 0x02000000 | ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | ( (unsigned int)( src[2] & 0xF8 ) ); } static etcpak_force_inline __m128i PrepareAverages_AVX2( v4i a[8], const uint8_t* src) noexcept { __m256i sum4 = Sum4_AVX2( src ); ProcessAverages_AVX2(Average_AVX2( sum4 ), a ); return CalcErrorBlock_AVX2( sum4, a); } static etcpak_force_inline __m128i PrepareAverages_AVX2( v4i a[8], const __m256i sum4) noexcept { ProcessAverages_AVX2(Average_AVX2( sum4 ), a ); return CalcErrorBlock_AVX2( sum4, a); } static etcpak_force_inline void FindBestFit_4x2_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept { __m256i sel0 = _mm256_setzero_si256(); __m256i sel1 = _mm256_setzero_si256(); for (unsigned int j = 0; j < 2; ++j) { unsigned int bid = offset + 1 - j; __m256i squareErrorSum = _mm256_setzero_si256(); __m128i a0 = _mm_loadl_epi64((const __m128i*)a[bid].data()); __m256i a1 = _mm256_broadcastq_epi64(a0); // Processing one full row each iteration for (size_t i = 0; i < 8; i += 4) { __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); __m256i d = _mm256_sub_epi16(a1, rgb16); // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); __m128i pixel3 = _mm256_castsi256_si128(pixel2); __m128i pix0 = _mm_broadcastw_epi16(pixel3); __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing first two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit // This produces slightly different results, but is significant faster __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); sel0 = _mm256_or_si256(sel0, minIndexLo2); sel1 = _mm256_or_si256(sel1, minIndexHi2); } pixel3 = _mm256_extracti128_si256(pixel2, 1); pix0 = _mm_broadcastw_epi16(pixel3); pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing second two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum = _mm256_add_epi32(squareErrorSum, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i + j * 8)); __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); sel0 = _mm256_or_si256(sel0, minIndexLo3); sel1 = _mm256_or_si256(sel1, minIndexHi3); } } data += 8 * 4; _mm256_store_si256((__m256i*)terr[1 - j], squareErrorSum); } // Interleave selector bits __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); _mm256_store_si256((__m256i*)tsel, sel); } static etcpak_force_inline void FindBestFit_2x4_AVX2( uint32_t terr[2][8], uint32_t tsel[8], v4i a[8], const uint32_t offset, const uint8_t* data) noexcept { __m256i sel0 = _mm256_setzero_si256(); __m256i sel1 = _mm256_setzero_si256(); __m256i squareErrorSum0 = _mm256_setzero_si256(); __m256i squareErrorSum1 = _mm256_setzero_si256(); __m128i a0 = _mm_loadl_epi64((const __m128i*)a[offset + 1].data()); __m128i a1 = _mm_loadl_epi64((const __m128i*)a[offset + 0].data()); __m128i a2 = _mm_broadcastq_epi64(a0); __m128i a3 = _mm_broadcastq_epi64(a1); __m256i a4 = _mm256_insertf128_si256(_mm256_castsi128_si256(a2), a3, 1); // Processing one full row each iteration for (size_t i = 0; i < 16; i += 4) { __m128i rgb = _mm_loadu_si128((const __m128i*)(data + i * 4)); __m256i rgb16 = _mm256_cvtepu8_epi16(rgb); __m256i d = _mm256_sub_epi16(a4, rgb16); // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m256i pixel0 = _mm256_madd_epi16(d, _mm256_set_epi16(0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14, 0, 38, 76, 14)); __m256i pixel1 = _mm256_packs_epi32(pixel0, pixel0); __m256i pixel2 = _mm256_hadd_epi16(pixel1, pixel1); __m128i pixel3 = _mm256_castsi256_si128(pixel2); __m128i pix0 = _mm_broadcastw_epi16(pixel3); __m128i pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); __m256i pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing first two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum0 = _mm256_add_epi32(squareErrorSum0, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); sel0 = _mm256_or_si256(sel0, minIndexLo2); sel1 = _mm256_or_si256(sel1, minIndexHi2); } pixel3 = _mm256_extracti128_si256(pixel2, 1); pix0 = _mm_broadcastw_epi16(pixel3); pix1 = _mm_broadcastw_epi16(_mm_srli_epi32(pixel3, 16)); pixel = _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); // Processing second two pixels of the row { __m256i pix = _mm256_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m256i error0 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[0]))); __m256i error1 = _mm256_abs_epi16(_mm256_sub_epi16(pix, _mm256_broadcastsi128_si256(g_table128_SIMD[1]))); __m256i minIndex0 = _mm256_and_si256(_mm256_cmpgt_epi16(error0, error1), _mm256_set1_epi16(1)); __m256i minError = _mm256_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit __m256i minIndex1 = _mm256_srli_epi16(pixel, 15); // Interleaving values so madd instruction can be used __m256i minErrorLo = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m256i minErrorHi = _mm256_permute4x64_epi64(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m256i minError2 = _mm256_unpacklo_epi16(minErrorLo, minErrorHi); // Squaring the minimum error to produce correct values when adding __m256i squareError = _mm256_madd_epi16(minError2, minError2); squareErrorSum1 = _mm256_add_epi32(squareErrorSum1, squareError); // Packing selector bits __m256i minIndexLo2 = _mm256_sll_epi16(minIndex0, _mm_cvtsi64_si128(i)); __m256i minIndexHi2 = _mm256_sll_epi16(minIndex1, _mm_cvtsi64_si128(i)); __m256i minIndexLo3 = _mm256_slli_epi16(minIndexLo2, 2); __m256i minIndexHi3 = _mm256_slli_epi16(minIndexHi2, 2); sel0 = _mm256_or_si256(sel0, minIndexLo3); sel1 = _mm256_or_si256(sel1, minIndexHi3); } } _mm256_store_si256((__m256i*)terr[1], squareErrorSum0); _mm256_store_si256((__m256i*)terr[0], squareErrorSum1); // Interleave selector bits __m256i minIndexLo0 = _mm256_unpacklo_epi16(sel0, sel1); __m256i minIndexHi0 = _mm256_unpackhi_epi16(sel0, sel1); __m256i minIndexLo1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (0) | (2 << 4)); __m256i minIndexHi1 = _mm256_permute2x128_si256(minIndexLo0, minIndexHi0, (1) | (3 << 4)); __m256i minIndexHi2 = _mm256_slli_epi32(minIndexHi1, 1); __m256i sel = _mm256_or_si256(minIndexLo1, minIndexHi2); _mm256_store_si256((__m256i*)tsel, sel); } static etcpak_force_inline uint64_t EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate) noexcept { size_t tidx[2]; // Get index of minimum error (terr[0] and terr[1]) __m256i err0 = _mm256_load_si256((const __m256i*)terr[0]); __m256i err1 = _mm256_load_si256((const __m256i*)terr[1]); __m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4)); __m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4)); __m256i errMin0 = _mm256_min_epu32(errLo, errHi); __m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1)); __m256i errMin2 = _mm256_min_epu32(errMin0, errMin1); __m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2)); __m256i errMin4 = _mm256_min_epu32(errMin3, errMin2); __m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4)); __m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4)); __m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0); __m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1); uint32_t mask0 = _mm256_movemask_epi8(errMask0); uint32_t mask1 = _mm256_movemask_epi8(errMask1); tidx[0] = _bit_scan_forward(mask0) >> 2; tidx[1] = _bit_scan_forward(mask1) >> 2; d |= tidx[0] << 26; d |= tidx[1] << 29; unsigned int t0 = tsel[tidx[0]]; unsigned int t1 = tsel[tidx[1]]; if (!rotate) { t0 &= 0xFF00FF00; t1 &= 0x00FF00FF; } else { t0 &= 0xCCCCCCCC; t1 &= 0x33333333; } // Flip selectors from sign bit unsigned int t2 = (t0 | t1) ^ 0xFFFF0000; return d | static_cast(_bswap(t2)) << 32; } static etcpak_force_inline __m128i r6g7b6_AVX2(__m128 cof, __m128 chf, __m128 cvf) noexcept { __m128i co = _mm_cvttps_epi32(cof); __m128i ch = _mm_cvttps_epi32(chf); __m128i cv = _mm_cvttps_epi32(cvf); __m128i coh = _mm_packus_epi32(co, ch); __m128i cv0 = _mm_packus_epi32(cv, _mm_setzero_si128()); __m256i cohv0 = _mm256_inserti128_si256(_mm256_castsi128_si256(coh), cv0, 1); __m256i cohv1 = _mm256_min_epu16(cohv0, _mm256_set1_epi16(1023)); __m256i cohv2 = _mm256_sub_epi16(cohv1, _mm256_set1_epi16(15)); __m256i cohv3 = _mm256_srai_epi16(cohv2, 1); __m256i cohvrb0 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(11)); __m256i cohvrb1 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(4)); __m256i cohvg0 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(9)); __m256i cohvg1 = _mm256_add_epi16(cohv3, _mm256_set1_epi16(6)); __m256i cohvrb2 = _mm256_srai_epi16(cohvrb0, 7); __m256i cohvrb3 = _mm256_srai_epi16(cohvrb1, 7); __m256i cohvg2 = _mm256_srai_epi16(cohvg0, 8); __m256i cohvg3 = _mm256_srai_epi16(cohvg1, 8); __m256i cohvrb4 = _mm256_sub_epi16(cohvrb0, cohvrb2); __m256i cohvrb5 = _mm256_sub_epi16(cohvrb4, cohvrb3); __m256i cohvg4 = _mm256_sub_epi16(cohvg0, cohvg2); __m256i cohvg5 = _mm256_sub_epi16(cohvg4, cohvg3); __m256i cohvrb6 = _mm256_srai_epi16(cohvrb5, 3); __m256i cohvg6 = _mm256_srai_epi16(cohvg5, 2); __m256i cohv4 = _mm256_blend_epi16(cohvg6, cohvrb6, 0x55); __m128i cohv5 = _mm_packus_epi16(_mm256_castsi256_si128(cohv4), _mm256_extracti128_si256(cohv4, 1)); return _mm_shuffle_epi8(cohv5, _mm_setr_epi8(6, 5, 4, -1, 2, 1, 0, -1, 10, 9, 8, -1, -1, -1, -1, -1)); } static etcpak_force_inline Plane Planar_AVX2( const Channels& ch, uint8_t& mode, bool useHeuristics ) { __m128i t0 = _mm_sad_epu8( ch.r8, _mm_setzero_si128() ); __m128i t1 = _mm_sad_epu8( ch.g8, _mm_setzero_si128() ); __m128i t2 = _mm_sad_epu8( ch.b8, _mm_setzero_si128() ); __m128i r8s = _mm_shuffle_epi8( ch.r8, _mm_set_epi8( 0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0 ) ); __m128i g8s = _mm_shuffle_epi8( ch.g8, _mm_set_epi8( 0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0 ) ); __m128i b8s = _mm_shuffle_epi8( ch.b8, _mm_set_epi8( 0xF, 0xE, 0xB, 0xA, 0x7, 0x6, 0x3, 0x2, 0xD, 0xC, 0x9, 0x8, 0x5, 0x4, 0x1, 0x0 ) ); __m128i s0 = _mm_sad_epu8( r8s, _mm_setzero_si128() ); __m128i s1 = _mm_sad_epu8( g8s, _mm_setzero_si128() ); __m128i s2 = _mm_sad_epu8( b8s, _mm_setzero_si128() ); __m256i sr0 = _mm256_insertf128_si256( _mm256_castsi128_si256( t0 ), s0, 1 ); __m256i sg0 = _mm256_insertf128_si256( _mm256_castsi128_si256( t1 ), s1, 1 ); __m256i sb0 = _mm256_insertf128_si256( _mm256_castsi128_si256( t2 ), s2, 1 ); __m256i sr1 = _mm256_slli_epi64( sr0, 32 ); __m256i sg1 = _mm256_slli_epi64( sg0, 16 ); __m256i srb = _mm256_or_si256( sr1, sb0 ); __m256i srgb = _mm256_or_si256( srb, sg1 ); if( mode != ModePlanar && useHeuristics ) { Plane plane; plane.sum4 = _mm256_permute4x64_epi64( srgb, _MM_SHUFFLE( 2, 3, 0, 1 ) ); return plane; } __m128i t3 = _mm_castps_si128( _mm_shuffle_ps( _mm_castsi128_ps( t0 ), _mm_castsi128_ps( t1 ), _MM_SHUFFLE( 2, 0, 2, 0 ) ) ); __m128i t4 = _mm_shuffle_epi32( t2, _MM_SHUFFLE( 3, 1, 2, 0 ) ); __m128i t5 = _mm_hadd_epi32( t3, t4 ); __m128i t6 = _mm_shuffle_epi32( t5, _MM_SHUFFLE( 1, 1, 1, 1 ) ); __m128i t7 = _mm_shuffle_epi32( t5, _MM_SHUFFLE( 2, 2, 2, 2 ) ); __m256i sr = _mm256_broadcastw_epi16( t5 ); __m256i sg = _mm256_broadcastw_epi16( t6 ); __m256i sb = _mm256_broadcastw_epi16( t7 ); __m256i r08 = _mm256_cvtepu8_epi16( ch.r8 ); __m256i g08 = _mm256_cvtepu8_epi16( ch.g8 ); __m256i b08 = _mm256_cvtepu8_epi16( ch.b8 ); __m256i r16 = _mm256_slli_epi16( r08, 4 ); __m256i g16 = _mm256_slli_epi16( g08, 4 ); __m256i b16 = _mm256_slli_epi16( b08, 4 ); __m256i difR0 = _mm256_sub_epi16( r16, sr ); __m256i difG0 = _mm256_sub_epi16( g16, sg ); __m256i difB0 = _mm256_sub_epi16( b16, sb ); __m256i difRyz = _mm256_madd_epi16( difR0, _mm256_set_epi16( 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255 ) ); __m256i difGyz = _mm256_madd_epi16( difG0, _mm256_set_epi16( 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255 ) ); __m256i difByz = _mm256_madd_epi16( difB0, _mm256_set_epi16( 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255, 255, 85, -85, -255 ) ); __m256i difRxz = _mm256_madd_epi16( difR0, _mm256_set_epi16( 255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255 ) ); __m256i difGxz = _mm256_madd_epi16( difG0, _mm256_set_epi16( 255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255 ) ); __m256i difBxz = _mm256_madd_epi16( difB0, _mm256_set_epi16( 255, 255, 255, 255, 85, 85, 85, 85, -85, -85, -85, -85, -255, -255, -255, -255 ) ); __m256i difRGyz = _mm256_hadd_epi32( difRyz, difGyz ); __m256i difByzxz = _mm256_hadd_epi32( difByz, difBxz ); __m256i difRGxz = _mm256_hadd_epi32( difRxz, difGxz ); __m128i sumRGyz = _mm_add_epi32( _mm256_castsi256_si128( difRGyz ), _mm256_extracti128_si256( difRGyz, 1 ) ); __m128i sumByzxz = _mm_add_epi32( _mm256_castsi256_si128( difByzxz ), _mm256_extracti128_si256( difByzxz, 1 ) ); __m128i sumRGxz = _mm_add_epi32( _mm256_castsi256_si128( difRGxz ), _mm256_extracti128_si256( difRGxz, 1 ) ); __m128i sumRGByz = _mm_hadd_epi32( sumRGyz, sumByzxz ); __m128i sumRGByzxz = _mm_hadd_epi32( sumRGxz, sumByzxz ); __m128i sumRGBxz = _mm_shuffle_epi32( sumRGByzxz, _MM_SHUFFLE( 2, 3, 1, 0 ) ); __m128 sumRGByzf = _mm_cvtepi32_ps( sumRGByz ); __m128 sumRGBxzf = _mm_cvtepi32_ps( sumRGBxz ); const float value = ( 255 * 255 * 8.0f + 85 * 85 * 8.0f ) * 16.0f; __m128 scale = _mm_set1_ps( -4.0f / value ); __m128 af = _mm_mul_ps( sumRGBxzf, scale ); __m128 bf = _mm_mul_ps( sumRGByzf, scale ); __m128 df = _mm_mul_ps( _mm_cvtepi32_ps( t5 ), _mm_set1_ps( 4.0f / 16.0f ) ); // calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y; __m128 cof0 = _mm_fnmadd_ps( af, _mm_set1_ps( -255.0f ), _mm_fnmadd_ps( bf, _mm_set1_ps( -255.0f ), df ) ); __m128 chf0 = _mm_fnmadd_ps( af, _mm_set1_ps( 425.0f ), _mm_fnmadd_ps( bf, _mm_set1_ps( -255.0f ), df ) ); __m128 cvf0 = _mm_fnmadd_ps( af, _mm_set1_ps( -255.0f ), _mm_fnmadd_ps( bf, _mm_set1_ps( 425.0f ), df ) ); // convert to r6g7b6 __m128i cohv = r6g7b6_AVX2( cof0, chf0, cvf0 ); uint64_t rgbho = _mm_extract_epi64( cohv, 0 ); uint32_t rgbv0 = _mm_extract_epi32( cohv, 2 ); // Error calculation uint64_t error = 0; if( !useHeuristics ) { auto ro0 = ( rgbho >> 48 ) & 0x3F; auto go0 = ( rgbho >> 40 ) & 0x7F; auto bo0 = ( rgbho >> 32 ) & 0x3F; auto ro1 = ( ro0 >> 4 ) | ( ro0 << 2 ); auto go1 = ( go0 >> 6 ) | ( go0 << 1 ); auto bo1 = ( bo0 >> 4 ) | ( bo0 << 2 ); auto ro2 = ( ro1 << 2 ) + 2; auto go2 = ( go1 << 2 ) + 2; auto bo2 = ( bo1 << 2 ) + 2; __m256i ro3 = _mm256_set1_epi16( ro2 ); __m256i go3 = _mm256_set1_epi16( go2 ); __m256i bo3 = _mm256_set1_epi16( bo2 ); auto rh0 = ( rgbho >> 16 ) & 0x3F; auto gh0 = ( rgbho >> 8 ) & 0x7F; auto bh0 = ( rgbho >> 0 ) & 0x3F; auto rh1 = ( rh0 >> 4 ) | ( rh0 << 2 ); auto gh1 = ( gh0 >> 6 ) | ( gh0 << 1 ); auto bh1 = ( bh0 >> 4 ) | ( bh0 << 2 ); auto rh2 = rh1 - ro1; auto gh2 = gh1 - go1; auto bh2 = bh1 - bo1; __m256i rh3 = _mm256_set1_epi16( rh2 ); __m256i gh3 = _mm256_set1_epi16( gh2 ); __m256i bh3 = _mm256_set1_epi16( bh2 ); auto rv0 = ( rgbv0 >> 16 ) & 0x3F; auto gv0 = ( rgbv0 >> 8 ) & 0x7F; auto bv0 = ( rgbv0 >> 0 ) & 0x3F; auto rv1 = ( rv0 >> 4 ) | ( rv0 << 2 ); auto gv1 = ( gv0 >> 6 ) | ( gv0 << 1 ); auto bv1 = ( bv0 >> 4 ) | ( bv0 << 2 ); auto rv2 = rv1 - ro1; auto gv2 = gv1 - go1; auto bv2 = bv1 - bo1; __m256i rv3 = _mm256_set1_epi16( rv2 ); __m256i gv3 = _mm256_set1_epi16( gv2 ); __m256i bv3 = _mm256_set1_epi16( bv2 ); __m256i x = _mm256_set_epi16( 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0 ); __m256i rh4 = _mm256_mullo_epi16( rh3, x ); __m256i gh4 = _mm256_mullo_epi16( gh3, x ); __m256i bh4 = _mm256_mullo_epi16( bh3, x ); __m256i y = _mm256_set_epi16( 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0 ); __m256i rv4 = _mm256_mullo_epi16( rv3, y ); __m256i gv4 = _mm256_mullo_epi16( gv3, y ); __m256i bv4 = _mm256_mullo_epi16( bv3, y ); __m256i rxy = _mm256_add_epi16( rh4, rv4 ); __m256i gxy = _mm256_add_epi16( gh4, gv4 ); __m256i bxy = _mm256_add_epi16( bh4, bv4 ); __m256i rp0 = _mm256_add_epi16( rxy, ro3 ); __m256i gp0 = _mm256_add_epi16( gxy, go3 ); __m256i bp0 = _mm256_add_epi16( bxy, bo3 ); __m256i rp1 = _mm256_srai_epi16( rp0, 2 ); __m256i gp1 = _mm256_srai_epi16( gp0, 2 ); __m256i bp1 = _mm256_srai_epi16( bp0, 2 ); __m256i rp2 = _mm256_max_epi16( _mm256_min_epi16( rp1, _mm256_set1_epi16( 255 ) ), _mm256_setzero_si256() ); __m256i gp2 = _mm256_max_epi16( _mm256_min_epi16( gp1, _mm256_set1_epi16( 255 ) ), _mm256_setzero_si256() ); __m256i bp2 = _mm256_max_epi16( _mm256_min_epi16( bp1, _mm256_set1_epi16( 255 ) ), _mm256_setzero_si256() ); __m256i rdif = _mm256_sub_epi16( r08, rp2 ); __m256i gdif = _mm256_sub_epi16( g08, gp2 ); __m256i bdif = _mm256_sub_epi16( b08, bp2 ); __m256i rerr = _mm256_mullo_epi16( rdif, _mm256_set1_epi16( 38 ) ); __m256i gerr = _mm256_mullo_epi16( gdif, _mm256_set1_epi16( 76 ) ); __m256i berr = _mm256_mullo_epi16( bdif, _mm256_set1_epi16( 14 ) ); __m256i sum0 = _mm256_add_epi16( rerr, gerr ); __m256i sum1 = _mm256_add_epi16( sum0, berr ); __m256i sum2 = _mm256_madd_epi16( sum1, sum1 ); __m128i sum3 = _mm_add_epi32( _mm256_castsi256_si128( sum2 ), _mm256_extracti128_si256( sum2, 1 ) ); uint32_t err0 = _mm_extract_epi32( sum3, 0 ); uint32_t err1 = _mm_extract_epi32( sum3, 1 ); uint32_t err2 = _mm_extract_epi32( sum3, 2 ); uint32_t err3 = _mm_extract_epi32( sum3, 3 ); error = err0 + err1 + err2 + err3; } /**/ uint32_t rgbv = ( rgbv0 & 0x3F ) | ( ( rgbv0 >> 2 ) & 0x1FC0 ) | ( ( rgbv0 >> 3 ) & 0x7E000 ); uint64_t rgbho0_ = ( rgbho & 0x3F0000003F ) | ( ( rgbho >> 2 ) & 0x1FC000001FC0 ) | ( ( rgbho >> 3 ) & 0x7E0000007E000 ); uint64_t rgbho0 = ( rgbho0_ & 0x7FFFF ) | ( ( rgbho0_ >> 13 ) & 0x3FFFF80000 ); uint32_t hi = rgbv | ((rgbho0 & 0x1FFF) << 19); rgbho0 >>= 13; uint32_t lo = ( rgbho0 & 0x1 ) | ( ( rgbho0 & 0x1FE ) << 1 ) | ( ( rgbho0 & 0x600 ) << 2 ) | ( ( rgbho0 & 0x3F800 ) << 5 ) | ( ( rgbho0 & 0x1FC0000 ) << 6 ); uint32_t idx = ( ( rgbho >> 33 ) & 0xF ) | ( ( rgbho >> 41 ) & 0x10 ) | ( ( rgbho >> 48 ) & 0x20 ); lo |= g_flags[idx]; uint64_t result = static_cast(_bswap(lo)); result |= static_cast(static_cast(_bswap(hi))) << 32; Plane plane; plane.plane = result; if( useHeuristics ) { plane.error = 0; mode = ModePlanar; } else { plane.error = error; } plane.sum4 = _mm256_permute4x64_epi64(srgb, _MM_SHUFFLE(2, 3, 0, 1)); return plane; } static etcpak_force_inline uint64_t EncodeSelectors_AVX2( uint64_t d, const uint32_t terr[2][8], const uint32_t tsel[8], const bool rotate, const uint64_t value, const uint32_t error) noexcept { size_t tidx[2]; // Get index of minimum error (terr[0] and terr[1]) __m256i err0 = _mm256_load_si256((const __m256i*)terr[0]); __m256i err1 = _mm256_load_si256((const __m256i*)terr[1]); __m256i errLo = _mm256_permute2x128_si256(err0, err1, (0) | (2 << 4)); __m256i errHi = _mm256_permute2x128_si256(err0, err1, (1) | (3 << 4)); __m256i errMin0 = _mm256_min_epu32(errLo, errHi); __m256i errMin1 = _mm256_shuffle_epi32(errMin0, _MM_SHUFFLE(2, 3, 0, 1)); __m256i errMin2 = _mm256_min_epu32(errMin0, errMin1); __m256i errMin3 = _mm256_shuffle_epi32(errMin2, _MM_SHUFFLE(1, 0, 3, 2)); __m256i errMin4 = _mm256_min_epu32(errMin3, errMin2); __m256i errMin5 = _mm256_permute2x128_si256(errMin4, errMin4, (0) | (0 << 4)); __m256i errMin6 = _mm256_permute2x128_si256(errMin4, errMin4, (1) | (1 << 4)); __m256i errMask0 = _mm256_cmpeq_epi32(errMin5, err0); __m256i errMask1 = _mm256_cmpeq_epi32(errMin6, err1); uint32_t mask0 = _mm256_movemask_epi8(errMask0); uint32_t mask1 = _mm256_movemask_epi8(errMask1); tidx[0] = _bit_scan_forward(mask0) >> 2; tidx[1] = _bit_scan_forward(mask1) >> 2; if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error) { return value; } d |= tidx[0] << 26; d |= tidx[1] << 29; unsigned int t0 = tsel[tidx[0]]; unsigned int t1 = tsel[tidx[1]]; if (!rotate) { t0 &= 0xFF00FF00; t1 &= 0x00FF00FF; } else { t0 &= 0xCCCCCCCC; t1 &= 0x33333333; } // Flip selectors from sign bit unsigned int t2 = (t0 | t1) ^ 0xFFFF0000; return d | static_cast(_bswap(t2)) << 32; } #endif static etcpak_force_inline void Average( const uint8_t* data, v4i* a ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i d0l = _mm_unpacklo_epi8(d0, _mm_setzero_si128()); __m128i d0h = _mm_unpackhi_epi8(d0, _mm_setzero_si128()); __m128i d1l = _mm_unpacklo_epi8(d1, _mm_setzero_si128()); __m128i d1h = _mm_unpackhi_epi8(d1, _mm_setzero_si128()); __m128i d2l = _mm_unpacklo_epi8(d2, _mm_setzero_si128()); __m128i d2h = _mm_unpackhi_epi8(d2, _mm_setzero_si128()); __m128i d3l = _mm_unpacklo_epi8(d3, _mm_setzero_si128()); __m128i d3h = _mm_unpackhi_epi8(d3, _mm_setzero_si128()); __m128i sum0 = _mm_add_epi16(d0l, d1l); __m128i sum1 = _mm_add_epi16(d0h, d1h); __m128i sum2 = _mm_add_epi16(d2l, d3l); __m128i sum3 = _mm_add_epi16(d2h, d3h); __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); __m128i b0 = _mm_add_epi32(sum0l, sum0h); __m128i b1 = _mm_add_epi32(sum1l, sum1h); __m128i b2 = _mm_add_epi32(sum2l, sum2h); __m128i b3 = _mm_add_epi32(sum3l, sum3h); __m128i a0 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b2, b3), _mm_set1_epi32(4)), 3); __m128i a1 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b1), _mm_set1_epi32(4)), 3); __m128i a2 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b1, b3), _mm_set1_epi32(4)), 3); __m128i a3 = _mm_srli_epi32(_mm_add_epi32(_mm_add_epi32(b0, b2), _mm_set1_epi32(4)), 3); _mm_storeu_si128((__m128i*)&a[0], _mm_packus_epi32(_mm_shuffle_epi32(a0, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a1, _MM_SHUFFLE(3, 0, 1, 2)))); _mm_storeu_si128((__m128i*)&a[2], _mm_packus_epi32(_mm_shuffle_epi32(a2, _MM_SHUFFLE(3, 0, 1, 2)), _mm_shuffle_epi32(a3, _MM_SHUFFLE(3, 0, 1, 2)))); #elif defined __ARM_NEON uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ) ) ), uint16x8_t()); uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ) ) ), uint16x8_t()); uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ) ) ), uint16x8_t()); uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ) ) ), uint16x8_t()); uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); uint32x4_t a0 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b2, b3), vdupq_n_u32(4)), 3); uint32x4_t a1 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b1), vdupq_n_u32(4)), 3); uint32x4_t a2 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b1, b3), vdupq_n_u32(4)), 3); uint32x4_t a3 = vshrq_n_u32(vqaddq_u32(vqaddq_u32(b0, b2), vdupq_n_u32(4)), 3); uint16x8_t o0 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a0 )), vqmovun_s32(vreinterpretq_s32_u32( a1 ))); uint16x8_t o1 = vcombine_u16(vqmovun_s32(vreinterpretq_s32_u32( a2 )), vqmovun_s32(vreinterpretq_s32_u32( a3 ))); a[0] = v4i{o0[2], o0[1], o0[0], 0}; a[1] = v4i{o0[6], o0[5], o0[4], 0}; a[2] = v4i{o1[2], o1[1], o1[0], 0}; a[3] = v4i{o1[6], o1[5], o1[4], 0}; #else uint32_t r[4]; uint32_t g[4]; uint32_t b[4]; memset(r, 0, sizeof(r)); memset(g, 0, sizeof(g)); memset(b, 0, sizeof(b)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); b[index] += *data++; g[index] += *data++; r[index] += *data++; data++; } } a[0] = v4i{ uint16_t( (r[2] + r[3] + 4) / 8 ), uint16_t( (g[2] + g[3] + 4) / 8 ), uint16_t( (b[2] + b[3] + 4) / 8 ), 0}; a[1] = v4i{ uint16_t( (r[0] + r[1] + 4) / 8 ), uint16_t( (g[0] + g[1] + 4) / 8 ), uint16_t( (b[0] + b[1] + 4) / 8 ), 0}; a[2] = v4i{ uint16_t( (r[1] + r[3] + 4) / 8 ), uint16_t( (g[1] + g[3] + 4) / 8 ), uint16_t( (b[1] + b[3] + 4) / 8 ), 0}; a[3] = v4i{ uint16_t( (r[0] + r[2] + 4) / 8 ), uint16_t( (g[0] + g[2] + 4) / 8 ), uint16_t( (b[0] + b[2] + 4) / 8 ), 0}; #endif } static etcpak_force_inline void CalcErrorBlock( const uint8_t* data, unsigned int err[4][4] ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)data) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)data) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)data) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)data) + 3); __m128i dm0 = _mm_and_si128(d0, _mm_set1_epi32(0x00FFFFFF)); __m128i dm1 = _mm_and_si128(d1, _mm_set1_epi32(0x00FFFFFF)); __m128i dm2 = _mm_and_si128(d2, _mm_set1_epi32(0x00FFFFFF)); __m128i dm3 = _mm_and_si128(d3, _mm_set1_epi32(0x00FFFFFF)); __m128i d0l = _mm_unpacklo_epi8(dm0, _mm_setzero_si128()); __m128i d0h = _mm_unpackhi_epi8(dm0, _mm_setzero_si128()); __m128i d1l = _mm_unpacklo_epi8(dm1, _mm_setzero_si128()); __m128i d1h = _mm_unpackhi_epi8(dm1, _mm_setzero_si128()); __m128i d2l = _mm_unpacklo_epi8(dm2, _mm_setzero_si128()); __m128i d2h = _mm_unpackhi_epi8(dm2, _mm_setzero_si128()); __m128i d3l = _mm_unpacklo_epi8(dm3, _mm_setzero_si128()); __m128i d3h = _mm_unpackhi_epi8(dm3, _mm_setzero_si128()); __m128i sum0 = _mm_add_epi16(d0l, d1l); __m128i sum1 = _mm_add_epi16(d0h, d1h); __m128i sum2 = _mm_add_epi16(d2l, d3l); __m128i sum3 = _mm_add_epi16(d2h, d3h); __m128i sum0l = _mm_unpacklo_epi16(sum0, _mm_setzero_si128()); __m128i sum0h = _mm_unpackhi_epi16(sum0, _mm_setzero_si128()); __m128i sum1l = _mm_unpacklo_epi16(sum1, _mm_setzero_si128()); __m128i sum1h = _mm_unpackhi_epi16(sum1, _mm_setzero_si128()); __m128i sum2l = _mm_unpacklo_epi16(sum2, _mm_setzero_si128()); __m128i sum2h = _mm_unpackhi_epi16(sum2, _mm_setzero_si128()); __m128i sum3l = _mm_unpacklo_epi16(sum3, _mm_setzero_si128()); __m128i sum3h = _mm_unpackhi_epi16(sum3, _mm_setzero_si128()); __m128i b0 = _mm_add_epi32(sum0l, sum0h); __m128i b1 = _mm_add_epi32(sum1l, sum1h); __m128i b2 = _mm_add_epi32(sum2l, sum2h); __m128i b3 = _mm_add_epi32(sum3l, sum3h); __m128i a0 = _mm_add_epi32(b2, b3); __m128i a1 = _mm_add_epi32(b0, b1); __m128i a2 = _mm_add_epi32(b1, b3); __m128i a3 = _mm_add_epi32(b0, b2); _mm_storeu_si128((__m128i*)&err[0], a0); _mm_storeu_si128((__m128i*)&err[1], a1); _mm_storeu_si128((__m128i*)&err[2], a2); _mm_storeu_si128((__m128i*)&err[3], a3); #elif defined __ARM_NEON uint8x16x2_t t0 = vzipq_u8(vld1q_u8(data + 0), uint8x16_t()); uint8x16x2_t t1 = vzipq_u8(vld1q_u8(data + 16), uint8x16_t()); uint8x16x2_t t2 = vzipq_u8(vld1q_u8(data + 32), uint8x16_t()); uint8x16x2_t t3 = vzipq_u8(vld1q_u8(data + 48), uint8x16_t()); uint16x8x2_t d0 = { vreinterpretq_u16_u8(t0.val[0]), vreinterpretq_u16_u8(t0.val[1]) }; uint16x8x2_t d1 = { vreinterpretq_u16_u8(t1.val[0]), vreinterpretq_u16_u8(t1.val[1]) }; uint16x8x2_t d2 = { vreinterpretq_u16_u8(t2.val[0]), vreinterpretq_u16_u8(t2.val[1]) }; uint16x8x2_t d3 = { vreinterpretq_u16_u8(t3.val[0]), vreinterpretq_u16_u8(t3.val[1]) }; uint16x8x2_t s0 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[0] ), vreinterpretq_s16_u16( d1.val[0] ))), uint16x8_t()); uint16x8x2_t s1 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d0.val[1] ), vreinterpretq_s16_u16( d1.val[1] ))), uint16x8_t()); uint16x8x2_t s2 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[0] ), vreinterpretq_s16_u16( d3.val[0] ))), uint16x8_t()); uint16x8x2_t s3 = vzipq_u16(vreinterpretq_u16_s16( vaddq_s16(vreinterpretq_s16_u16( d2.val[1] ), vreinterpretq_s16_u16( d3.val[1] ))), uint16x8_t()); uint32x4x2_t sum0 = { vreinterpretq_u32_u16(s0.val[0]), vreinterpretq_u32_u16(s0.val[1]) }; uint32x4x2_t sum1 = { vreinterpretq_u32_u16(s1.val[0]), vreinterpretq_u32_u16(s1.val[1]) }; uint32x4x2_t sum2 = { vreinterpretq_u32_u16(s2.val[0]), vreinterpretq_u32_u16(s2.val[1]) }; uint32x4x2_t sum3 = { vreinterpretq_u32_u16(s3.val[0]), vreinterpretq_u32_u16(s3.val[1]) }; uint32x4_t b0 = vaddq_u32(sum0.val[0], sum0.val[1]); uint32x4_t b1 = vaddq_u32(sum1.val[0], sum1.val[1]); uint32x4_t b2 = vaddq_u32(sum2.val[0], sum2.val[1]); uint32x4_t b3 = vaddq_u32(sum3.val[0], sum3.val[1]); uint32x4_t a0 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b2, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a1 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b1) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a2 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b1, b3) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); uint32x4_t a3 = vreinterpretq_u32_u8( vandq_u8(vreinterpretq_u8_u32( vqaddq_u32(b0, b2) ), vreinterpretq_u8_u32( vdupq_n_u32(0x00FFFFFF)) ) ); vst1q_u32(err[0], a0); vst1q_u32(err[1], a1); vst1q_u32(err[2], a2); vst1q_u32(err[3], a3); #else unsigned int terr[4][4]; memset(terr, 0, 16 * sizeof(unsigned int)); for( int j=0; j<4; j++ ) { for( int i=0; i<4; i++ ) { int index = (j & 2) + (i >> 1); unsigned int d = *data++; terr[index][0] += d; d = *data++; terr[index][1] += d; d = *data++; terr[index][2] += d; data++; } } for( int i=0; i<3; i++ ) { err[0][i] = terr[2][i] + terr[3][i]; err[1][i] = terr[0][i] + terr[1][i]; err[2][i] = terr[1][i] + terr[3][i]; err[3][i] = terr[0][i] + terr[2][i]; } for( int i=0; i<4; i++ ) { err[i][3] = 0; } #endif } static etcpak_force_inline unsigned int CalcError( const unsigned int block[4], const v4i& average ) { unsigned int err = 0x3FFFFFFF; // Big value to prevent negative values, but small enough to prevent overflow err -= block[0] * 2 * average[2]; err -= block[1] * 2 * average[1]; err -= block[2] * 2 * average[0]; err += 8 * ( sq( average[0] ) + sq( average[1] ) + sq( average[2] ) ); return err; } static etcpak_force_inline void ProcessAverages( v4i* a ) { #ifdef __SSE4_1__ for( int i=0; i<2; i++ ) { __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); __m128i t = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(31)), _mm_set1_epi16(128)); __m128i c = _mm_srli_epi16(_mm_add_epi16(t, _mm_srli_epi16(t, 8)), 8); __m128i c1 = _mm_shuffle_epi32(c, _MM_SHUFFLE(3, 2, 3, 2)); __m128i diff = _mm_sub_epi16(c, c1); diff = _mm_max_epi16(diff, _mm_set1_epi16(-4)); diff = _mm_min_epi16(diff, _mm_set1_epi16(3)); __m128i co = _mm_add_epi16(c1, diff); c = _mm_blend_epi16(co, c, 0xF0); __m128i a0 = _mm_or_si128(_mm_slli_epi16(c, 3), _mm_srli_epi16(c, 2)); _mm_storeu_si128((__m128i*)a[4+i*2].data(), a0); } for( int i=0; i<2; i++ ) { __m128i d = _mm_loadu_si128((__m128i*)a[i*2].data()); __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(d, _mm_set1_epi16(15)), _mm_set1_epi16(128)); __m128i t1 = _mm_srli_epi16(_mm_add_epi16(t0, _mm_srli_epi16(t0, 8)), 8); __m128i t2 = _mm_or_si128(t1, _mm_slli_epi16(t1, 4)); _mm_storeu_si128((__m128i*)a[i*2].data(), t2); } #elif defined __ARM_NEON for( int i=0; i<2; i++ ) { int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); int16x8_t t = vaddq_s16(vmulq_s16(d, vdupq_n_s16(31)), vdupq_n_s16(128)); int16x8_t c = vshrq_n_s16(vaddq_s16(t, vshrq_n_s16(t, 8)), 8); int16x8_t c1 = vcombine_s16(vget_high_s16(c), vget_high_s16(c)); int16x8_t diff = vsubq_s16(c, c1); diff = vmaxq_s16(diff, vdupq_n_s16(-4)); diff = vminq_s16(diff, vdupq_n_s16(3)); int16x8_t co = vaddq_s16(c1, diff); c = vcombine_s16(vget_low_s16(co), vget_high_s16(c)); int16x8_t a0 = vorrq_s16(vshlq_n_s16(c, 3), vshrq_n_s16(c, 2)); vst1q_s16((int16_t*)&a[4+i*2], a0); } for( int i=0; i<2; i++ ) { int16x8_t d = vld1q_s16((int16_t*)&a[i*2]); int16x8_t t0 = vaddq_s16(vmulq_s16(d, vdupq_n_s16(15)), vdupq_n_s16(128)); int16x8_t t1 = vshrq_n_s16(vaddq_s16(t0, vshrq_n_s16(t0, 8)), 8); int16x8_t t2 = vorrq_s16(t1, vshlq_n_s16(t1, 4)); vst1q_s16((int16_t*)&a[i*2], t2); } #else for( int i=0; i<2; i++ ) { for( int j=0; j<3; j++ ) { int32_t c1 = mul8bit( a[i*2+1][j], 31 ); int32_t c2 = mul8bit( a[i*2][j], 31 ); int32_t diff = c2 - c1; if( diff > 3 ) diff = 3; else if( diff < -4 ) diff = -4; int32_t co = c1 + diff; a[5+i*2][j] = ( c1 << 3 ) | ( c1 >> 2 ); a[4+i*2][j] = ( co << 3 ) | ( co >> 2 ); } } for( int i=0; i<4; i++ ) { a[i][0] = g_avg2[mul8bit( a[i][0], 15 )]; a[i][1] = g_avg2[mul8bit( a[i][1], 15 )]; a[i][2] = g_avg2[mul8bit( a[i][2], 15 )]; } #endif } static etcpak_force_inline void EncodeAverages( uint64_t& _d, const v4i* a, size_t idx ) { auto d = _d; d |= ( idx << 24 ); size_t base = idx << 1; if( ( idx & 0x2 ) == 0 ) { for( int i=0; i<3; i++ ) { d |= uint64_t( a[base+0][i] >> 4 ) << ( i*8 ); d |= uint64_t( a[base+1][i] >> 4 ) << ( i*8 + 4 ); } } else { for( int i=0; i<3; i++ ) { d |= uint64_t( a[base+1][i] & 0xF8 ) << ( i*8 ); int32_t c = ( ( a[base+0][i] & 0xF8 ) - ( a[base+1][i] & 0xF8 ) ) >> 3; c &= ~0xFFFFFFF8; d |= ((uint64_t)c) << ( i*8 ); } } _d = d; } static etcpak_force_inline uint64_t CheckSolid( const uint8_t* src ) { #ifdef __SSE4_1__ __m128i d0 = _mm_loadu_si128(((__m128i*)src) + 0); __m128i d1 = _mm_loadu_si128(((__m128i*)src) + 1); __m128i d2 = _mm_loadu_si128(((__m128i*)src) + 2); __m128i d3 = _mm_loadu_si128(((__m128i*)src) + 3); __m128i c = _mm_shuffle_epi32(d0, _MM_SHUFFLE(0, 0, 0, 0)); __m128i c0 = _mm_cmpeq_epi8(d0, c); __m128i c1 = _mm_cmpeq_epi8(d1, c); __m128i c2 = _mm_cmpeq_epi8(d2, c); __m128i c3 = _mm_cmpeq_epi8(d3, c); __m128i m0 = _mm_and_si128(c0, c1); __m128i m1 = _mm_and_si128(c2, c3); __m128i m = _mm_and_si128(m0, m1); if (!_mm_testc_si128(m, _mm_set1_epi32(-1))) { return 0; } #elif defined __ARM_NEON int32x4_t d0 = vld1q_s32((int32_t*)src + 0); int32x4_t d1 = vld1q_s32((int32_t*)src + 4); int32x4_t d2 = vld1q_s32((int32_t*)src + 8); int32x4_t d3 = vld1q_s32((int32_t*)src + 12); int32x4_t c = vdupq_n_s32(d0[0]); int32x4_t c0 = vreinterpretq_s32_u32(vceqq_s32(d0, c)); int32x4_t c1 = vreinterpretq_s32_u32(vceqq_s32(d1, c)); int32x4_t c2 = vreinterpretq_s32_u32(vceqq_s32(d2, c)); int32x4_t c3 = vreinterpretq_s32_u32(vceqq_s32(d3, c)); int32x4_t m0 = vandq_s32(c0, c1); int32x4_t m1 = vandq_s32(c2, c3); int64x2_t m = vreinterpretq_s64_s32(vandq_s32(m0, m1)); if (m[0] != -1 || m[1] != -1) { return 0; } #else const uint8_t* ptr = src + 4; for( int i=1; i<16; i++ ) { if( memcmp( src, ptr, 4 ) != 0 ) { return 0; } ptr += 4; } #endif return 0x02000000 | ( (unsigned int)( src[0] & 0xF8 ) << 16 ) | ( (unsigned int)( src[1] & 0xF8 ) << 8 ) | ( (unsigned int)( src[2] & 0xF8 ) ); } static etcpak_force_inline void PrepareAverages( v4i a[8], const uint8_t* src, unsigned int err[4] ) { Average( src, a ); ProcessAverages( a ); unsigned int errblock[4][4]; CalcErrorBlock( src, errblock ); for( int i=0; i<4; i++ ) { err[i/2] += CalcError( errblock[i], a[i] ); err[2+i/2] += CalcError( errblock[i], a[i+4] ); } } static etcpak_force_inline void FindBestFit( uint64_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) { for( size_t i=0; i<16; i++ ) { uint16_t* sel = tsel[i]; unsigned int bid = id[i]; uint64_t* ter = terr[bid%2]; uint8_t b = *data++; uint8_t g = *data++; uint8_t r = *data++; data++; int dr = a[bid][0] - r; int dg = a[bid][1] - g; int db = a[bid][2] - b; #ifdef __SSE4_1__ // Reference implementation __m128i pix = _mm_set1_epi32(dr * 77 + dg * 151 + db * 28); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. __m128i error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[0])); __m128i error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[1])); __m128i error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[0])); __m128i error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[1])); __m128i index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1)); __m128i minError0 = _mm_min_epi32(error0, error1); __m128i index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2)); __m128i minError1 = _mm_min_epi32(error2, error3); __m128i minIndex0 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0)); __m128i minError = _mm_min_epi32(minError0, minError1); // Squaring the minimum error to produce correct values when adding __m128i minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0)); __m128i squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow); squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0)); _mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow); __m128i minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2)); __m128i squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh); squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1)); _mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. error0 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[2])); error1 = _mm_abs_epi32(_mm_add_epi32(pix, g_table256_SIMD[3])); error2 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[2])); error3 = _mm_abs_epi32(_mm_sub_epi32(pix, g_table256_SIMD[3])); index0 = _mm_and_si128(_mm_cmplt_epi32(error1, error0), _mm_set1_epi32(1)); minError0 = _mm_min_epi32(error0, error1); index1 = _mm_sub_epi32(_mm_set1_epi32(2), _mm_cmplt_epi32(error3, error2)); minError1 = _mm_min_epi32(error2, error3); __m128i minIndex1 = _mm_blendv_epi8(index0, index1, _mm_cmplt_epi32(minError1, minError0)); minError = _mm_min_epi32(minError0, minError1); // Squaring the minimum error to produce correct values when adding minErrorLow = _mm_shuffle_epi32(minError, _MM_SHUFFLE(1, 1, 0, 0)); squareErrorLow = _mm_mul_epi32(minErrorLow, minErrorLow); squareErrorLow = _mm_add_epi64(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 2)); _mm_storeu_si128(((__m128i*)ter) + 2, squareErrorLow); minErrorHigh = _mm_shuffle_epi32(minError, _MM_SHUFFLE(3, 3, 2, 2)); squareErrorHigh = _mm_mul_epi32(minErrorHigh, minErrorHigh); squareErrorHigh = _mm_add_epi64(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 3)); _mm_storeu_si128(((__m128i*)ter) + 3, squareErrorHigh); __m128i minIndex = _mm_packs_epi32(minIndex0, minIndex1); _mm_storeu_si128((__m128i*)sel, minIndex); #elif defined __ARM_NEON int32x4_t pix = vdupq_n_s32(dr * 77 + dg * 151 + db * 28); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. uint32x4_t error0 = vreinterpretq_u32_s32(vabsq_s32(vaddq_s32(pix, g_table256_NEON[0]))); uint32x4_t error1 = vreinterpretq_u32_s32(vabsq_s32(vaddq_s32(pix, g_table256_NEON[1]))); uint32x4_t error2 = vreinterpretq_u32_s32(vabsq_s32(vsubq_s32(pix, g_table256_NEON[0]))); uint32x4_t error3 = vreinterpretq_u32_s32(vabsq_s32(vsubq_s32(pix, g_table256_NEON[1]))); uint32x4_t index0 = vandq_u32(vcltq_u32(error1, error0), vdupq_n_u32(1)); uint32x4_t minError0 = vminq_u32(error0, error1); uint32x4_t index1 = vreinterpretq_u32_s32(vsubq_s32(vdupq_n_s32(2), vreinterpretq_s32_u32(vcltq_u32(error3, error2)))); uint32x4_t minError1 = vminq_u32(error2, error3); uint32x4_t blendMask = vcltq_u32(minError1, minError0); uint32x4_t minIndex0 = vorrq_u32(vbicq_u32(index0, blendMask), vandq_u32(index1, blendMask)); uint32x4_t minError = vminq_u32(minError0, minError1); // Squaring the minimum error to produce correct values when adding uint32x4_t squareErrorLow = vmulq_u32(minError, minError); uint32x4_t squareErrorHigh = vshrq_n_u32(vreinterpretq_u32_s32(vqdmulhq_s32(vreinterpretq_s32_u32(minError), vreinterpretq_s32_u32(minError))), 1); uint32x4x2_t squareErrorZip = vzipq_u32(squareErrorLow, squareErrorHigh); uint64x2x2_t squareError = { vreinterpretq_u64_u32(squareErrorZip.val[0]), vreinterpretq_u64_u32(squareErrorZip.val[1]) }; squareError.val[0] = vaddq_u64(squareError.val[0], vld1q_u64(ter + 0)); squareError.val[1] = vaddq_u64(squareError.val[1], vld1q_u64(ter + 2)); vst1q_u64(ter + 0, squareError.val[0]); vst1q_u64(ter + 2, squareError.val[1]); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. error0 = vreinterpretq_u32_s32( vabsq_s32(vaddq_s32(pix, g_table256_NEON[2]))); error1 = vreinterpretq_u32_s32( vabsq_s32(vaddq_s32(pix, g_table256_NEON[3]))); error2 = vreinterpretq_u32_s32( vabsq_s32(vsubq_s32(pix, g_table256_NEON[2]))); error3 = vreinterpretq_u32_s32( vabsq_s32(vsubq_s32(pix, g_table256_NEON[3]))); index0 = vandq_u32(vcltq_u32(error1, error0), vdupq_n_u32(1)); minError0 = vminq_u32(error0, error1); index1 = vreinterpretq_u32_s32( vsubq_s32(vdupq_n_s32(2), vreinterpretq_s32_u32(vcltq_u32(error3, error2))) ); minError1 = vminq_u32(error2, error3); blendMask = vcltq_u32(minError1, minError0); uint32x4_t minIndex1 = vorrq_u32(vbicq_u32(index0, blendMask), vandq_u32(index1, blendMask)); minError = vminq_u32(minError0, minError1); // Squaring the minimum error to produce correct values when adding squareErrorLow = vmulq_u32(minError, minError); squareErrorHigh = vshrq_n_u32(vreinterpretq_u32_s32( vqdmulhq_s32(vreinterpretq_s32_u32(minError), vreinterpretq_s32_u32(minError)) ), 1 ); squareErrorZip = vzipq_u32(squareErrorLow, squareErrorHigh); squareError.val[0] = vaddq_u64(vreinterpretq_u64_u32( squareErrorZip.val[0] ), vld1q_u64(ter + 4)); squareError.val[1] = vaddq_u64(vreinterpretq_u64_u32( squareErrorZip.val[1] ), vld1q_u64(ter + 6)); vst1q_u64(ter + 4, squareError.val[0]); vst1q_u64(ter + 6, squareError.val[1]); uint16x8_t minIndex = vcombine_u16(vqmovn_u32(minIndex0), vqmovn_u32(minIndex1)); vst1q_u16(sel, minIndex); #else int pix = dr * 77 + dg * 151 + db * 28; for( int t=0; t<8; t++ ) { const int64_t* tab = g_table256[t]; unsigned int idx = 0; uint64_t err = sq( tab[0] + pix ); for( int j=1; j<4; j++ ) { uint64_t local = sq( tab[j] + pix ); if( local < err ) { err = local; idx = j; } } *sel++ = idx; *ter++ += err; } #endif } } #if defined __SSE4_1__ || defined __ARM_NEON // Non-reference implementation, but faster. Produces same results as the AVX2 version static etcpak_force_inline void FindBestFit( uint32_t terr[2][8], uint16_t tsel[16][8], v4i a[8], const uint32_t* id, const uint8_t* data ) { for( size_t i=0; i<16; i++ ) { uint16_t* sel = tsel[i]; unsigned int bid = id[i]; uint32_t* ter = terr[bid%2]; uint8_t b = *data++; uint8_t g = *data++; uint8_t r = *data++; data++; int dr = a[bid][0] - r; int dg = a[bid][1] - g; int db = a[bid][2] - b; #ifdef __SSE4_1__ // The scaling values are divided by two and rounded, to allow the differences to be in the range of signed int16 // This produces slightly different results, but is significant faster __m128i pixel = _mm_set1_epi16(dr * 38 + dg * 76 + db * 14); __m128i pix = _mm_abs_epi16(pixel); // Taking the absolute value is way faster. The values are only used to sort, so the result will be the same. // Since the selector table is symmetrical, we need to calculate the difference only for half of the entries. __m128i error0 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[0])); __m128i error1 = _mm_abs_epi16(_mm_sub_epi16(pix, g_table128_SIMD[1])); __m128i index = _mm_and_si128(_mm_cmplt_epi16(error1, error0), _mm_set1_epi16(1)); __m128i minError = _mm_min_epi16(error0, error1); // Exploiting symmetry of the selector table and use the sign bit // This produces slightly different results, but is needed to produce same results as AVX2 implementation __m128i indexBit = _mm_andnot_si128(_mm_srli_epi16(pixel, 15), _mm_set1_epi8(-1)); __m128i minIndex = _mm_or_si128(index, _mm_add_epi16(indexBit, indexBit)); // Squaring the minimum error to produce correct values when adding __m128i squareErrorLo = _mm_mullo_epi16(minError, minError); __m128i squareErrorHi = _mm_mulhi_epi16(minError, minError); __m128i squareErrorLow = _mm_unpacklo_epi16(squareErrorLo, squareErrorHi); __m128i squareErrorHigh = _mm_unpackhi_epi16(squareErrorLo, squareErrorHi); squareErrorLow = _mm_add_epi32(squareErrorLow, _mm_loadu_si128(((__m128i*)ter) + 0)); _mm_storeu_si128(((__m128i*)ter) + 0, squareErrorLow); squareErrorHigh = _mm_add_epi32(squareErrorHigh, _mm_loadu_si128(((__m128i*)ter) + 1)); _mm_storeu_si128(((__m128i*)ter) + 1, squareErrorHigh); _mm_storeu_si128((__m128i*)sel, minIndex); #elif defined __ARM_NEON int16x8_t pixel = vdupq_n_s16( dr * 38 + dg * 76 + db * 14 ); int16x8_t pix = vabsq_s16( pixel ); int16x8_t error0 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[0] ) ); int16x8_t error1 = vabsq_s16( vsubq_s16( pix, g_table128_NEON[1] ) ); int16x8_t index = vandq_s16( vreinterpretq_s16_u16( vcltq_s16( error1, error0 ) ), vdupq_n_s16( 1 ) ); int16x8_t minError = vminq_s16( error0, error1 ); int16x8_t indexBit = vandq_s16( vmvnq_s16( vshrq_n_s16( pixel, 15 ) ), vdupq_n_s16( -1 ) ); int16x8_t minIndex = vorrq_s16( index, vaddq_s16( indexBit, indexBit ) ); int16x4_t minErrorLow = vget_low_s16( minError ); int16x4_t minErrorHigh = vget_high_s16( minError ); int32x4_t squareErrorLow = vmull_s16( minErrorLow, minErrorLow ); int32x4_t squareErrorHigh = vmull_s16( minErrorHigh, minErrorHigh ); int32x4_t squareErrorSumLow = vaddq_s32( squareErrorLow, vld1q_s32( (int32_t*)ter ) ); int32x4_t squareErrorSumHigh = vaddq_s32( squareErrorHigh, vld1q_s32( (int32_t*)ter + 4 ) ); vst1q_s32( (int32_t*)ter, squareErrorSumLow ); vst1q_s32( (int32_t*)ter + 4, squareErrorSumHigh ); vst1q_s16( (int16_t*)sel, minIndex ); #endif } } #endif static etcpak_force_inline uint8_t convert6(float f) { int i = (std::min(std::max(static_cast(f), 0), 1023) - 15) >> 1; return (i + 11 - ((i + 11) >> 7) - ((i + 4) >> 7)) >> 3; } static etcpak_force_inline uint8_t convert7(float f) { int i = (std::min(std::max(static_cast(f), 0), 1023) - 15) >> 1; return (i + 9 - ((i + 9) >> 8) - ((i + 6) >> 8)) >> 2; } static etcpak_force_inline std::pair Planar( const uint8_t* src, const uint8_t mode, bool useHeuristics ) { int32_t r = 0; int32_t g = 0; int32_t b = 0; for( int i = 0; i < 16; ++i ) { b += src[i * 4 + 0]; g += src[i * 4 + 1]; r += src[i * 4 + 2]; } int32_t difRyz = 0; int32_t difGyz = 0; int32_t difByz = 0; int32_t difRxz = 0; int32_t difGxz = 0; int32_t difBxz = 0; const int32_t scaling[] = { -255, -85, 85, 255 }; for (int i = 0; i < 16; ++i) { int32_t difB = (static_cast(src[i * 4 + 0]) << 4) - b; int32_t difG = (static_cast(src[i * 4 + 1]) << 4) - g; int32_t difR = (static_cast(src[i * 4 + 2]) << 4) - r; difRyz += difR * scaling[i % 4]; difGyz += difG * scaling[i % 4]; difByz += difB * scaling[i % 4]; difRxz += difR * scaling[i / 4]; difGxz += difG * scaling[i / 4]; difBxz += difB * scaling[i / 4]; } const float scale = -4.0f / ((255 * 255 * 8.0f + 85 * 85 * 8.0f) * 16.0f); float aR = difRxz * scale; float aG = difGxz * scale; float aB = difBxz * scale; float bR = difRyz * scale; float bG = difGyz * scale; float bB = difByz * scale; float dR = r * (4.0f / 16.0f); float dG = g * (4.0f / 16.0f); float dB = b * (4.0f / 16.0f); // calculating the three colors RGBO, RGBH, and RGBV. RGB = df - af * x - bf * y; float cofR = std::fma(aR, 255.0f, std::fma(bR, 255.0f, dR)); float cofG = std::fma(aG, 255.0f, std::fma(bG, 255.0f, dG)); float cofB = std::fma(aB, 255.0f, std::fma(bB, 255.0f, dB)); float chfR = std::fma(aR, -425.0f, std::fma(bR, 255.0f, dR)); float chfG = std::fma(aG, -425.0f, std::fma(bG, 255.0f, dG)); float chfB = std::fma(aB, -425.0f, std::fma(bB, 255.0f, dB)); float cvfR = std::fma(aR, 255.0f, std::fma(bR, -425.0f, dR)); float cvfG = std::fma(aG, 255.0f, std::fma(bG, -425.0f, dG)); float cvfB = std::fma(aB, 255.0f, std::fma(bB, -425.0f, dB)); // convert to r6g7b6 int32_t coR = convert6(cofR); int32_t coG = convert7(cofG); int32_t coB = convert6(cofB); int32_t chR = convert6(chfR); int32_t chG = convert7(chfG); int32_t chB = convert6(chfB); int32_t cvR = convert6(cvfR); int32_t cvG = convert7(cvfG); int32_t cvB = convert6(cvfB); // Error calculation uint64_t error = 0; if( ModePlanar != mode && useHeuristics ) { auto ro0 = coR; auto go0 = coG; auto bo0 = coB; auto ro1 = ( ro0 >> 4 ) | ( ro0 << 2 ); auto go1 = ( go0 >> 6 ) | ( go0 << 1 ); auto bo1 = ( bo0 >> 4 ) | ( bo0 << 2 ); auto ro2 = ( ro1 << 2 ) + 2; auto go2 = ( go1 << 2 ) + 2; auto bo2 = ( bo1 << 2 ) + 2; auto rh0 = chR; auto gh0 = chG; auto bh0 = chB; auto rh1 = ( rh0 >> 4 ) | ( rh0 << 2 ); auto gh1 = ( gh0 >> 6 ) | ( gh0 << 1 ); auto bh1 = ( bh0 >> 4 ) | ( bh0 << 2 ); auto rh2 = rh1 - ro1; auto gh2 = gh1 - go1; auto bh2 = bh1 - bo1; auto rv0 = cvR; auto gv0 = cvG; auto bv0 = cvB; auto rv1 = ( rv0 >> 4 ) | ( rv0 << 2 ); auto gv1 = ( gv0 >> 6 ) | ( gv0 << 1 ); auto bv1 = ( bv0 >> 4 ) | ( bv0 << 2 ); auto rv2 = rv1 - ro1; auto gv2 = gv1 - go1; auto bv2 = bv1 - bo1; for( int i = 0; i < 16; ++i ) { int32_t cR = clampu8( ( rh2 * ( i / 4 ) + rv2 * ( i % 4 ) + ro2 ) >> 2 ); int32_t cG = clampu8( ( gh2 * ( i / 4 ) + gv2 * ( i % 4 ) + go2 ) >> 2 ); int32_t cB = clampu8( ( bh2 * ( i / 4 ) + bv2 * ( i % 4 ) + bo2 ) >> 2 ); int32_t difB = static_cast( src[i * 4 + 0] ) - cB; int32_t difG = static_cast( src[i * 4 + 1] ) - cG; int32_t difR = static_cast( src[i * 4 + 2] ) - cR; int32_t dif = difR * 38 + difG * 76 + difB * 14; error += dif * dif; } } /**/ uint32_t rgbv = cvB | ( cvG << 6 ) | ( cvR << 13 ); uint32_t rgbh = chB | ( chG << 6 ) | ( chR << 13 ); uint32_t hi = rgbv | ( ( rgbh & 0x1FFF ) << 19 ); uint32_t lo = ( chR & 0x1 ) | 0x2 | ( ( chR << 1 ) & 0x7C ); lo |= ( ( coB & 0x07 ) << 7 ) | ( ( coB & 0x18 ) << 8 ) | ( ( coB & 0x20 ) << 11 ); lo |= ( ( coG & 0x3F ) << 17 ) | ( ( coG & 0x40 ) << 18 ); lo |= coR << 25; const auto idx = ( coR & 0x20 ) | ( ( coG & 0x20 ) >> 1 ) | ( ( coB & 0x1E ) >> 1 ); lo |= g_flags[idx]; uint64_t result = static_cast( _bswap( lo ) ); result |= static_cast( static_cast( _bswap( hi ) ) ) << 32; return std::make_pair( result, error ); } #ifdef __ARM_NEON static etcpak_force_inline int32x2_t Planar_NEON_DifXZ( int16x8_t dif_lo, int16x8_t dif_hi ) { int32x4_t dif0 = vmull_n_s16( vget_low_s16( dif_lo ), -255 ); int32x4_t dif1 = vmull_n_s16( vget_high_s16( dif_lo ), -85 ); int32x4_t dif2 = vmull_n_s16( vget_low_s16( dif_hi ), 85 ); int32x4_t dif3 = vmull_n_s16( vget_high_s16( dif_hi ), 255 ); int32x4_t dif4 = vaddq_s32( vaddq_s32( dif0, dif1 ), vaddq_s32( dif2, dif3 ) ); #ifndef __aarch64__ int32x2_t dif5 = vpadd_s32( vget_low_s32( dif4 ), vget_high_s32( dif4 ) ); return vpadd_s32( dif5, dif5 ); #else return vdup_n_s32( vaddvq_s32( dif4 ) ); #endif } static etcpak_force_inline int32x2_t Planar_NEON_DifYZ( int16x8_t dif_lo, int16x8_t dif_hi ) { int16x4_t scaling = { -255, -85, 85, 255 }; int32x4_t dif0 = vmull_s16( vget_low_s16( dif_lo ), scaling ); int32x4_t dif1 = vmull_s16( vget_high_s16( dif_lo ), scaling ); int32x4_t dif2 = vmull_s16( vget_low_s16( dif_hi ), scaling ); int32x4_t dif3 = vmull_s16( vget_high_s16( dif_hi ), scaling ); int32x4_t dif4 = vaddq_s32( vaddq_s32( dif0, dif1 ), vaddq_s32( dif2, dif3 ) ); #ifndef __aarch64__ int32x2_t dif5 = vpadd_s32( vget_low_s32( dif4 ), vget_high_s32( dif4 ) ); return vpadd_s32( dif5, dif5 ); #else return vdup_n_s32( vaddvq_s32( dif4 ) ); #endif } static etcpak_force_inline int16x8_t Planar_NEON_SumWide( uint8x16_t src ) { uint16x8_t accu8 = vpaddlq_u8( src ); #ifndef __aarch64__ uint16x4_t accu4 = vpadd_u16( vget_low_u16( accu8 ), vget_high_u16( accu8 ) ); uint16x4_t accu2 = vpadd_u16( accu4, accu4 ); uint16x4_t accu1 = vpadd_u16( accu2, accu2 ); return vreinterpretq_s16_u16( vcombine_u16( accu1, accu1 ) ); #else return vdupq_n_s16( vaddvq_u16( accu8 ) ); #endif } static etcpak_force_inline int16x8_t convert6_NEON( int32x4_t lo, int32x4_t hi ) { uint16x8_t x = vcombine_u16( vqmovun_s32( lo ), vqmovun_s32( hi ) ); int16x8_t i = vreinterpretq_s16_u16( vshrq_n_u16( vqshlq_n_u16( x, 6 ), 6) ); // clamp 0-1023 i = vhsubq_s16( i, vdupq_n_s16( 15 ) ); int16x8_t ip11 = vaddq_s16( i, vdupq_n_s16( 11 ) ); int16x8_t ip4 = vaddq_s16( i, vdupq_n_s16( 4 ) ); return vshrq_n_s16( vsubq_s16( vsubq_s16( ip11, vshrq_n_s16( ip11, 7 ) ), vshrq_n_s16( ip4, 7) ), 3 ); } static etcpak_force_inline int16x4_t convert7_NEON( int32x4_t x ) { int16x4_t i = vreinterpret_s16_u16( vshr_n_u16( vqshl_n_u16( vqmovun_s32( x ), 6 ), 6 ) ); // clamp 0-1023 i = vhsub_s16( i, vdup_n_s16( 15 ) ); int16x4_t p9 = vadd_s16( i, vdup_n_s16( 9 ) ); int16x4_t p6 = vadd_s16( i, vdup_n_s16( 6 ) ); return vshr_n_s16( vsub_s16( vsub_s16( p9, vshr_n_s16( p9, 8 ) ), vshr_n_s16( p6, 8 ) ), 2 ); } static etcpak_force_inline std::pair Planar_NEON( const uint8_t* src, const uint8_t mode, bool useHeuristics ) { uint8x16x4_t srcBlock = vld4q_u8( src ); int16x8_t bSumWide = Planar_NEON_SumWide( srcBlock.val[0] ); int16x8_t gSumWide = Planar_NEON_SumWide( srcBlock.val[1] ); int16x8_t rSumWide = Planar_NEON_SumWide( srcBlock.val[2] ); int16x8_t dif_R_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[2] ), 4) ), rSumWide ); int16x8_t dif_R_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[2] ), 4) ), rSumWide ); int16x8_t dif_G_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[1] ), 4 ) ), gSumWide ); int16x8_t dif_G_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[1] ), 4 ) ), gSumWide ); int16x8_t dif_B_lo = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_low_u8( srcBlock.val[0] ), 4) ), bSumWide ); int16x8_t dif_B_hi = vsubq_s16( vreinterpretq_s16_u16( vshll_n_u8( vget_high_u8( srcBlock.val[0] ), 4) ), bSumWide ); int32x2x2_t dif_xz_z = vzip_s32( vzip_s32( Planar_NEON_DifXZ( dif_B_lo, dif_B_hi ), Planar_NEON_DifXZ( dif_R_lo, dif_R_hi ) ).val[0], Planar_NEON_DifXZ( dif_G_lo, dif_G_hi ) ); int32x4_t dif_xz = vcombine_s32( dif_xz_z.val[0], dif_xz_z.val[1] ); int32x2x2_t dif_yz_z = vzip_s32( vzip_s32( Planar_NEON_DifYZ( dif_B_lo, dif_B_hi ), Planar_NEON_DifYZ( dif_R_lo, dif_R_hi ) ).val[0], Planar_NEON_DifYZ( dif_G_lo, dif_G_hi ) ); int32x4_t dif_yz = vcombine_s32( dif_yz_z.val[0], dif_yz_z.val[1] ); const float fscale = -4.0f / ( (255 * 255 * 8.0f + 85 * 85 * 8.0f ) * 16.0f ); float32x4_t fa = vmulq_n_f32( vcvtq_f32_s32( dif_xz ), fscale ); float32x4_t fb = vmulq_n_f32( vcvtq_f32_s32( dif_yz ), fscale ); int16x4_t bgrgSum = vzip_s16( vzip_s16( vget_low_s16( bSumWide ), vget_low_s16( rSumWide ) ).val[0], vget_low_s16( gSumWide ) ).val[0]; float32x4_t fd = vmulq_n_f32( vcvtq_f32_s32( vmovl_s16( bgrgSum ) ), 4.0f / 16.0f); float32x4_t cof = vmlaq_n_f32( vmlaq_n_f32( fd, fb, 255.0f ), fa, 255.0f ); float32x4_t chf = vmlaq_n_f32( vmlaq_n_f32( fd, fb, 255.0f ), fa, -425.0f ); float32x4_t cvf = vmlaq_n_f32( vmlaq_n_f32( fd, fb, -425.0f ), fa, 255.0f ); int32x4_t coi = vcvtq_s32_f32( cof ); int32x4_t chi = vcvtq_s32_f32( chf ); int32x4_t cvi = vcvtq_s32_f32( cvf ); int32x4x2_t tr_hv = vtrnq_s32( chi, cvi ); int32x4x2_t tr_o = vtrnq_s32( coi, coi ); int16x8_t c_hvoo_br_6 = convert6_NEON( tr_hv.val[0], tr_o.val[0] ); int16x4_t c_hvox_g_7 = convert7_NEON( vcombine_s32( vget_low_s32( tr_hv.val[1] ), vget_low_s32( tr_o.val[1] ) ) ); int16x8_t c_hvoo_br_8 = vorrq_s16( vshrq_n_s16( c_hvoo_br_6, 4 ), vshlq_n_s16( c_hvoo_br_6, 2 ) ); int16x4_t c_hvox_g_8 = vorr_s16( vshr_n_s16( c_hvox_g_7, 6 ), vshl_n_s16( c_hvox_g_7, 1 ) ); uint64_t error = 0; if( mode != ModePlanar && useHeuristics ) { int16x4_t rec_gxbr_o = vext_s16( c_hvox_g_8, vget_high_s16( c_hvoo_br_8 ), 3 ); rec_gxbr_o = vadd_s16( vshl_n_s16( rec_gxbr_o, 2 ), vdup_n_s16( 2 ) ); int16x8_t rec_ro_wide = vdupq_lane_s16( rec_gxbr_o, 3 ); int16x8_t rec_go_wide = vdupq_lane_s16( rec_gxbr_o, 0 ); int16x8_t rec_bo_wide = vdupq_lane_s16( rec_gxbr_o, 1 ); int16x4_t br_hv2 = vsub_s16( vget_low_s16( c_hvoo_br_8 ), vget_high_s16( c_hvoo_br_8 ) ); int16x4_t gg_hv2 = vsub_s16( c_hvox_g_8, vdup_lane_s16( c_hvox_g_8, 2 ) ); int16x8_t scaleh_lo = { 0, 0, 0, 0, 1, 1, 1, 1 }; int16x8_t scaleh_hi = { 2, 2, 2, 2, 3, 3, 3, 3 }; int16x8_t scalev = { 0, 1, 2, 3, 0, 1, 2, 3 }; int16x8_t rec_r_1 = vmlaq_lane_s16( rec_ro_wide, scalev, br_hv2, 3 ); int16x8_t rec_r_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_r_1, scaleh_lo, br_hv2, 2 ), 2 ) ) ); int16x8_t rec_r_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_r_1, scaleh_hi, br_hv2, 2 ), 2 ) ) ); int16x8_t rec_b_1 = vmlaq_lane_s16( rec_bo_wide, scalev, br_hv2, 1 ); int16x8_t rec_b_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_b_1, scaleh_lo, br_hv2, 0 ), 2 ) ) ); int16x8_t rec_b_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_b_1, scaleh_hi, br_hv2, 0 ), 2 ) ) ); int16x8_t rec_g_1 = vmlaq_lane_s16( rec_go_wide, scalev, gg_hv2, 1 ); int16x8_t rec_g_lo = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_g_1, scaleh_lo, gg_hv2, 0 ), 2 ) ) ); int16x8_t rec_g_hi = vreinterpretq_s16_u16( vmovl_u8( vqshrun_n_s16( vmlaq_lane_s16( rec_g_1, scaleh_hi, gg_hv2, 0 ), 2 ) ) ); int16x8_t dif_r_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[2] ) ) ), rec_r_lo ); int16x8_t dif_r_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[2] ) ) ), rec_r_hi ); int16x8_t dif_g_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[1] ) ) ), rec_g_lo ); int16x8_t dif_g_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[1] ) ) ), rec_g_hi ); int16x8_t dif_b_lo = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_low_u8( srcBlock.val[0] ) ) ), rec_b_lo ); int16x8_t dif_b_hi = vsubq_s16( vreinterpretq_s16_u16( vmovl_u8( vget_high_u8( srcBlock.val[0] ) ) ), rec_b_hi ); int16x8_t dif_lo = vmlaq_n_s16( vmlaq_n_s16( vmulq_n_s16( dif_r_lo, 38 ), dif_g_lo, 76 ), dif_b_lo, 14 ); int16x8_t dif_hi = vmlaq_n_s16( vmlaq_n_s16( vmulq_n_s16( dif_r_hi, 38 ), dif_g_hi, 76 ), dif_b_hi, 14 ); int16x4_t tmpDif = vget_low_s16( dif_lo ); int32x4_t difsq_0 = vmull_s16( tmpDif, tmpDif ); tmpDif = vget_high_s16( dif_lo ); int32x4_t difsq_1 = vmull_s16( tmpDif, tmpDif ); tmpDif = vget_low_s16( dif_hi ); int32x4_t difsq_2 = vmull_s16( tmpDif, tmpDif ); tmpDif = vget_high_s16( dif_hi ); int32x4_t difsq_3 = vmull_s16( tmpDif, tmpDif ); uint32x4_t difsq_5 = vaddq_u32( vreinterpretq_u32_s32( difsq_0 ), vreinterpretq_u32_s32( difsq_1 ) ); uint32x4_t difsq_6 = vaddq_u32( vreinterpretq_u32_s32( difsq_2 ), vreinterpretq_u32_s32( difsq_3 ) ); uint64x2_t difsq_7 = vaddl_u32( vget_low_u32( difsq_5 ), vget_high_u32( difsq_5 ) ); uint64x2_t difsq_8 = vaddl_u32( vget_low_u32( difsq_6 ), vget_high_u32( difsq_6 ) ); uint64x2_t difsq_9 = vaddq_u64( difsq_7, difsq_8 ); #ifdef __aarch64__ error = vaddvq_u64( difsq_9 ); #else error = vgetq_lane_u64( difsq_9, 0 ) + vgetq_lane_u64( difsq_9, 1 ); #endif } int32_t coR = c_hvoo_br_6[6]; int32_t coG = c_hvox_g_7[2]; int32_t coB = c_hvoo_br_6[4]; int32_t chR = c_hvoo_br_6[2]; int32_t chG = c_hvox_g_7[0]; int32_t chB = c_hvoo_br_6[0]; int32_t cvR = c_hvoo_br_6[3]; int32_t cvG = c_hvox_g_7[1]; int32_t cvB = c_hvoo_br_6[1]; uint32_t rgbv = cvB | ( cvG << 6 ) | ( cvR << 13 ); uint32_t rgbh = chB | ( chG << 6 ) | ( chR << 13 ); uint32_t hi = rgbv | ( ( rgbh & 0x1FFF ) << 19 ); uint32_t lo = ( chR & 0x1 ) | 0x2 | ( ( chR << 1 ) & 0x7C ); lo |= ( ( coB & 0x07 ) << 7 ) | ( ( coB & 0x18 ) << 8 ) | ( ( coB & 0x20 ) << 11 ); lo |= ( ( coG & 0x3F) << 17) | ( (coG & 0x40 ) << 18 ); lo |= coR << 25; const auto idx = ( coR & 0x20 ) | ( ( coG & 0x20 ) >> 1 ) | ( ( coB & 0x1E ) >> 1 ); lo |= g_flags[idx]; uint64_t result = static_cast( _bswap(lo) ); result |= static_cast( static_cast( _bswap( hi ) ) ) << 32; return std::make_pair( result, error ); } #endif #ifdef __AVX2__ uint32_t calculateErrorTH( bool tMode, uint8_t( colorsRGB444 )[2][3], uint8_t& dist, uint32_t& pixIndices, uint8_t startDist, __m128i r8, __m128i g8, __m128i b8 ) #else uint32_t calculateErrorTH( bool tMode, uint8_t* src, uint8_t( colorsRGB444 )[2][3], uint8_t& dist, uint32_t& pixIndices, uint8_t startDist ) #endif { uint32_t blockErr = 0, bestBlockErr = MaxError; uint32_t pixColors; uint8_t possibleColors[4][3]; uint8_t colors[2][3]; decompressColor( colorsRGB444, colors ); #ifdef __AVX2__ __m128i reverseMask = _mm_set_epi8( 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 ); #endif // test distances for( uint8_t d = startDist; d < 8; ++d ) { if( d >= 2 && dist == d - 2 ) break; blockErr = 0; pixColors = 0; if( tMode ) { calculatePaintColors59T( d, colors, possibleColors ); } else { calculatePaintColors58H( d, colors, possibleColors ); } #ifdef __AVX2__ // RGB ordering __m128i b8Rev = _mm_shuffle_epi8( b8, reverseMask ); __m128i g8Rev = _mm_shuffle_epi8( g8, reverseMask ); __m128i r8Rev = _mm_shuffle_epi8( r8, reverseMask ); // extends 3x128 bits RGB into 3x256 bits RGB for error comparisions static const __m128i zero = _mm_setzero_si128(); __m128i b8Lo = _mm_unpacklo_epi8( b8Rev, zero ); __m128i g8Lo = _mm_unpacklo_epi8( g8Rev, zero ); __m128i r8Lo = _mm_unpacklo_epi8( r8Rev, zero ); __m128i b8Hi = _mm_unpackhi_epi8( b8Rev, zero ); __m128i g8Hi = _mm_unpackhi_epi8( g8Rev, zero ); __m128i r8Hi = _mm_unpackhi_epi8( r8Rev, zero ); __m256i b8 = _mm256_set_m128i( b8Hi, b8Lo ); __m256i g8 = _mm256_set_m128i( g8Hi, g8Lo ); __m256i r8 = _mm256_set_m128i( r8Hi, r8Lo ); // caculates differences between the pixel colrs and the palette colors __m256i diffb = _mm256_abs_epi16( _mm256_sub_epi16( b8, _mm256_set1_epi16( possibleColors[0][B] ) ) ); __m256i diffg = _mm256_abs_epi16( _mm256_sub_epi16( g8, _mm256_set1_epi16( possibleColors[0][G] ) ) ); __m256i diffr = _mm256_abs_epi16( _mm256_sub_epi16( r8, _mm256_set1_epi16( possibleColors[0][R] ) ) ); // luma-based error calculations static const __m256i bWeight = _mm256_set1_epi16( 14 ); static const __m256i gWeight = _mm256_set1_epi16( 76 ); static const __m256i rWeight = _mm256_set1_epi16( 38 ); diffb = _mm256_mullo_epi16( diffb, bWeight ); diffg = _mm256_mullo_epi16( diffg, gWeight ); diffr = _mm256_mullo_epi16( diffr, rWeight ); // obtains the error with the current palette color __m256i lowestPixErr = _mm256_add_epi16( _mm256_add_epi16( diffb, diffg ), diffr ); // error calucations with the remaining three palette colors static const uint32_t masks[4] = { 0, 0x55555555, 0xAAAAAAAA, 0xFFFFFFFF }; for( uint8_t c = 1; c < 4; c++ ) { __m256i diffb = _mm256_abs_epi16( _mm256_sub_epi16( b8, _mm256_set1_epi16( possibleColors[c][B] ) ) ); __m256i diffg = _mm256_abs_epi16( _mm256_sub_epi16( g8, _mm256_set1_epi16( possibleColors[c][G] ) ) ); __m256i diffr = _mm256_abs_epi16( _mm256_sub_epi16( r8, _mm256_set1_epi16( possibleColors[c][R] ) ) ); diffb = _mm256_mullo_epi16( diffb, bWeight ); diffg = _mm256_mullo_epi16( diffg, gWeight ); diffr = _mm256_mullo_epi16( diffr, rWeight ); // error comparison with the previous best color __m256i pixErrors = _mm256_add_epi16( _mm256_add_epi16( diffb, diffg ), diffr ); __m256i minErr = _mm256_min_epu16( lowestPixErr, pixErrors ); __m256i cmpRes = _mm256_cmpeq_epi16( pixErrors, minErr ); lowestPixErr = minErr; // update pixel colors uint32_t updPixColors = _mm256_movemask_epi8( cmpRes ); uint32_t prevPixColors = pixColors & ~updPixColors; uint32_t mskPixColors = masks[c] & updPixColors; pixColors = prevPixColors | mskPixColors; } // accumulate the block error alignas( 32 ) uint16_t pixErr16[16] = { 0, }; _mm256_storeu_si256( (__m256i*)pixErr16, lowestPixErr ); for( uint8_t p = 0; p < 16; p++ ) { blockErr += (int)( pixErr16[p] ) * pixErr16[p]; } #else for( size_t y = 0; y < 4; ++y ) { for( size_t x = 0; x < 4; ++x ) { uint32_t bestPixErr = MaxError; pixColors <<= 2; // Make room for next value // Loop possible block colors for( uint8_t c = 0; c < 4; ++c ) { int diff[3]; diff[R] = src[4 * ( x * 4 + y ) + R] - possibleColors[c][R]; diff[G] = src[4 * ( x * 4 + y ) + G] - possibleColors[c][G]; diff[B] = src[4 * ( x * 4 + y ) + B] - possibleColors[c][B]; const uint32_t err = 38 * abs( diff[R] ) + 76 * abs( diff[G] ) + 14 * abs( diff[B] ); uint32_t pixErr = err * err; // Choose best error if( pixErr < bestPixErr ) { bestPixErr = pixErr; pixColors ^= ( pixColors & 3 ); // Reset the two first bits pixColors |= c; } } blockErr += bestPixErr; } } #endif if( blockErr < bestBlockErr ) { bestBlockErr = blockErr; dist = d; pixIndices = pixColors; } } return bestBlockErr; } // main T-/H-mode compression function #ifdef __AVX2__ uint32_t compressBlockTH( uint8_t* src, Luma& l, uint32_t& compressed1, uint32_t& compressed2, bool& tMode, __m128i r8, __m128i g8, __m128i b8 ) #else uint32_t compressBlockTH( uint8_t *src, Luma& l, uint32_t& compressed1, uint32_t& compressed2, bool &tMode ) #endif { #ifdef __AVX2__ alignas( 8 ) uint8_t luma[16] = { 0, }; _mm_storeu_si128 ( (__m128i* )luma, l.luma8 ); #elif defined __ARM_NEON && defined __aarch64__ alignas( 8 ) uint8_t luma[16] = { 0 }; vst1q_u8( luma, l.luma8 ); #else uint8_t* luma = l.val; #endif uint8_t pixIdx[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; // 1) sorts the pairs of (luma, pix_idx) insertionSort( luma, pixIdx ); // 2) finds the min (left+right) uint8_t minSumRangeIdx = 0; uint16_t minSumRangeValue; uint16_t sum; static const uint8_t diffBonus[15] = {8, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 8}; const int16_t temp = luma[15] - luma[0]; minSumRangeValue = luma[15] - luma[1] + diffBonus[0]; for( uint8_t i = 1; i < 14; i++ ) { sum = temp - luma[i+1] + luma[i] + diffBonus[i]; if( minSumRangeValue > sum ) { minSumRangeValue = sum; minSumRangeIdx = i; } } sum = luma[14] - luma[0] + diffBonus[14]; if( minSumRangeValue > sum ) { minSumRangeValue = sum; minSumRangeIdx = 14; } uint8_t lRange, rRange; lRange = luma[minSumRangeIdx] - luma[0]; rRange = luma[15] - luma[minSumRangeIdx + 1]; // 3) sets a proper mode bool swap = false; if( lRange >= rRange ) { if( lRange >= rRange * 2 ) { swap = true; tMode = true; } } else { if( lRange * 2 <= rRange ) tMode = true; } // 4) calculates the two base colors uint8_t rangeIdx[4] = { pixIdx[0], pixIdx[minSumRangeIdx], pixIdx[minSumRangeIdx + 1], pixIdx[15] }; uint16_t r[4], g[4], b[4]; for( uint8_t i = 0; i < 4; ++i ) { uint8_t idx = rangeIdx[i] * 4; b[i] = src[idx]; g[i] = src[idx + 1]; r[i] = src[idx + 2]; } uint8_t mid_rgb[2][3]; if( swap ) { mid_rgb[1][B] = ( b[0] + b[1] ) / 2; mid_rgb[1][G] = ( g[0] + g[1] ) / 2; mid_rgb[1][R] = ( r[0] + r[1] ) / 2; uint16_t sum_rgb[3] = { 0, 0, 0 }; for( uint8_t i = minSumRangeIdx + 1; i < 16; i++ ) { uint8_t idx = pixIdx[i] * 4; sum_rgb[B] += src[idx]; sum_rgb[G] += src[idx + 1]; sum_rgb[R] += src[idx + 2]; } const uint8_t temp = 15 - minSumRangeIdx; mid_rgb[0][B] = sum_rgb[B] / temp; mid_rgb[0][G] = sum_rgb[G] / temp; mid_rgb[0][R] = sum_rgb[R] / temp; } else { mid_rgb[0][B] = (b[0] + b[1]) / 2; mid_rgb[0][G] = (g[0] + g[1]) / 2; mid_rgb[0][R] = (r[0] + r[1]) / 2; if( tMode ) { uint16_t sum_rgb[3] = { 0, 0, 0 }; for( uint8_t i = minSumRangeIdx + 1; i < 16; i++ ) { uint8_t idx = pixIdx[i] * 4; sum_rgb[B] += src[idx]; sum_rgb[G] += src[idx + 1]; sum_rgb[R] += src[idx + 2]; } const uint8_t temp = 15 - minSumRangeIdx; mid_rgb[1][B] = sum_rgb[B] / temp; mid_rgb[1][G] = sum_rgb[G] / temp; mid_rgb[1][R] = sum_rgb[R] / temp; } else { mid_rgb[1][B] = (b[2] + b[3]) / 2; mid_rgb[1][G] = (g[2] + g[3]) / 2; mid_rgb[1][R] = (r[2] + r[3]) / 2; } } // 5) sets the start distance index uint32_t startDistCandidate; uint32_t avgDist; if( tMode ) { if( swap ) { avgDist = ( b[1] - b[0] + g[1] - g[0] + r[1] - r[0] ) / 6; } else { avgDist = ( b[3] - b[2] + g[3] - g[2] + r[3] - r[2] ) / 6; } } else { avgDist = ( b[1] - b[0] + g[1] - g[0] + r[1] - r[0] + b[3] - b[2] + g[3] - g[2] + r[3] - r[2] ) / 12; } if( avgDist <= 16) { startDistCandidate = 0; } else if( avgDist <= 23 ) { startDistCandidate = 1; } else if( avgDist <= 32 ) { startDistCandidate = 2; } else if( avgDist <= 41 ) { startDistCandidate = 3; } else { startDistCandidate = 4; } uint32_t bestErr = MaxError; uint32_t bestPixIndices; uint8_t bestDist = 10; uint8_t colorsRGB444[2][3]; compressColor( mid_rgb, colorsRGB444, tMode ); compressed1 = 0; // 6) finds the best candidate with the lowest error #ifdef __AVX2__ // Vectorized ver bestErr = calculateErrorTH( tMode, colorsRGB444, bestDist, bestPixIndices, startDistCandidate, r8, g8, b8 ); #else // Scalar ver bestErr = calculateErrorTH( tMode, src, colorsRGB444, bestDist, bestPixIndices, startDistCandidate ); #endif // 7) outputs the final T or H block if( tMode ) { // Put the compress params into the compression block compressed1 |= ( colorsRGB444[0][R] & 0xf ) << 23; compressed1 |= ( colorsRGB444[0][G] & 0xf ) << 19; compressed1 |= ( colorsRGB444[0][B] ) << 15; compressed1 |= ( colorsRGB444[1][R] ) << 11; compressed1 |= ( colorsRGB444[1][G] ) << 7; compressed1 |= ( colorsRGB444[1][B] ) << 3; compressed1 |= bestDist & 0x7; } else { int bestRGB444ColPacked[2]; bestRGB444ColPacked[0] = (colorsRGB444[0][R] << 8) + (colorsRGB444[0][G] << 4) + colorsRGB444[0][B]; bestRGB444ColPacked[1] = (colorsRGB444[1][R] << 8) + (colorsRGB444[1][G] << 4) + colorsRGB444[1][B]; if( ( bestRGB444ColPacked[0] >= bestRGB444ColPacked[1] ) ^ ( ( bestDist & 1 ) == 1 ) ) { swapColors( colorsRGB444 ); // Reshuffle pixel indices to to exchange C1 with C3, and C2 with C4 bestPixIndices = ( 0x55555555 & bestPixIndices ) | ( 0xaaaaaaaa & ( ~bestPixIndices ) ); } // Put the compress params into the compression block compressed1 |= ( colorsRGB444[0][R] & 0xf ) << 22; compressed1 |= ( colorsRGB444[0][G] & 0xf ) << 18; compressed1 |= ( colorsRGB444[0][B] & 0xf ) << 14; compressed1 |= ( colorsRGB444[1][R] & 0xf ) << 10; compressed1 |= ( colorsRGB444[1][G] & 0xf ) << 6; compressed1 |= ( colorsRGB444[1][B] & 0xf ) << 2; compressed1 |= ( bestDist >> 1 ) & 0x3; } bestPixIndices = indexConversion( bestPixIndices ); compressed2 = 0; compressed2 = ( compressed2 & ~( ( 0x2 << 31 ) - 1 ) ) | ( bestPixIndices & ( ( 2 << 31 ) - 1 ) ); return bestErr; } //#endif template static etcpak_force_inline uint64_t EncodeSelectors( uint64_t d, const T terr[2][8], const S tsel[16][8], const uint32_t* id, const uint64_t value, const uint64_t error) { size_t tidx[2]; tidx[0] = GetLeastError( terr[0], 8 ); tidx[1] = GetLeastError( terr[1], 8 ); if ((terr[0][tidx[0]] + terr[1][tidx[1]]) >= error) { return value; } d |= tidx[0] << 26; d |= tidx[1] << 29; for( int i=0; i<16; i++ ) { uint64_t t = tsel[i][tidx[id[i]%2]]; d |= ( t & 0x1 ) << ( i + 32 ); d |= ( t & 0x2 ) << ( i + 47 ); } return FixByteOrder(d); } } static etcpak_force_inline uint64_t ProcessRGB( const uint8_t* src ) { #ifdef __AVX2__ uint64_t d = CheckSolid_AVX2( src ); if( d != 0 ) return d; alignas(32) v4i a[8]; __m128i err0 = PrepareAverages_AVX2( a, src ); // Get index of minimum error (err0) __m128i err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(2, 3, 0, 1)); __m128i errMin0 = _mm_min_epu32(err0, err1); __m128i errMin1 = _mm_shuffle_epi32(errMin0, _MM_SHUFFLE(1, 0, 3, 2)); __m128i errMin2 = _mm_min_epu32(errMin1, errMin0); __m128i errMask = _mm_cmpeq_epi32(errMin2, err0); uint32_t mask = _mm_movemask_epi8(errMask); uint32_t idx = _bit_scan_forward(mask) >> 2; d |= EncodeAverages_AVX2( a, idx ); alignas(32) uint32_t terr[2][8] = {}; alignas(32) uint32_t tsel[8]; if ((idx == 0) || (idx == 2)) { FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src ); } else { FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src ); } return EncodeSelectors_AVX2( d, terr, tsel, (idx % 2) == 1 ); #else uint64_t d = CheckSolid( src ); if( d != 0 ) return d; v4i a[8]; unsigned int err[4] = {}; PrepareAverages( a, src, err ); size_t idx = GetLeastError( err, 4 ); EncodeAverages( d, a, idx ); #if ( defined __SSE4_1__ || defined __ARM_NEON ) && !defined REFERENCE_IMPLEMENTATION uint32_t terr[2][8] = {}; #else uint64_t terr[2][8] = {}; #endif uint16_t tsel[16][8]; auto id = g_id[idx]; FindBestFit( terr, tsel, a, id, src ); return FixByteOrder( EncodeSelectors( d, terr, tsel, id ) ); #endif } #ifdef __AVX2__ // horizontal min/max functions. https://stackoverflow.com/questions/22256525/horizontal-minimum-and-maximum-using-sse // if an error occurs in GCC, please change the value of -march in CFLAGS to a specific value for your CPU (e.g., skylake). static inline int16_t hMax( __m128i buffer, uint8_t& idx ) { __m128i tmp1 = _mm_sub_epi8( _mm_set1_epi8( (char)( 255 ) ), buffer ); __m128i tmp2 = _mm_min_epu8( tmp1, _mm_srli_epi16( tmp1, 8 ) ); __m128i tmp3 = _mm_minpos_epu16( tmp2 ); uint8_t result = 255 - (uint8_t)_mm_cvtsi128_si32( tmp3 ); __m128i mask = _mm_cmpeq_epi8( buffer, _mm_set1_epi8( result ) ); idx = _tzcnt_u32( _mm_movemask_epi8( mask ) ); return result; } #elif defined __ARM_NEON && defined __aarch64__ static inline int16_t hMax( uint8x16_t buffer, uint8_t& idx ) { const uint8_t max = vmaxvq_u8( buffer ); const uint16x8_t vmax = vdupq_n_u16( max ); uint8x16x2_t buff_wide = vzipq_u8( buffer, uint8x16_t() ); uint16x8_t lowbuf16 = vreinterpretq_u16_u8( buff_wide.val[0] ); uint16x8_t hibuf16 = vreinterpretq_u16_u8( buff_wide.val[1] ); uint16x8_t low_eqmask = vceqq_u16( lowbuf16, vmax ); uint16x8_t hi_eqmask = vceqq_u16( hibuf16, vmax ); static const uint16_t mask_lsb[] = { 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80 }; static const uint16_t mask_msb[] = { 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 }; uint16x8_t vmask_lsb = vld1q_u16( mask_lsb ); uint16x8_t vmask_msb = vld1q_u16( mask_msb ); uint16x8_t pos_lsb = vandq_u16( vmask_lsb, low_eqmask ); uint16x8_t pos_msb = vandq_u16( vmask_msb, hi_eqmask ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); uint64_t idx_lane1 = vgetq_lane_u64( vreinterpretq_u64_u16( pos_lsb ), 0 ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); uint32_t idx_lane2 = vgetq_lane_u32( vreinterpretq_u32_u16( pos_msb ), 0 ); idx = idx_lane1 != 0 ? __builtin_ctz( idx_lane1 ) : __builtin_ctz( idx_lane2 ); return max; } #endif #ifdef __AVX2__ static inline int16_t hMin( __m128i buffer, uint8_t& idx ) { __m128i tmp2 = _mm_min_epu8( buffer, _mm_srli_epi16( buffer, 8 ) ); __m128i tmp3 = _mm_minpos_epu16( tmp2 ); uint8_t result = (uint8_t)_mm_cvtsi128_si32( tmp3 ); __m128i mask = _mm_cmpeq_epi8( buffer, _mm_set1_epi8( result ) ); idx = _tzcnt_u32( _mm_movemask_epi8( mask ) ); return result; } #elif defined __ARM_NEON && defined __aarch64__ static inline int16_t hMin( uint8x16_t buffer, uint8_t& idx ) { const uint8_t min = vminvq_u8( buffer ); const uint16x8_t vmin = vdupq_n_u16( min ); uint8x16x2_t buff_wide = vzipq_u8( buffer, uint8x16_t() ); uint16x8_t lowbuf16 = vreinterpretq_u16_u8( buff_wide.val[0] ); uint16x8_t hibuf16 = vreinterpretq_u16_u8( buff_wide.val[1] ); uint16x8_t low_eqmask = vceqq_u16( lowbuf16, vmin ); uint16x8_t hi_eqmask = vceqq_u16( hibuf16, vmin ); static const uint16_t mask_lsb[] = { 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80 }; static const uint16_t mask_msb[] = { 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 }; uint16x8_t vmask_lsb = vld1q_u16( mask_lsb ); uint16x8_t vmask_msb = vld1q_u16( mask_msb ); uint16x8_t pos_lsb = vandq_u16( vmask_lsb, low_eqmask ); uint16x8_t pos_msb = vandq_u16( vmask_msb, hi_eqmask ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); pos_lsb = vpaddq_u16( pos_lsb, pos_lsb ); uint64_t idx_lane1 = vgetq_lane_u64( vreinterpretq_u64_u16( pos_lsb ), 0 ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); pos_msb = vpaddq_u16( pos_msb, pos_msb ); uint32_t idx_lane2 = vgetq_lane_u32( vreinterpretq_u32_u16( pos_msb ), 0 ); idx = idx_lane1 != 0 ? __builtin_ctz( idx_lane1 ) : __builtin_ctz( idx_lane2 ); return min; } #endif // During search it is not convenient to store the bits the way they are stored in the // file format. Hence, after search, it is converted to this format. // NO WARRANTY --- SEE STATEMENT IN TOP OF FILE (C) Ericsson AB 2005-2013. All Rights Reserved. static inline void stuff59bits( unsigned int thumbT59W1, unsigned int thumbT59W2, unsigned int& thumbTW1, unsigned int& thumbTW2 ) { // Put bits in twotimer configuration for 59 (red overflows) // // Go from this bit layout: // // |63 62 61 60 59|58 57 56 55|54 53 52 51|50 49 48 47|46 45 44 43|42 41 40 39|38 37 36 35|34 33 32| // |----empty-----|---red 0---|--green 0--|--blue 0---|---red 1---|--green 1--|--blue 1---|--dist--| // // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00| // |----------------------------------------index bits---------------------------------------------| // // // To this: // // 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 // ----------------------------------------------------------------------------------------------- // |// // //|R0a |//|R0b |G0 |B0 |R1 |G1 |B1 |da |df|db| // ----------------------------------------------------------------------------------------------- // // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00| // |----------------------------------------index bits---------------------------------------------| // // 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 // ----------------------------------------------------------------------------------------------- // | base col1 | dcol 2 | base col1 | dcol 2 | base col 1 | dcol 2 | table | table |df|fp| // | R1' (5 bits) | dR2 | G1' (5 bits) | dG2 | B1' (5 bits) | dB2 | cw 1 | cw 2 |bt|bt| // ------------------------------------------------------------------------------------------------ uint8_t R0a; uint8_t bit, a, b, c, d, bits; R0a = ( thumbT59W1 >> 25 ) & 0x3; // Fix middle part thumbTW1 = thumbT59W1 << 1; // Fix R0a (top two bits of R0) thumbTW1 = ( thumbTW1 & ~( 0x3 << 27 ) ) | ( ( R0a & 0x3 ) << 27 ); // Fix db (lowest bit of d) thumbTW1 = ( thumbTW1 & ~0x1 ) | ( thumbT59W1 & 0x1 ); // Make sure that red overflows: a = ( thumbTW1 >> 28 ) & 0x1; b = ( thumbTW1 >> 27 ) & 0x1; c = ( thumbTW1 >> 25 ) & 0x1; d = ( thumbTW1 >> 24 ) & 0x1; // The following bit abcd bit sequences should be padded with ones: 0111, 1010, 1011, 1101, 1110, 1111 // The following logical expression checks for the presence of any of those: bit = ( a & c ) | ( !a & b & c & d ) | ( a & b & !c & d ); bits = 0xf * bit; thumbTW1 = ( thumbTW1 & ~( 0x7 << 29 ) ) | ( bits & 0x7 ) << 29; thumbTW1 = ( thumbTW1 & ~( 0x1 << 26 ) ) | ( !bit & 0x1 ) << 26; // Set diffbit thumbTW1 = ( thumbTW1 & ~0x2 ) | 0x2; thumbTW2 = thumbT59W2; } // During search it is not convenient to store the bits the way they are stored in the // file format. Hence, after search, it is converted to this format. // NO WARRANTY --- SEE STATEMENT IN TOP OF FILE (C) Ericsson AB 2005-2013. All Rights Reserved. static inline void stuff58bits( unsigned int thumbH58W1, unsigned int thumbH58W2, unsigned int& thumbHW1, unsigned int& thumbHW2 ) { // Put bits in twotimer configuration for 58 (red doesn't overflow, green does) // // Go from this bit layout: // // // |63 62 61 60 59 58|57 56 55 54|53 52 51 50|49 48 47 46|45 44 43 42|41 40 39 38|37 36 35 34|33 32| // |-------empty-----|---red 0---|--green 0--|--blue 0---|---red 1---|--green 1--|--blue 1---|d2 d1| // // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00| // |---------------------------------------index bits----------------------------------------------| // // To this: // // 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 // ----------------------------------------------------------------------------------------------- // |//|R0 |G0 |// // //|G0|B0|//|B0b |R1 |G1 |B0 |d2|df|d1| // ----------------------------------------------------------------------------------------------- // // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00| // |---------------------------------------index bits----------------------------------------------| // // 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 // ----------------------------------------------------------------------------------------------- // | base col1 | dcol 2 | base col1 | dcol 2 | base col 1 | dcol 2 | table | table |df|fp| // | R1' (5 bits) | dR2 | G1' (5 bits) | dG2 | B1' (5 bits) | dB2 | cw 1 | cw 2 |bt|bt| // ----------------------------------------------------------------------------------------------- // // // Thus, what we are really doing is going from this bit layout: // // // |63 62 61 60 59 58|57 56 55 54 53 52 51|50 49|48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33|32 | // |-------empty-----|part0---------------|part1|part2------------------------------------------|part3| // // To this: // // 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 // --------------------------------------------------------------------------------------------------| // |//|part0 |// // //|part1|//|part2 |df|part3| // --------------------------------------------------------------------------------------------------| unsigned int part0, part1, part2, part3; uint8_t bit, a, b, c, d, bits; // move parts part0 = ( thumbH58W1 >> 19 ) & 0x7f; part1 = ( thumbH58W1 >> 17 ) & 0x3; part2 = ( thumbH58W1 >> 1 ) & 0xffff; part3 = thumbH58W1 & 0x1; thumbHW1 = 0; thumbHW1 = ( thumbHW1 & ~( 0x7f << 24 ) ) | ( ( part0 & 0x7f ) << 24 ); thumbHW1 = ( thumbHW1 & ~( 0x3 << 19 ) ) | ( ( part1 & 0x3 ) << 19 ); thumbHW1 = ( thumbHW1 & ~( 0xffff << 2 ) ) | ( ( part2 & 0xffff ) << 2 ); thumbHW1 = ( thumbHW1 & ~0x1 ) | ( part3 & 0x1 ); // Make sure that red does not overflow: bit = ( thumbHW1 >> 30 ) & 0x1; thumbHW1 = ( thumbHW1 & ~( 0x1 << 31 ) ) | ( ( !bit & 0x1 ) << 31 ); // Make sure that green overflows: a = ( thumbHW1 >> 20 ) & 0x1; b = ( thumbHW1 >> 19 ) & 0x1; c = ( thumbHW1 >> 17 ) & 0x1; d = ( thumbHW1 >> 16 ) & 0x1; // The following bit abcd bit sequences should be padded with ones: 0111, 1010, 1011, 1101, 1110, 1111 // The following logical expression checks for the presence of any of those: bit = ( a & c ) | ( !a & b & c & d ) | ( a & b & !c & d ); bits = 0xf * bit; thumbHW1 = ( thumbHW1 & ~( 0x7 << 21 ) ) | ( ( bits & 0x7 ) << 21 ); thumbHW1 = ( thumbHW1 & ~( 0x1 << 18 ) ) | ( ( !bit & 0x1 ) << 18 ); // Set diffbit thumbHW1 = ( thumbHW1 & ~0x2 ) | 0x2; thumbHW2 = thumbH58W2; } #if defined __AVX2__ || (defined __ARM_NEON && defined __aarch64__) static etcpak_force_inline Channels GetChannels( const uint8_t* src ) { Channels ch; #ifdef __AVX2__ __m128i d0 = _mm_loadu_si128( ( (__m128i*)src ) + 0 ); __m128i d1 = _mm_loadu_si128( ( (__m128i*)src ) + 1 ); __m128i d2 = _mm_loadu_si128( ( (__m128i*)src ) + 2 ); __m128i d3 = _mm_loadu_si128( ( (__m128i*)src ) + 3 ); __m128i rgb0 = _mm_shuffle_epi8( d0, _mm_setr_epi8( 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1 ) ); __m128i rgb1 = _mm_shuffle_epi8( d1, _mm_setr_epi8( 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1 ) ); __m128i rgb2 = _mm_shuffle_epi8( d2, _mm_setr_epi8( 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1 ) ); __m128i rgb3 = _mm_shuffle_epi8( d3, _mm_setr_epi8( 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, -1, -1, -1, -1 ) ); __m128i rg0 = _mm_unpacklo_epi32( rgb0, rgb1 ); __m128i rg1 = _mm_unpacklo_epi32( rgb2, rgb3 ); __m128i b0 = _mm_unpackhi_epi32( rgb0, rgb1 ); __m128i b1 = _mm_unpackhi_epi32( rgb2, rgb3 ); // swap channels ch.b8 = _mm_unpacklo_epi64( rg0, rg1 ); ch.g8 = _mm_unpackhi_epi64( rg0, rg1 ); ch.r8 = _mm_unpacklo_epi64( b0, b1 ); #elif defined __ARM_NEON && defined __aarch64__ //load pixel data into 4 rows uint8x16_t px0 = vld1q_u8( src + 0 ); uint8x16_t px1 = vld1q_u8( src + 16 ); uint8x16_t px2 = vld1q_u8( src + 32 ); uint8x16_t px3 = vld1q_u8( src + 48 ); uint8x16x2_t px0z1 = vzipq_u8( px0, px1 ); uint8x16x2_t px2z3 = vzipq_u8( px2, px3 ); uint8x16x2_t px01 = vzipq_u8( px0z1.val[0], px0z1.val[1] ); uint8x16x2_t rgb01 = vzipq_u8( px01.val[0], px01.val[1] ); uint8x16x2_t px23 = vzipq_u8( px2z3.val[0], px2z3.val[1] ); uint8x16x2_t rgb23 = vzipq_u8( px23.val[0], px23.val[1] ); uint8x16_t rr = vreinterpretq_u8_u64( vzip1q_u64( vreinterpretq_u64_u8( rgb01.val[0] ), vreinterpretq_u64_u8( rgb23.val[0] ) ) ); uint8x16_t gg = vreinterpretq_u8_u64( vzip2q_u64( vreinterpretq_u64_u8( rgb01.val[0] ), vreinterpretq_u64_u8( rgb23.val[0] ) ) ); uint8x16_t bb = vreinterpretq_u8_u64( vzip1q_u64( vreinterpretq_u64_u8( rgb01.val[1] ), vreinterpretq_u64_u8( rgb23.val[1] ) ) ); uint8x16x2_t red = vzipq_u8( rr, uint8x16_t() ); uint8x16x2_t grn = vzipq_u8( gg, uint8x16_t() ); uint8x16x2_t blu = vzipq_u8( bb, uint8x16_t() ); ch.r = red; ch.b = blu; ch.g = grn; #endif return ch; } #endif #if defined __AVX2__ || (defined __ARM_NEON && defined __aarch64__) static etcpak_force_inline void CalculateLuma( Channels& ch, Luma& luma ) #else static etcpak_force_inline void CalculateLuma( const uint8_t* src, Luma& luma ) #endif { #ifdef __AVX2__ __m256i b16_luma = _mm256_mullo_epi16( _mm256_cvtepu8_epi16( ch.b8 ), _mm256_set1_epi16( 14 ) ); __m256i g16_luma = _mm256_mullo_epi16( _mm256_cvtepu8_epi16( ch.g8 ), _mm256_set1_epi16( 76 ) ); __m256i r16_luma = _mm256_mullo_epi16( _mm256_cvtepu8_epi16( ch.r8 ), _mm256_set1_epi16( 38 ) ); __m256i luma_16bit = _mm256_add_epi16( _mm256_add_epi16( g16_luma, r16_luma ), b16_luma ); __m256i luma_8bit_m256i = _mm256_srli_epi16( luma_16bit, 7 ); __m128i luma_8bit_lo = _mm256_extractf128_si256( luma_8bit_m256i, 0 ); __m128i luma_8bit_hi = _mm256_extractf128_si256( luma_8bit_m256i, 1 ); static const __m128i interleaving_mask_lo = _mm_set_epi8( 15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0 ); static const __m128i interleaving_mask_hi = _mm_set_epi8( 14, 12, 10, 8, 6, 4, 2, 0, 15, 13, 11, 9, 7, 5, 3, 1 ); __m128i luma_8bit_lo_moved = _mm_shuffle_epi8( luma_8bit_lo, interleaving_mask_lo ); __m128i luma_8bit_hi_moved = _mm_shuffle_epi8( luma_8bit_hi, interleaving_mask_hi ); __m128i luma_8bit = _mm_or_si128( luma_8bit_hi_moved, luma_8bit_lo_moved ); luma.luma8 = luma_8bit; // min/max calculation luma.min = hMin( luma_8bit, luma.minIdx ) * 0.00392156f; luma.max = hMax( luma_8bit, luma.maxIdx ) * 0.00392156f; #elif defined __ARM_NEON && defined __aarch64__ //load pixel data into 4 rows uint16x8_t red0 = vmulq_n_u16( vreinterpretq_u16_u8( ch.r.val[0] ), 14 ); uint16x8_t red1 = vmulq_n_u16( vreinterpretq_u16_u8( ch.r.val[1] ), 14 ); uint16x8_t grn0 = vmulq_n_u16( vreinterpretq_u16_u8( ch.g.val[0] ), 76 ); uint16x8_t grn1 = vmulq_n_u16( vreinterpretq_u16_u8( ch.g.val[1] ), 76 ); uint16x8_t blu0 = vmulq_n_u16( vreinterpretq_u16_u8( ch.b.val[0] ), 38 ); uint16x8_t blu1 = vmulq_n_u16( vreinterpretq_u16_u8( ch.b.val[1] ), 38 ); //calculate luma for rows 0,1 and 2,3 uint16x8_t lum_r01 = vaddq_u16( vaddq_u16( red0, grn0 ), blu0 ); uint16x8_t lum_r23 = vaddq_u16( vaddq_u16( red1, grn1 ), blu1 ); //divide luma values with right shift and narrow results to 8bit uint8x8_t lum_r01_d = vshrn_n_u16( lum_r01, 7 ); uint8x8_t lum_r02_d = vshrn_n_u16( lum_r23, 7 ); luma.luma8 = vcombine_u8( lum_r01_d, lum_r02_d ); //find min and max luma value luma.min = hMin( luma.luma8, luma.minIdx ) * 0.00392156f; luma.max = hMax( luma.luma8, luma.maxIdx ) * 0.00392156f; #else for( int i = 0; i < 16; ++i ) { luma.val[i] = ( src[i * 4 + 2] * 76 + src[i * 4 + 1] * 150 + src[i * 4] * 28 ) / 254; // luma calculation if( luma.min > luma.val[i] ) { luma.min = luma.val[i]; luma.minIdx = i; } if( luma.max < luma.val[i] ) { luma.max = luma.val[i]; luma.maxIdx = i; } } #endif } static etcpak_force_inline uint8_t SelectModeETC2( const Luma& luma ) { #if defined __AVX2__ || defined __ARM_NEON const float lumaRange = ( luma.max - luma.min ); #else const float lumaRange = ( luma.max - luma.min ) * ( 1.f / 255.f ); #endif // filters a very-low-contrast block if( lumaRange <= ecmd_threshold[0] ) { return ModePlanar; } // checks whether a pair of the corner pixels in a block has the min/max luma values; // if so, the ETC2 planar mode is enabled, and otherwise, the ETC1 mode is enabled else if( lumaRange <= ecmd_threshold[1] ) { #ifdef __AVX2__ static const __m128i corner_pair = _mm_set_epi8( 1, 1, 1, 1, 1, 1, 1, 1, 0, 15, 3, 12, 12, 3, 15, 0 ); __m128i current_max_min = _mm_set_epi8( 0, 0, 0, 0, 0, 0, 0, 0, luma.minIdx, luma.maxIdx, luma.minIdx, luma.maxIdx, luma.minIdx, luma.maxIdx, luma.minIdx, luma.maxIdx ); __m128i max_min_result = _mm_cmpeq_epi16( corner_pair, current_max_min ); int mask = _mm_movemask_epi8( max_min_result ); if( mask ) { return ModePlanar; } #else // check whether a pair of the corner pixels in a block has the min/max luma values; // if so, the ETC2 planar mode is enabled. if( ( luma.minIdx == 0 && luma.maxIdx == 15 ) || ( luma.minIdx == 15 && luma.maxIdx == 0 ) || ( luma.minIdx == 3 && luma.maxIdx == 12 ) || ( luma.minIdx == 12 && luma.maxIdx == 3 ) ) { return ModePlanar; } #endif } // filters a high-contrast block for checking both ETC1 mode and the ETC2 T/H mode else if( lumaRange >= ecmd_threshold[2] ) { return ModeTH; } return ModeUndecided; } static etcpak_force_inline uint64_t ProcessRGB_ETC2( const uint8_t* src, bool useHeuristics ) { #ifdef __AVX2__ uint64_t d = CheckSolid_AVX2( src ); if( d != 0 ) return d; #else uint64_t d = CheckSolid( src ); if (d != 0) return d; #endif uint8_t mode = ModeUndecided; Luma luma; #ifdef __AVX2__ Channels ch = GetChannels( src ); if( useHeuristics ) { CalculateLuma( ch, luma ); mode = SelectModeETC2( luma ); } auto plane = Planar_AVX2( ch, mode, useHeuristics ); if( useHeuristics && mode == ModePlanar ) return plane.plane; alignas( 32 ) v4i a[8]; __m128i err0 = PrepareAverages_AVX2( a, plane.sum4 ); // Get index of minimum error (err0) __m128i err1 = _mm_shuffle_epi32( err0, _MM_SHUFFLE( 2, 3, 0, 1 ) ); __m128i errMin0 = _mm_min_epu32(err0, err1); __m128i errMin1 = _mm_shuffle_epi32( errMin0, _MM_SHUFFLE( 1, 0, 3, 2 ) ); __m128i errMin2 = _mm_min_epu32( errMin1, errMin0 ); __m128i errMask = _mm_cmpeq_epi32( errMin2, err0 ); uint32_t mask = _mm_movemask_epi8( errMask ); size_t idx = _bit_scan_forward( mask ) >> 2; d = EncodeAverages_AVX2( a, idx ); alignas(32) uint32_t terr[2][8] = {}; alignas(32) uint32_t tsel[8]; if ((idx == 0) || (idx == 2)) { FindBestFit_4x2_AVX2( terr, tsel, a, idx * 2, src ); } else { FindBestFit_2x4_AVX2( terr, tsel, a, idx * 2, src ); } if( useHeuristics ) { if( mode == ModeTH ) { uint64_t result = 0; uint64_t error = 0; uint32_t compressed[4] = { 0, 0, 0, 0 }; bool tMode = false; error = compressBlockTH( (uint8_t*)src, luma, compressed[0], compressed[1], tMode, ch.r8, ch.g8, ch.b8 ); if( tMode ) { stuff59bits( compressed[0], compressed[1], compressed[2], compressed[3] ); } else { stuff58bits( compressed[0], compressed[1], compressed[2], compressed[3] ); } result = (uint32_t)_bswap( compressed[2] ); result |= static_cast( _bswap( compressed[3] ) ) << 32; plane.plane = result; plane.error = error; } else { plane.plane = 0; plane.error = MaxError; } } return EncodeSelectors_AVX2( d, terr, tsel, ( idx % 2 ) == 1, plane.plane, plane.error ); #else if( useHeuristics ) { #if defined __ARM_NEON && defined __aarch64__ Channels ch = GetChannels( src ); CalculateLuma( ch, luma ); #else CalculateLuma( src, luma ); #endif mode = SelectModeETC2( luma ); } #ifdef __ARM_NEON auto result = Planar_NEON( src, mode, useHeuristics ); #else auto result = Planar( src, mode, useHeuristics ); #endif if( result.second == 0 ) return result.first; v4i a[8]; unsigned int err[4] = {}; PrepareAverages( a, src, err ); size_t idx = GetLeastError( err, 4 ); EncodeAverages( d, a, idx ); #if ( defined __SSE4_1__ || defined __ARM_NEON ) && !defined REFERENCE_IMPLEMENTATION uint32_t terr[2][8] = {}; #else uint64_t terr[2][8] = {}; #endif uint16_t tsel[16][8]; auto id = g_id[idx]; FindBestFit( terr, tsel, a, id, src ); if( useHeuristics ) { if( mode == ModeTH ) { uint32_t compressed[4] = { 0, 0, 0, 0 }; bool tMode = false; result.second = compressBlockTH( (uint8_t*)src, luma, compressed[0], compressed[1], tMode ); if( tMode ) { stuff59bits( compressed[0], compressed[1], compressed[2], compressed[3] ); } else { stuff58bits( compressed[0], compressed[1], compressed[2], compressed[3] ); } result.first = (uint32_t)_bswap( compressed[2] ); result.first |= static_cast( _bswap( compressed[3] ) ) << 32; } else { result.first = 0; result.second = MaxError; } } return EncodeSelectors( d, terr, tsel, id, result.first, result.second ); #endif } #ifdef __SSE4_1__ template static etcpak_force_inline __m128i Widen( const __m128i src ) { static_assert( K >= 0 && K <= 7, "Index out of range" ); __m128i tmp; switch( K ) { case 0: tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 0, 0, 0, 0 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); case 1: tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 1, 1, 1, 1 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); case 2: tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 2, 2, 2, 2 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); case 3: tmp = _mm_shufflelo_epi16( src, _MM_SHUFFLE( 3, 3, 3, 3 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 0, 0, 0, 0 ) ); case 4: tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 0, 0, 0, 0 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); case 5: tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 1, 1, 1, 1 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); case 6: tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 2, 2, 2, 2 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); case 7: tmp = _mm_shufflehi_epi16( src, _MM_SHUFFLE( 3, 3, 3, 3 ) ); return _mm_shuffle_epi32( tmp, _MM_SHUFFLE( 2, 2, 2, 2 ) ); } } static etcpak_force_inline int GetMulSel( int sel ) { switch( sel ) { case 0: return 0; case 1: case 2: case 3: return 1; case 4: return 2; case 5: case 6: case 7: return 3; case 8: case 9: case 10: case 11: case 12: case 13: return 4; case 14: case 15: return 5; } } #endif #ifdef __ARM_NEON static constexpr etcpak_force_inline int GetMulSel(int sel) { return ( sel < 1 ) ? 0 : ( sel < 4 ) ? 1 : ( sel < 5 ) ? 2 : ( sel < 8 ) ? 3 : ( sel < 14 ) ? 4 : 5; } static constexpr int ClampConstant( int x, int min, int max ) { return x < min ? min : x > max ? max : x; } template etcpak_force_inline static uint16x8_t ErrorProbe_EAC_NEON( uint8x8_t recVal, uint8x16_t alphaBlock ) { uint8x8_t srcValWide; #ifndef __aarch64__ if( Index < 8 ) srcValWide = vdup_lane_u8( vget_low_u8( alphaBlock ), ClampConstant( Index, 0, 8 ) ); else srcValWide = vdup_lane_u8( vget_high_u8( alphaBlock ), ClampConstant( Index - 8, 0, 8 ) ); #else srcValWide = vdup_laneq_u8( alphaBlock, Index ); #endif uint8x8_t deltaVal = vabd_u8( srcValWide, recVal ); return vmull_u8( deltaVal, deltaVal ); } etcpak_force_inline static uint16_t MinError_EAC_NEON( uint16x8_t errProbe ) { #ifndef __aarch64__ uint16x4_t tmpErr = vpmin_u16( vget_low_u16( errProbe ), vget_high_u16( errProbe ) ); tmpErr = vpmin_u16( tmpErr, tmpErr ); return vpmin_u16( tmpErr, tmpErr )[0]; #else return vminvq_u16( errProbe ); #endif } template etcpak_force_inline static uint64_t MinErrorIndex_EAC_NEON( uint8x8_t recVal, uint8x16_t alphaBlock ) { uint16x8_t errProbe = ErrorProbe_EAC_NEON( recVal, alphaBlock ); uint16x8_t minErrMask = vceqq_u16( errProbe, vdupq_n_u16( MinError_EAC_NEON( errProbe ) ) ); uint64_t idx = __builtin_ctzll( vget_lane_u64( vreinterpret_u64_u8( vqmovn_u16( minErrMask ) ), 0 ) ); idx >>= 3; idx <<= 45 - Index * 3; return idx; } template etcpak_force_inline static int16x8_t WidenMultiplier_EAC_NEON( int16x8_t multipliers ) { constexpr int Lane = GetMulSel( Index ); #ifndef __aarch64__ if( Lane < 4 ) return vdupq_lane_s16( vget_low_s16( multipliers ), ClampConstant( Lane, 0, 4 ) ); else return vdupq_lane_s16( vget_high_s16( multipliers ), ClampConstant( Lane - 4, 0, 4 ) ); #else return vdupq_laneq_s16( multipliers, Lane ); #endif } #endif static etcpak_force_inline uint64_t ProcessAlpha_ETC2( const uint8_t* src ) { #if defined __SSE4_1__ // Check solid __m128i s = _mm_loadu_si128( (__m128i*)src ); __m128i solidCmp = _mm_set1_epi8( src[0] ); __m128i cmpRes = _mm_cmpeq_epi8( s, solidCmp ); if( _mm_testc_si128( cmpRes, _mm_set1_epi32( -1 ) ) ) { return src[0]; } // Calculate min, max __m128i s1 = _mm_shuffle_epi32( s, _MM_SHUFFLE( 2, 3, 0, 1 ) ); __m128i max1 = _mm_max_epu8( s, s1 ); __m128i min1 = _mm_min_epu8( s, s1 ); __m128i smax2 = _mm_shuffle_epi32( max1, _MM_SHUFFLE( 0, 0, 2, 2 ) ); __m128i smin2 = _mm_shuffle_epi32( min1, _MM_SHUFFLE( 0, 0, 2, 2 ) ); __m128i max2 = _mm_max_epu8( max1, smax2 ); __m128i min2 = _mm_min_epu8( min1, smin2 ); __m128i smax3 = _mm_alignr_epi8( max2, max2, 2 ); __m128i smin3 = _mm_alignr_epi8( min2, min2, 2 ); __m128i max3 = _mm_max_epu8( max2, smax3 ); __m128i min3 = _mm_min_epu8( min2, smin3 ); __m128i smax4 = _mm_alignr_epi8( max3, max3, 1 ); __m128i smin4 = _mm_alignr_epi8( min3, min3, 1 ); __m128i max = _mm_max_epu8( max3, smax4 ); __m128i min = _mm_min_epu8( min3, smin4 ); __m128i max16 = _mm_unpacklo_epi8( max, _mm_setzero_si128() ); __m128i min16 = _mm_unpacklo_epi8( min, _mm_setzero_si128() ); // src range, mid __m128i srcRange = _mm_sub_epi16( max16, min16 ); __m128i srcRangeHalf = _mm_srli_epi16( srcRange, 1 ); __m128i srcMid = _mm_add_epi16( min16, srcRangeHalf ); // multiplier __m128i mul1 = _mm_mulhi_epi16( srcRange, g_alphaRange_SIMD ); __m128i mul = _mm_add_epi16( mul1, _mm_set1_epi16( 1 ) ); // wide source __m128i s16_1 = _mm_shuffle_epi32( s, _MM_SHUFFLE( 3, 2, 3, 2 ) ); __m128i s16[2] = { _mm_unpacklo_epi8( s, _mm_setzero_si128() ), _mm_unpacklo_epi8( s16_1, _mm_setzero_si128() ) }; __m128i sr[16] = { Widen<0>( s16[0] ), Widen<1>( s16[0] ), Widen<2>( s16[0] ), Widen<3>( s16[0] ), Widen<4>( s16[0] ), Widen<5>( s16[0] ), Widen<6>( s16[0] ), Widen<7>( s16[0] ), Widen<0>( s16[1] ), Widen<1>( s16[1] ), Widen<2>( s16[1] ), Widen<3>( s16[1] ), Widen<4>( s16[1] ), Widen<5>( s16[1] ), Widen<6>( s16[1] ), Widen<7>( s16[1] ) }; #ifdef __AVX2__ __m256i srcRangeWide = _mm256_broadcastsi128_si256( srcRange ); __m256i srcMidWide = _mm256_broadcastsi128_si256( srcMid ); __m256i mulWide1 = _mm256_mulhi_epi16( srcRangeWide, g_alphaRange_AVX ); __m256i mulWide = _mm256_add_epi16( mulWide1, _mm256_set1_epi16( 1 ) ); __m256i modMul[8] = { _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[0] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[0] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[1] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[1] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[2] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[2] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[3] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[3] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[4] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[4] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[5] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[5] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[6] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[6] ) ) ), _mm256_setzero_si256() ), _mm256_unpacklo_epi8( _mm256_packus_epi16( _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[7] ) ), _mm256_add_epi16( srcMidWide, _mm256_mullo_epi16( mulWide, g_alpha_AVX[7] ) ) ), _mm256_setzero_si256() ), }; // find selector __m256i mulErr = _mm256_setzero_si256(); for( int j=0; j<16; j++ ) { __m256i s16Wide = _mm256_broadcastsi128_si256( sr[j] ); __m256i err1, err2; err1 = _mm256_sub_epi16( s16Wide, modMul[0] ); __m256i localErr = _mm256_mullo_epi16( err1, err1 ); err1 = _mm256_sub_epi16( s16Wide, modMul[1] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[2] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[3] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[4] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[5] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[6] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); err1 = _mm256_sub_epi16( s16Wide, modMul[7] ); err2 = _mm256_mullo_epi16( err1, err1 ); localErr = _mm256_min_epu16( localErr, err2 ); // note that this can overflow, but since we're looking for the smallest error, it shouldn't matter mulErr = _mm256_adds_epu16( mulErr, localErr ); } uint64_t minPos1 = _mm_cvtsi128_si64( _mm_minpos_epu16( _mm256_castsi256_si128( mulErr ) ) ); uint64_t minPos2 = _mm_cvtsi128_si64( _mm_minpos_epu16( _mm256_extracti128_si256( mulErr, 1 ) ) ); int sel = ( ( minPos1 & 0xFFFF ) < ( minPos2 & 0xFFFF ) ) ? ( minPos1 >> 16 ) : ( 8 + ( minPos2 >> 16 ) ); __m128i recVal16; switch( sel ) { case 0: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ) ), _mm_setzero_si128() ); break; case 1: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ) ), _mm_setzero_si128() ); break; case 2: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ) ), _mm_setzero_si128() ); break; case 3: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ) ), _mm_setzero_si128() ); break; case 4: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ) ), _mm_setzero_si128() ); break; case 5: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ) ), _mm_setzero_si128() ); break; case 6: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ) ), _mm_setzero_si128() ); break; case 7: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ) ), _mm_setzero_si128() ); break; case 8: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ) ), _mm_setzero_si128() ); break; case 9: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ) ), _mm_setzero_si128() ); break; case 10: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ) ), _mm_setzero_si128() ); break; case 11: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ) ), _mm_setzero_si128() ); break; case 12: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ) ), _mm_setzero_si128() ); break; case 13: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ) ), _mm_setzero_si128() ); break; case 14: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ) ), _mm_setzero_si128() ); break; case 15: recVal16 = _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ) ), _mm_setzero_si128() ); break; default: assert( false ); break; } #else // wide multiplier __m128i rangeMul[16] = { _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<0>( mul ), g_alpha_SIMD[0] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[1] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[2] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<1>( mul ), g_alpha_SIMD[3] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<2>( mul ), g_alpha_SIMD[4] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[5] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[6] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<3>( mul ), g_alpha_SIMD[7] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[8] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[9] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[10] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[11] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[12] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<4>( mul ), g_alpha_SIMD[13] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[14] ) ) ), _mm_setzero_si128() ), _mm_unpacklo_epi8( _mm_packus_epi16( _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ), _mm_add_epi16( srcMid, _mm_mullo_epi16( Widen<5>( mul ), g_alpha_SIMD[15] ) ) ), _mm_setzero_si128() ) }; // find selector int err = std::numeric_limits::max(); int sel; for( int r=0; r<16; r++ ) { __m128i err1, err2, minerr; __m128i recVal16 = rangeMul[r]; int rangeErr; err1 = _mm_sub_epi16( sr[0], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr = _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[1], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[2], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[3], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[4], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[5], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[6], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[7], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[8], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[9], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[10], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[11], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[12], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[13], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[14], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; err1 = _mm_sub_epi16( sr[15], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); rangeErr += _mm_cvtsi128_si64( minerr ) & 0xFFFF; if( rangeErr < err ) { err = rangeErr; sel = r; if( err == 0 ) break; } } __m128i recVal16 = rangeMul[sel]; #endif // find indices __m128i err1, err2, minerr; uint64_t idx = 0, tmp; err1 = _mm_sub_epi16( sr[0], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 15*3; err1 = _mm_sub_epi16( sr[1], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 14*3; err1 = _mm_sub_epi16( sr[2], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 13*3; err1 = _mm_sub_epi16( sr[3], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 12*3; err1 = _mm_sub_epi16( sr[4], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 11*3; err1 = _mm_sub_epi16( sr[5], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 10*3; err1 = _mm_sub_epi16( sr[6], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 9*3; err1 = _mm_sub_epi16( sr[7], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 8*3; err1 = _mm_sub_epi16( sr[8], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 7*3; err1 = _mm_sub_epi16( sr[9], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 6*3; err1 = _mm_sub_epi16( sr[10], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 5*3; err1 = _mm_sub_epi16( sr[11], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 4*3; err1 = _mm_sub_epi16( sr[12], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 3*3; err1 = _mm_sub_epi16( sr[13], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 2*3; err1 = _mm_sub_epi16( sr[14], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 1*3; err1 = _mm_sub_epi16( sr[15], recVal16 ); err2 = _mm_mullo_epi16( err1, err1 ); minerr = _mm_minpos_epu16( err2 ); tmp = _mm_cvtsi128_si64( minerr ); idx |= ( tmp >> 16 ) << 0*3; uint16_t rm[8]; _mm_storeu_si128( (__m128i*)rm, mul ); uint16_t sm = _mm_cvtsi128_si64( srcMid ); uint64_t d = ( uint64_t( sm ) << 56 ) | ( uint64_t( rm[GetMulSel( sel )] ) << 52 ) | ( uint64_t( sel ) << 48 ) | idx; return _bswap64( d ); #elif defined __ARM_NEON int16x8_t srcMidWide, multipliers; int srcMid; uint8x16_t srcAlphaBlock = vld1q_u8( src ); { uint8_t ref = src[0]; uint8x16_t a0 = vdupq_n_u8( ref ); uint8x16_t r = vceqq_u8( srcAlphaBlock, a0 ); int64x2_t m = vreinterpretq_s64_u8( r ); if( m[0] == -1 && m[1] == -1 ) return ref; // srcRange #ifdef __aarch64__ uint8_t min = vminvq_u8( srcAlphaBlock ); uint8_t max = vmaxvq_u8( srcAlphaBlock ); uint8_t srcRange = max - min; multipliers = vqaddq_s16( vshrq_n_s16( vqdmulhq_n_s16( g_alphaRange_NEON, srcRange ), 1 ), vdupq_n_s16( 1 ) ); srcMid = min + srcRange / 2; srcMidWide = vdupq_n_s16( srcMid ); #else uint8x8_t vmin = vpmin_u8( vget_low_u8( srcAlphaBlock ), vget_high_u8( srcAlphaBlock ) ); vmin = vpmin_u8( vmin, vmin ); vmin = vpmin_u8( vmin, vmin ); vmin = vpmin_u8( vmin, vmin ); uint8x8_t vmax = vpmax_u8( vget_low_u8( srcAlphaBlock ), vget_high_u8( srcAlphaBlock ) ); vmax = vpmax_u8( vmax, vmax ); vmax = vpmax_u8( vmax, vmax ); vmax = vpmax_u8( vmax, vmax ); int16x8_t srcRangeWide = vreinterpretq_s16_u16( vsubl_u8( vmax, vmin ) ); multipliers = vqaddq_s16( vshrq_n_s16( vqdmulhq_s16( g_alphaRange_NEON, srcRangeWide ), 1 ), vdupq_n_s16( 1 ) ); srcMidWide = vsraq_n_s16( vreinterpretq_s16_u16(vmovl_u8(vmin)), srcRangeWide, 1); srcMid = vgetq_lane_s16( srcMidWide, 0 ); #endif } // calculate reconstructed values #define EAC_APPLY_16X( m ) m( 0 ) m( 1 ) m( 2 ) m( 3 ) m( 4 ) m( 5 ) m( 6 ) m( 7 ) m( 8 ) m( 9 ) m( 10 ) m( 11 ) m( 12 ) m( 13 ) m( 14 ) m( 15 ) #define EAC_RECONSTRUCT_VALUE( n ) vqmovun_s16( vmlaq_s16( srcMidWide, g_alpha_NEON[n], WidenMultiplier_EAC_NEON( multipliers ) ) ), uint8x8_t recVals[16] = { EAC_APPLY_16X( EAC_RECONSTRUCT_VALUE ) }; // find selector int err = std::numeric_limits::max(); int sel = 0; for( int r = 0; r < 16; r++ ) { uint8x8_t recVal = recVals[r]; int rangeErr = 0; #define EAC_ACCUMULATE_ERROR( n ) rangeErr += MinError_EAC_NEON( ErrorProbe_EAC_NEON( recVal, srcAlphaBlock ) ); EAC_APPLY_16X( EAC_ACCUMULATE_ERROR ) if( rangeErr < err ) { err = rangeErr; sel = r; if ( err == 0 ) break; } } // combine results uint64_t d = ( uint64_t( srcMid ) << 56 ) | ( uint64_t( multipliers[GetMulSel( sel )] ) << 52 ) | ( uint64_t( sel ) << 48); // generate indices uint8x8_t recVal = recVals[sel]; #define EAC_INSERT_INDEX(n) d |= MinErrorIndex_EAC_NEON( recVal, srcAlphaBlock ); EAC_APPLY_16X( EAC_INSERT_INDEX ) return _bswap64( d ); #undef EAC_APPLY_16X #undef EAC_INSERT_INDEX #undef EAC_ACCUMULATE_ERROR #undef EAC_RECONSTRUCT_VALUE #else { bool solid = true; const uint8_t* ptr = src + 1; const uint8_t ref = *src; for( int i=1; i<16; i++ ) { if( ref != *ptr++ ) { solid = false; break; } } if( solid ) { return ref; } } uint8_t min = src[0]; uint8_t max = src[0]; for( int i=1; i<16; i++ ) { if( min > src[i] ) min = src[i]; else if( max < src[i] ) max = src[i]; } int srcRange = max - min; int srcMid = min + srcRange / 2; uint8_t buf[16][16]; int err = std::numeric_limits::max(); int sel; int selmul; for( int r=0; r<16; r++ ) { int mul = ( ( srcRange * g_alphaRange[r] ) >> 16 ) + 1; int rangeErr = 0; for( int i=0; i<16; i++ ) { const auto srcVal = src[i]; int idx = 0; const auto modVal = g_alpha[r][0] * mul; const auto recVal = clampu8( srcMid + modVal ); int localErr = sq( srcVal - recVal ); if( localErr != 0 ) { for( int j=1; j<8; j++ ) { const auto modVal = g_alpha[r][j] * mul; const auto recVal = clampu8( srcMid + modVal ); const auto errProbe = sq( srcVal - recVal ); if( errProbe < localErr ) { localErr = errProbe; idx = j; } } } buf[r][i] = idx; rangeErr += localErr; } if( rangeErr < err ) { err = rangeErr; sel = r; selmul = mul; if( err == 0 ) break; } } uint64_t d = ( uint64_t( srcMid ) << 56 ) | ( uint64_t( selmul ) << 52 ) | ( uint64_t( sel ) << 48 ); int offset = 45; auto ptr = buf[sel]; for( int i=0; i<16; i++ ) { d |= uint64_t( *ptr++ ) << offset; offset -= 3; } return _bswap64( d ); #endif } void CompressEtc1Alpha( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) { int w = 0; uint32_t buf[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); __m128i c0 = _mm_castps_si128( px0 ); __m128i c1 = _mm_castps_si128( px1 ); __m128i c2 = _mm_castps_si128( px2 ); __m128i c3 = _mm_castps_si128( px3 ); __m128i mask = _mm_setr_epi32( 0x03030303, 0x07070707, 0x0b0b0b0b, 0x0f0f0f0f ); __m128i p0 = _mm_shuffle_epi8( c0, mask ); __m128i p1 = _mm_shuffle_epi8( c1, mask ); __m128i p2 = _mm_shuffle_epi8( c2, mask ); __m128i p3 = _mm_shuffle_epi8( c3, mask ); _mm_store_si128( (__m128i*)(buf + 0), p0 ); _mm_store_si128( (__m128i*)(buf + 4), p1 ); _mm_store_si128( (__m128i*)(buf + 8), p2 ); _mm_store_si128( (__m128i*)(buf + 12), p3 ); src += 4; #else auto ptr = buf; for( int x=0; x<4; x++ ) { unsigned int a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessRGB( (uint8_t*)buf ); } while( --blocks ); } void CompressEtc2Alpha( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width, bool useHeuristics ) { int w = 0; uint32_t buf[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); __m128i c0 = _mm_castps_si128( px0 ); __m128i c1 = _mm_castps_si128( px1 ); __m128i c2 = _mm_castps_si128( px2 ); __m128i c3 = _mm_castps_si128( px3 ); __m128i mask = _mm_setr_epi32( 0x03030303, 0x07070707, 0x0b0b0b0b, 0x0f0f0f0f ); __m128i p0 = _mm_shuffle_epi8( c0, mask ); __m128i p1 = _mm_shuffle_epi8( c1, mask ); __m128i p2 = _mm_shuffle_epi8( c2, mask ); __m128i p3 = _mm_shuffle_epi8( c3, mask ); _mm_store_si128( (__m128i*)(buf + 0), p0 ); _mm_store_si128( (__m128i*)(buf + 4), p1 ); _mm_store_si128( (__m128i*)(buf + 8), p2 ); _mm_store_si128( (__m128i*)(buf + 12), p3 ); src += 4; #else auto ptr = buf; for( int x=0; x<4; x++ ) { unsigned int a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src += width; a = *src >> 24; *ptr++ = a | ( a << 8 ) | ( a << 16 ); src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessRGB_ETC2( (uint8_t*)buf, useHeuristics ); } while( --blocks ); } #include #include void CompressEtc1Rgb( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) { int w = 0; uint32_t buf[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); src += 4; #else auto ptr = buf; for( int x=0; x<4; x++ ) { *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessRGB( (uint8_t*)buf ); } while( --blocks ); } void CompressEtc1RgbDither( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width ) { int w = 0; uint32_t buf[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); # ifdef __AVX2__ DitherAvx2( (uint8_t*)buf, _mm_castps_si128( px0 ), _mm_castps_si128( px1 ), _mm_castps_si128( px2 ), _mm_castps_si128( px3 ) ); # else _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); Dither( (uint8_t*)buf ); # endif src += 4; #else auto ptr = buf; for( int x=0; x<4; x++ ) { *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessRGB( (uint8_t*)buf ); } while( --blocks ); } void CompressEtc2Rgb( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width, bool useHeuristics ) { int w = 0; uint32_t buf[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); _mm_store_si128( (__m128i*)(buf + 0), _mm_castps_si128( px0 ) ); _mm_store_si128( (__m128i*)(buf + 4), _mm_castps_si128( px1 ) ); _mm_store_si128( (__m128i*)(buf + 8), _mm_castps_si128( px2 ) ); _mm_store_si128( (__m128i*)(buf + 12), _mm_castps_si128( px3 ) ); src += 4; #else auto ptr = buf; for( int x=0; x<4; x++ ) { *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src += width; *ptr++ = *src; src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessRGB_ETC2( (uint8_t*)buf, useHeuristics ); } while( --blocks ); } void CompressEtc2Rgba( const uint32_t* src, uint64_t* dst, uint32_t blocks, size_t width, bool useHeuristics ) { int w = 0; uint32_t rgba[4*4]; uint8_t alpha[4*4]; do { #ifdef __SSE4_1__ __m128 px0 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 0 ) ) ); __m128 px1 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 1 ) ) ); __m128 px2 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 2 ) ) ); __m128 px3 = _mm_castsi128_ps( _mm_loadu_si128( (__m128i*)( src + width * 3 ) ) ); _MM_TRANSPOSE4_PS( px0, px1, px2, px3 ); __m128i c0 = _mm_castps_si128( px0 ); __m128i c1 = _mm_castps_si128( px1 ); __m128i c2 = _mm_castps_si128( px2 ); __m128i c3 = _mm_castps_si128( px3 ); _mm_store_si128( (__m128i*)(rgba + 0), c0 ); _mm_store_si128( (__m128i*)(rgba + 4), c1 ); _mm_store_si128( (__m128i*)(rgba + 8), c2 ); _mm_store_si128( (__m128i*)(rgba + 12), c3 ); __m128i mask = _mm_setr_epi32( 0x0f0b0703, -1, -1, -1 ); __m128i a0 = _mm_shuffle_epi8( c0, mask ); __m128i a1 = _mm_shuffle_epi8( c1, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 3, 3, 0, 3 ) ) ); __m128i a2 = _mm_shuffle_epi8( c2, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 3, 0, 3, 3 ) ) ); __m128i a3 = _mm_shuffle_epi8( c3, _mm_shuffle_epi32( mask, _MM_SHUFFLE( 0, 3, 3, 3 ) ) ); __m128i s0 = _mm_or_si128( a0, a1 ); __m128i s1 = _mm_or_si128( a2, a3 ); __m128i s2 = _mm_or_si128( s0, s1 ); _mm_store_si128( (__m128i*)alpha, s2 ); src += 4; #else auto ptr = rgba; auto ptr8 = alpha; for( int x=0; x<4; x++ ) { auto v = *src; *ptr++ = v; *ptr8++ = v >> 24; src += width; v = *src; *ptr++ = v; *ptr8++ = v >> 24; src += width; v = *src; *ptr++ = v; *ptr8++ = v >> 24; src += width; v = *src; *ptr++ = v; *ptr8++ = v >> 24; src -= width * 3 - 1; } #endif if( ++w == width/4 ) { src += width * 3; w = 0; } *dst++ = ProcessAlpha_ETC2( alpha ); *dst++ = ProcessRGB_ETC2( (uint8_t*)rgba, useHeuristics ); } while( --blocks ); }