/* * Copyright 2015 The Etc2Comp Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* EtcBlock4x4Encoding_ETC1.cpp Block4x4Encoding_ETC1 is the encoder to use when targetting file format ETC1. This encoder is also used for the ETC1 subset of file format RGB8, RGBA8 and RGB8A1 */ #include "EtcConfig.h" #include "EtcBlock4x4Encoding_ETC1.h" #include "EtcBlock4x4.h" #include "EtcBlock4x4EncodingBits.h" #include "EtcDifferentialTrys.h" #include <stdio.h> #include <string.h> #include <assert.h> #include <float.h> #include <limits> namespace Etc { // pixel processing order if the flip bit = 0 (horizontal split) const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderFlip0[PIXELS] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; // pixel processing order if the flip bit = 1 (vertical split) const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderFlip1[PIXELS] = { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }; // pixel processing order for horizontal scan (ETC normally does a vertical scan) const unsigned int Block4x4Encoding_ETC1::s_auiPixelOrderHScan[PIXELS] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 }; // pixel indices for different block halves const unsigned int Block4x4Encoding_ETC1::s_auiLeftPixelMapping[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; const unsigned int Block4x4Encoding_ETC1::s_auiRightPixelMapping[8] = { 8, 9, 10, 11, 12, 13, 14, 15 }; const unsigned int Block4x4Encoding_ETC1::s_auiTopPixelMapping[8] = { 0, 1, 4, 5, 8, 9, 12, 13 }; const unsigned int Block4x4Encoding_ETC1::s_auiBottomPixelMapping[8] = { 2, 3, 6, 7, 10, 11, 14, 15 }; // CW ranges that the ETC1 decoders use // CW is basically a contrast for the different selector bits, since these values are offsets to the base color // the first axis in the array is indexed by the CW in the encoding bits // the second axis in the array is indexed by the selector bits float Block4x4Encoding_ETC1::s_aafCwTable[CW_RANGES][SELECTORS] = { { 2.0f / 255.0f, 8.0f / 255.0f, -2.0f / 255.0f, -8.0f / 255.0f }, { 5.0f / 255.0f, 17.0f / 255.0f, -5.0f / 255.0f, -17.0f / 255.0f }, { 9.0f / 255.0f, 29.0f / 255.0f, -9.0f / 255.0f, -29.0f / 255.0f }, { 13.0f / 255.0f, 42.0f / 255.0f, -13.0f / 255.0f, -42.0f / 255.0f }, { 18.0f / 255.0f, 60.0f / 255.0f, -18.0f / 255.0f, -60.0f / 255.0f }, { 24.0f / 255.0f, 80.0f / 255.0f, -24.0f / 255.0f, -80.0f / 255.0f }, { 33.0f / 255.0f, 106.0f / 255.0f, -33.0f / 255.0f, -106.0f / 255.0f }, { 47.0f / 255.0f, 183.0f / 255.0f, -47.0f / 255.0f, -183.0f / 255.0f } }; // ---------------------------------------------------------------------------------------------------- // Block4x4Encoding_ETC1::Block4x4Encoding_ETC1(void) { m_mode = MODE_ETC1; m_boolDiff = false; m_boolFlip = false; m_frgbaColor1 = ColorFloatRGBA(); m_frgbaColor2 = ColorFloatRGBA(); m_uiCW1 = 0; m_uiCW2 = 0; for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { m_auiSelectors[uiPixel] = 0; m_afDecodedAlphas[uiPixel] = 1.0f; } m_boolMostLikelyFlip = false; m_fError = -1.0f; m_fError1 = -1.0f; m_fError2 = -1.0f; m_boolSeverelyBentDifferentialColors = false; for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { m_afDecodedAlphas[uiPixel] = 1.0f; } } Block4x4Encoding_ETC1::~Block4x4Encoding_ETC1(void) {} // ---------------------------------------------------------------------------------------------------- // initialization prior to encoding // a_pblockParent points to the block associated with this encoding // a_errormetric is used to choose the best encoding // a_pafrgbaSource points to a 4x4 block subset of the source image // a_paucEncodingBits points to the final encoding bits // void Block4x4Encoding_ETC1::InitFromSource(Block4x4 *a_pblockParent, ColorFloatRGBA *a_pafrgbaSource, unsigned char *a_paucEncodingBits, ErrorMetric a_errormetric) { Block4x4Encoding::Init(a_pblockParent, a_pafrgbaSource,a_errormetric); for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { m_afDecodedAlphas[uiPixel] = 1.0f; } m_fError = -1.0f; m_pencodingbitsRGB8 = (Block4x4EncodingBits_RGB8 *)(a_paucEncodingBits); } // ---------------------------------------------------------------------------------------------------- // initialization from the encoding bits of a previous encoding // a_pblockParent points to the block associated with this encoding // a_errormetric is used to choose the best encoding // a_pafrgbaSource points to a 4x4 block subset of the source image // a_paucEncodingBits points to the final encoding bits of a previous encoding // void Block4x4Encoding_ETC1::InitFromEncodingBits(Block4x4 *a_pblockParent, unsigned char *a_paucEncodingBits, ColorFloatRGBA *a_pafrgbaSource, ErrorMetric a_errormetric) { Block4x4Encoding::Init(a_pblockParent, a_pafrgbaSource,a_errormetric); m_fError = -1.0f; m_pencodingbitsRGB8 = (Block4x4EncodingBits_RGB8 *)a_paucEncodingBits; m_mode = MODE_ETC1; m_boolDiff = m_pencodingbitsRGB8->individual.diff; m_boolFlip = m_pencodingbitsRGB8->individual.flip; if (m_boolDiff) { int iR2 = (int)(m_pencodingbitsRGB8->differential.red1 + m_pencodingbitsRGB8->differential.dred2); if (iR2 < 0) { iR2 = 0; } else if (iR2 > 31) { iR2 = 31; } int iG2 = (int)(m_pencodingbitsRGB8->differential.green1 + m_pencodingbitsRGB8->differential.dgreen2); if (iG2 < 0) { iG2 = 0; } else if (iG2 > 31) { iG2 = 31; } int iB2 = (int)(m_pencodingbitsRGB8->differential.blue1 + m_pencodingbitsRGB8->differential.dblue2); if (iB2 < 0) { iB2 = 0; } else if (iB2 > 31) { iB2 = 31; } m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB5(m_pencodingbitsRGB8->differential.red1, m_pencodingbitsRGB8->differential.green1, m_pencodingbitsRGB8->differential.blue1); m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)iR2, (unsigned char)iG2, (unsigned char)iB2); } else { m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4(m_pencodingbitsRGB8->individual.red1, m_pencodingbitsRGB8->individual.green1, m_pencodingbitsRGB8->individual.blue1); m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4(m_pencodingbitsRGB8->individual.red2, m_pencodingbitsRGB8->individual.green2, m_pencodingbitsRGB8->individual.blue2); } m_uiCW1 = m_pencodingbitsRGB8->individual.cw1; m_uiCW2 = m_pencodingbitsRGB8->individual.cw2; InitFromEncodingBits_Selectors(); Decode(); CalcBlockError(); } // ---------------------------------------------------------------------------------------------------- // init the selectors from a prior encoding // void Block4x4Encoding_ETC1::InitFromEncodingBits_Selectors(void) { unsigned char *paucSelectors = (unsigned char *)&m_pencodingbitsRGB8->individual.selectors; for (unsigned int iPixel = 0; iPixel < PIXELS; iPixel++) { unsigned int uiByteMSB = (unsigned int)(1 - (iPixel / 8)); unsigned int uiByteLSB = (unsigned int)(3 - (iPixel / 8)); unsigned int uiShift = (unsigned int)(iPixel & 7); unsigned int uiSelectorMSB = (unsigned int)((paucSelectors[uiByteMSB] >> uiShift) & 1); unsigned int uiSelectorLSB = (unsigned int)((paucSelectors[uiByteLSB] >> uiShift) & 1); m_auiSelectors[iPixel] = (uiSelectorMSB << 1) + uiSelectorLSB; } } // ---------------------------------------------------------------------------------------------------- // perform a single encoding iteration // replace the encoding if a better encoding was found // subsequent iterations generally take longer for each iteration // set m_boolDone if encoding is perfect or encoding is finished based on a_fEffort // void Block4x4Encoding_ETC1::PerformIteration(float a_fEffort) { assert(!m_boolDone); switch (m_uiEncodingIterations) { case 0: PerformFirstIteration(); break; case 1: TryDifferential(m_boolMostLikelyFlip, 1, 0, 0); break; case 2: TryIndividual(m_boolMostLikelyFlip, 1); if (a_fEffort <= 49.5f) { m_boolDone = true; } break; case 3: TryDifferential(!m_boolMostLikelyFlip, 1, 0, 0); if (a_fEffort <= 59.5f) { m_boolDone = true; } break; case 4: TryIndividual(!m_boolMostLikelyFlip, 1); if (a_fEffort <= 69.5f) { m_boolDone = true; } break; case 5: TryDegenerates1(); if (a_fEffort <= 79.5f) { m_boolDone = true; } break; case 6: TryDegenerates2(); if (a_fEffort <= 89.5f) { m_boolDone = true; } break; case 7: TryDegenerates3(); if (a_fEffort <= 99.5f) { m_boolDone = true; } break; case 8: TryDegenerates4(); m_boolDone = true; break; default: assert(0); break; } m_uiEncodingIterations++; SetDoneIfPerfect(); } // ---------------------------------------------------------------------------------------------------- // find best initial encoding to ensure block has a valid encoding // void Block4x4Encoding_ETC1::PerformFirstIteration(void) { CalculateMostLikelyFlip(); m_fError = FLT_MAX; TryDifferential(m_boolMostLikelyFlip, 0, 0, 0); SetDoneIfPerfect(); if (m_boolDone) { return; } TryIndividual(m_boolMostLikelyFlip, 0); SetDoneIfPerfect(); if (m_boolDone) { return; } TryDifferential(!m_boolMostLikelyFlip, 0, 0, 0); SetDoneIfPerfect(); if (m_boolDone) { return; } TryIndividual(!m_boolMostLikelyFlip, 0); } // ---------------------------------------------------------------------------------------------------- // algorithm: // create a source average color for the Left, Right, Top and Bottom halves using the 8 pixels in each half // note: the "gray line" is the line of equal delta RGB that goes thru the average color // for each half: // see how close each of the 8 pixels are to the "gray line" that goes thru the source average color // create an error value that is the sum of the distances from the gray line // h_error is the sum of Left and Right errors // v_error is the sum of Top and Bottom errors // void Block4x4Encoding_ETC1::CalculateMostLikelyFlip(void) { static const bool DEBUG_PRINT = false; CalculateSourceAverages(); float fLeftGrayErrorSum = 0.0f; float fRightGrayErrorSum = 0.0f; float fTopGrayErrorSum = 0.0f; float fBottomGrayErrorSum = 0.0f; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { ColorFloatRGBA *pfrgbaLeft = &m_pafrgbaSource[uiPixel]; ColorFloatRGBA *pfrgbaRight = &m_pafrgbaSource[uiPixel + 8]; ColorFloatRGBA *pfrgbaTop = &m_pafrgbaSource[s_auiTopPixelMapping[uiPixel]]; ColorFloatRGBA *pfrgbaBottom = &m_pafrgbaSource[s_auiBottomPixelMapping[uiPixel]]; float fLeftGrayError = CalcGrayDistance2(*pfrgbaLeft, m_frgbaSourceAverageLeft); float fRightGrayError = CalcGrayDistance2(*pfrgbaRight, m_frgbaSourceAverageRight); float fTopGrayError = CalcGrayDistance2(*pfrgbaTop, m_frgbaSourceAverageTop); float fBottomGrayError = CalcGrayDistance2(*pfrgbaBottom, m_frgbaSourceAverageBottom); fLeftGrayErrorSum += fLeftGrayError; fRightGrayErrorSum += fRightGrayError; fTopGrayErrorSum += fTopGrayError; fBottomGrayErrorSum += fBottomGrayError; } if (DEBUG_PRINT) { printf("\n%.2f %.2f\n", fLeftGrayErrorSum + fRightGrayErrorSum, fTopGrayErrorSum + fBottomGrayErrorSum); } m_boolMostLikelyFlip = (fTopGrayErrorSum + fBottomGrayErrorSum) < (fLeftGrayErrorSum + fRightGrayErrorSum); } // ---------------------------------------------------------------------------------------------------- // calculate source pixel averages for each 2x2 quadrant in a 4x4 block // these are used to determine the averages for each of the 4 different halves (left, right, top, bottom) // ignore pixels that have alpha == NAN (these are border pixels outside of the source image) // weight the averages based on a pixel's alpha // void Block4x4Encoding_ETC1::CalculateSourceAverages(void) { static const bool DEBUG_PRINT = false; bool boolRGBX = m_pblockParent->GetImageSource()->GetErrorMetric() == ErrorMetric::RGBX; if (m_pblockParent->GetSourceAlphaMix() == Block4x4::SourceAlphaMix::OPAQUE || boolRGBX) { ColorFloatRGBA frgbaSumUL = m_pafrgbaSource[0] + m_pafrgbaSource[1] + m_pafrgbaSource[4] + m_pafrgbaSource[5]; ColorFloatRGBA frgbaSumLL = m_pafrgbaSource[2] + m_pafrgbaSource[3] + m_pafrgbaSource[6] + m_pafrgbaSource[7]; ColorFloatRGBA frgbaSumUR = m_pafrgbaSource[8] + m_pafrgbaSource[9] + m_pafrgbaSource[12] + m_pafrgbaSource[13]; ColorFloatRGBA frgbaSumLR = m_pafrgbaSource[10] + m_pafrgbaSource[11] + m_pafrgbaSource[14] + m_pafrgbaSource[15]; m_frgbaSourceAverageLeft = (frgbaSumUL + frgbaSumLL) * 0.125f; m_frgbaSourceAverageRight = (frgbaSumUR + frgbaSumLR) * 0.125f; m_frgbaSourceAverageTop = (frgbaSumUL + frgbaSumUR) * 0.125f; m_frgbaSourceAverageBottom = (frgbaSumLL + frgbaSumLR) * 0.125f; } else { float afSourceAlpha[PIXELS]; // treat alpha NAN as 0.0f for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { afSourceAlpha[uiPixel] = isnan(m_pafrgbaSource[uiPixel].fA) ? 0.0f : m_pafrgbaSource[uiPixel].fA; } ColorFloatRGBA afrgbaAlphaWeightedSource[PIXELS]; for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { afrgbaAlphaWeightedSource[uiPixel] = m_pafrgbaSource[uiPixel] * afSourceAlpha[uiPixel]; } ColorFloatRGBA frgbaSumUL = afrgbaAlphaWeightedSource[0] + afrgbaAlphaWeightedSource[1] + afrgbaAlphaWeightedSource[4] + afrgbaAlphaWeightedSource[5]; ColorFloatRGBA frgbaSumLL = afrgbaAlphaWeightedSource[2] + afrgbaAlphaWeightedSource[3] + afrgbaAlphaWeightedSource[6] + afrgbaAlphaWeightedSource[7]; ColorFloatRGBA frgbaSumUR = afrgbaAlphaWeightedSource[8] + afrgbaAlphaWeightedSource[9] + afrgbaAlphaWeightedSource[12] + afrgbaAlphaWeightedSource[13]; ColorFloatRGBA frgbaSumLR = afrgbaAlphaWeightedSource[10] + afrgbaAlphaWeightedSource[11] + afrgbaAlphaWeightedSource[14] + afrgbaAlphaWeightedSource[15]; float fWeightSumUL = afSourceAlpha[0] + afSourceAlpha[1] + afSourceAlpha[4] + afSourceAlpha[5]; float fWeightSumLL = afSourceAlpha[2] + afSourceAlpha[3] + afSourceAlpha[6] + afSourceAlpha[7]; float fWeightSumUR = afSourceAlpha[8] + afSourceAlpha[9] + afSourceAlpha[12] + afSourceAlpha[13]; float fWeightSumLR = afSourceAlpha[10] + afSourceAlpha[11] + afSourceAlpha[14] + afSourceAlpha[15]; ColorFloatRGBA frgbaSumLeft = frgbaSumUL + frgbaSumLL; ColorFloatRGBA frgbaSumRight = frgbaSumUR + frgbaSumLR; ColorFloatRGBA frgbaSumTop = frgbaSumUL + frgbaSumUR; ColorFloatRGBA frgbaSumBottom = frgbaSumLL + frgbaSumLR; float fWeightSumLeft = fWeightSumUL + fWeightSumLL; float fWeightSumRight = fWeightSumUR + fWeightSumLR; float fWeightSumTop = fWeightSumUL + fWeightSumUR; float fWeightSumBottom = fWeightSumLL + fWeightSumLR; // check to see if there is at least 1 pixel with non-zero alpha // completely transparent block should not make it to this code assert((fWeightSumLeft + fWeightSumRight) > 0.0f); assert((fWeightSumTop + fWeightSumBottom) > 0.0f); if (fWeightSumLeft > 0.0f) { m_frgbaSourceAverageLeft = frgbaSumLeft * (1.0f/fWeightSumLeft); } if (fWeightSumRight > 0.0f) { m_frgbaSourceAverageRight = frgbaSumRight * (1.0f/fWeightSumRight); } if (fWeightSumTop > 0.0f) { m_frgbaSourceAverageTop = frgbaSumTop * (1.0f/fWeightSumTop); } if (fWeightSumBottom > 0.0f) { m_frgbaSourceAverageBottom = frgbaSumBottom * (1.0f/fWeightSumBottom); } if (fWeightSumLeft == 0.0f) { assert(fWeightSumRight > 0.0f); m_frgbaSourceAverageLeft = m_frgbaSourceAverageRight; } if (fWeightSumRight == 0.0f) { assert(fWeightSumLeft > 0.0f); m_frgbaSourceAverageRight = m_frgbaSourceAverageLeft; } if (fWeightSumTop == 0.0f) { assert(fWeightSumBottom > 0.0f); m_frgbaSourceAverageTop = m_frgbaSourceAverageBottom; } if (fWeightSumBottom == 0.0f) { assert(fWeightSumTop > 0.0f); m_frgbaSourceAverageBottom = m_frgbaSourceAverageTop; } } if (DEBUG_PRINT) { printf("\ntarget: [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f] [%.2f,%.2f,%.2f]\n", m_frgbaSourceAverageLeft.fR, m_frgbaSourceAverageLeft.fG, m_frgbaSourceAverageLeft.fB, m_frgbaSourceAverageRight.fR, m_frgbaSourceAverageRight.fG, m_frgbaSourceAverageRight.fB, m_frgbaSourceAverageTop.fR, m_frgbaSourceAverageTop.fG, m_frgbaSourceAverageTop.fB, m_frgbaSourceAverageBottom.fR, m_frgbaSourceAverageBottom.fG, m_frgbaSourceAverageBottom.fB); } } // ---------------------------------------------------------------------------------------------------- // try an ETC1 differential mode encoding // use a_boolFlip to set the encoding F bit // use a_uiRadius to alter basecolor components in the range[-a_uiRadius:a_uiRadius] // use a_iGrayOffset1 and a_iGrayOffset2 to offset the basecolor to search for degenerate encodings // replace the encoding if the encoding error is less than previous encoding // void Block4x4Encoding_ETC1::TryDifferential(bool a_boolFlip, unsigned int a_uiRadius, int a_iGrayOffset1, int a_iGrayOffset2) { ColorFloatRGBA frgbaColor1; ColorFloatRGBA frgbaColor2; const unsigned int *pauiPixelMapping1; const unsigned int *pauiPixelMapping2; if (a_boolFlip) { frgbaColor1 = m_frgbaSourceAverageTop; frgbaColor2 = m_frgbaSourceAverageBottom; pauiPixelMapping1 = s_auiTopPixelMapping; pauiPixelMapping2 = s_auiBottomPixelMapping; } else { frgbaColor1 = m_frgbaSourceAverageLeft; frgbaColor2 = m_frgbaSourceAverageRight; pauiPixelMapping1 = s_auiLeftPixelMapping; pauiPixelMapping2 = s_auiRightPixelMapping; } DifferentialTrys trys(frgbaColor1, frgbaColor2, pauiPixelMapping1, pauiPixelMapping2, a_uiRadius, a_iGrayOffset1, a_iGrayOffset2); Block4x4Encoding_ETC1 encodingTry = *this; encodingTry.m_boolFlip = a_boolFlip; encodingTry.TryDifferentialHalf(&trys.m_half1); encodingTry.TryDifferentialHalf(&trys.m_half2); // find best halves that are within differential range DifferentialTrys::Try *ptryBest1 = nullptr; DifferentialTrys::Try *ptryBest2 = nullptr; encodingTry.m_fError = FLT_MAX; // see if the best of each half are in differential range int iDRed = trys.m_half2.m_ptryBest->m_iRed - trys.m_half1.m_ptryBest->m_iRed; int iDGreen = trys.m_half2.m_ptryBest->m_iGreen - trys.m_half1.m_ptryBest->m_iGreen; int iDBlue = trys.m_half2.m_ptryBest->m_iBlue - trys.m_half1.m_ptryBest->m_iBlue; if (iDRed >= -4 && iDRed <= 3 && iDGreen >= -4 && iDGreen <= 3 && iDBlue >= -4 && iDBlue <= 3) { ptryBest1 = trys.m_half1.m_ptryBest; ptryBest2 = trys.m_half2.m_ptryBest; encodingTry.m_fError = trys.m_half1.m_ptryBest->m_fError + trys.m_half2.m_ptryBest->m_fError; } else { // else, find the next best halves that are in differential range for (DifferentialTrys::Try *ptry1 = &trys.m_half1.m_atry[0]; ptry1 < &trys.m_half1.m_atry[trys.m_half1.m_uiTrys]; ptry1++) { for (DifferentialTrys::Try *ptry2 = &trys.m_half2.m_atry[0]; ptry2 < &trys.m_half2.m_atry[trys.m_half2.m_uiTrys]; ptry2++) { iDRed = ptry2->m_iRed - ptry1->m_iRed; bool boolValidRedDelta = iDRed <= 3 && iDRed >= -4; iDGreen = ptry2->m_iGreen - ptry1->m_iGreen; bool boolValidGreenDelta = iDGreen <= 3 && iDGreen >= -4; iDBlue = ptry2->m_iBlue - ptry1->m_iBlue; bool boolValidBlueDelta = iDBlue <= 3 && iDBlue >= -4; if (boolValidRedDelta && boolValidGreenDelta && boolValidBlueDelta) { float fError = ptry1->m_fError + ptry2->m_fError; if (fError < encodingTry.m_fError) { encodingTry.m_fError = fError; ptryBest1 = ptry1; ptryBest2 = ptry2; } } } } assert(encodingTry.m_fError < FLT_MAX); assert(ptryBest1 != nullptr); assert(ptryBest2 != nullptr); } if (encodingTry.m_fError < m_fError) { m_mode = MODE_ETC1; m_boolDiff = true; m_boolFlip = encodingTry.m_boolFlip; m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)ptryBest1->m_iRed, (unsigned char)ptryBest1->m_iGreen, (unsigned char)ptryBest1->m_iBlue); m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB5((unsigned char)ptryBest2->m_iRed, (unsigned char)ptryBest2->m_iGreen, (unsigned char)ptryBest2->m_iBlue); m_uiCW1 = ptryBest1->m_uiCW; m_uiCW2 = ptryBest2->m_uiCW; for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS / 2; uiPixelOrder++) { unsigned int uiPixel1 = pauiPixelMapping1[uiPixelOrder]; unsigned int uiPixel2 = pauiPixelMapping2[uiPixelOrder]; unsigned int uiSelector1 = ptryBest1->m_auiSelectors[uiPixelOrder]; unsigned int uiSelector2 = ptryBest2->m_auiSelectors[uiPixelOrder]; m_auiSelectors[uiPixel1] = uiSelector1; m_auiSelectors[uiPixel2] = ptryBest2->m_auiSelectors[uiPixelOrder]; float fDeltaRGB1 = s_aafCwTable[m_uiCW1][uiSelector1]; float fDeltaRGB2 = s_aafCwTable[m_uiCW2][uiSelector2]; m_afrgbaDecodedColors[uiPixel1] = (m_frgbaColor1 + fDeltaRGB1).ClampRGB(); m_afrgbaDecodedColors[uiPixel2] = (m_frgbaColor2 + fDeltaRGB2).ClampRGB(); } m_fError1 = ptryBest1->m_fError; m_fError2 = ptryBest2->m_fError; m_boolSeverelyBentDifferentialColors = trys.m_boolSeverelyBentColors; m_fError = m_fError1 + m_fError2; // sanity check { int iRed1 = m_frgbaColor1.IntRed(31.0f); int iGreen1 = m_frgbaColor1.IntGreen(31.0f); int iBlue1 = m_frgbaColor1.IntBlue(31.0f); int iRed2 = m_frgbaColor2.IntRed(31.0f); int iGreen2 = m_frgbaColor2.IntGreen(31.0f); int iBlue2 = m_frgbaColor2.IntBlue(31.0f); iDRed = iRed2 - iRed1; iDGreen = iGreen2 - iGreen1; iDBlue = iBlue2 - iBlue1; assert(iDRed >= -4 && iDRed < 4); assert(iDGreen >= -4 && iDGreen < 4); assert(iDBlue >= -4 && iDBlue < 4); } } } // ---------------------------------------------------------------------------------------------------- // try an ETC1 differential mode encoding for a half of a 4x4 block // vary the basecolor components using a radius // void Block4x4Encoding_ETC1::TryDifferentialHalf(DifferentialTrys::Half *a_phalf) { a_phalf->m_ptryBest = nullptr; float fBestTryError = FLT_MAX; a_phalf->m_uiTrys = 0; for (int iRed = a_phalf->m_iRed - (int)a_phalf->m_uiRadius; iRed <= a_phalf->m_iRed + (int)a_phalf->m_uiRadius; iRed++) { assert(iRed >= 0 && iRed <= 31); for (int iGreen = a_phalf->m_iGreen - (int)a_phalf->m_uiRadius; iGreen <= a_phalf->m_iGreen + (int)a_phalf->m_uiRadius; iGreen++) { assert(iGreen >= 0 && iGreen <= 31); for (int iBlue = a_phalf->m_iBlue - (int)a_phalf->m_uiRadius; iBlue <= a_phalf->m_iBlue + (int)a_phalf->m_uiRadius; iBlue++) { assert(iBlue >= 0 && iBlue <= 31); DifferentialTrys::Try *ptry = &a_phalf->m_atry[a_phalf->m_uiTrys]; assert(ptry < &a_phalf->m_atry[DifferentialTrys::Half::MAX_TRYS]); ptry->m_iRed = iRed; ptry->m_iGreen = iGreen; ptry->m_iBlue = iBlue; ptry->m_fError = FLT_MAX; ColorFloatRGBA frgbaColor = ColorFloatRGBA::ConvertFromRGB5((unsigned char)iRed, (unsigned char)iGreen, (unsigned char)iBlue); // try each CW for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++) { unsigned int auiPixelSelectors[PIXELS / 2]; ColorFloatRGBA afrgbaDecodedPixels[PIXELS / 2]; float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX }; // pre-compute decoded pixels for each selector ColorFloatRGBA afrgbaSelectors[SELECTORS]; assert(SELECTORS == 4); afrgbaSelectors[0] = (frgbaColor + s_aafCwTable[uiCW][0]).ClampRGB(); afrgbaSelectors[1] = (frgbaColor + s_aafCwTable[uiCW][1]).ClampRGB(); afrgbaSelectors[2] = (frgbaColor + s_aafCwTable[uiCW][2]).ClampRGB(); afrgbaSelectors[3] = (frgbaColor + s_aafCwTable[uiCW][3]).ClampRGB(); for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[a_phalf->m_pauiPixelMapping[uiPixel]]; ColorFloatRGBA frgbaDecodedPixel; for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++) { frgbaDecodedPixel = afrgbaSelectors[uiSelector]; float fPixelError; fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[a_phalf->m_pauiPixelMapping[uiPixel]], *pfrgbaSourcePixel); if (fPixelError < afPixelErrors[uiPixel]) { auiPixelSelectors[uiPixel] = uiSelector; afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel; afPixelErrors[uiPixel] = fPixelError; } } } // add up all pixel errors float fCWError = 0.0f; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { fCWError += afPixelErrors[uiPixel]; } // if best CW so far if (fCWError < ptry->m_fError) { ptry->m_uiCW = uiCW; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { ptry->m_auiSelectors[uiPixel] = auiPixelSelectors[uiPixel]; } ptry->m_fError = fCWError; } } if (ptry->m_fError < fBestTryError) { a_phalf->m_ptryBest = ptry; fBestTryError = ptry->m_fError; } assert(ptry->m_fError < FLT_MAX); a_phalf->m_uiTrys++; } } } } // ---------------------------------------------------------------------------------------------------- // try an ETC1 individual mode encoding // use a_boolFlip to set the encoding F bit // use a_uiRadius to alter basecolor components in the range[-a_uiRadius:a_uiRadius] // replace the encoding if the encoding error is less than previous encoding // void Block4x4Encoding_ETC1::TryIndividual(bool a_boolFlip, unsigned int a_uiRadius) { ColorFloatRGBA frgbaColor1; ColorFloatRGBA frgbaColor2; const unsigned int *pauiPixelMapping1; const unsigned int *pauiPixelMapping2; if (a_boolFlip) { frgbaColor1 = m_frgbaSourceAverageTop; frgbaColor2 = m_frgbaSourceAverageBottom; pauiPixelMapping1 = s_auiTopPixelMapping; pauiPixelMapping2 = s_auiBottomPixelMapping; } else { frgbaColor1 = m_frgbaSourceAverageLeft; frgbaColor2 = m_frgbaSourceAverageRight; pauiPixelMapping1 = s_auiLeftPixelMapping; pauiPixelMapping2 = s_auiRightPixelMapping; } IndividualTrys trys(frgbaColor1, frgbaColor2, pauiPixelMapping1, pauiPixelMapping2, a_uiRadius); Block4x4Encoding_ETC1 encodingTry = *this; encodingTry.m_boolFlip = a_boolFlip; encodingTry.TryIndividualHalf(&trys.m_half1); encodingTry.TryIndividualHalf(&trys.m_half2); // use the best of each half IndividualTrys::Try *ptryBest1 = trys.m_half1.m_ptryBest; IndividualTrys::Try *ptryBest2 = trys.m_half2.m_ptryBest; encodingTry.m_fError = trys.m_half1.m_ptryBest->m_fError + trys.m_half2.m_ptryBest->m_fError; if (encodingTry.m_fError < m_fError) { m_mode = MODE_ETC1; m_boolDiff = false; m_boolFlip = encodingTry.m_boolFlip; m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)ptryBest1->m_iRed, (unsigned char)ptryBest1->m_iGreen, (unsigned char)ptryBest1->m_iBlue); m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)ptryBest2->m_iRed, (unsigned char)ptryBest2->m_iGreen, (unsigned char)ptryBest2->m_iBlue); m_uiCW1 = ptryBest1->m_uiCW; m_uiCW2 = ptryBest2->m_uiCW; for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS / 2; uiPixelOrder++) { unsigned int uiPixel1 = pauiPixelMapping1[uiPixelOrder]; unsigned int uiPixel2 = pauiPixelMapping2[uiPixelOrder]; unsigned int uiSelector1 = ptryBest1->m_auiSelectors[uiPixelOrder]; unsigned int uiSelector2 = ptryBest2->m_auiSelectors[uiPixelOrder]; m_auiSelectors[uiPixel1] = uiSelector1; m_auiSelectors[uiPixel2] = ptryBest2->m_auiSelectors[uiPixelOrder]; float fDeltaRGB1 = s_aafCwTable[m_uiCW1][uiSelector1]; float fDeltaRGB2 = s_aafCwTable[m_uiCW2][uiSelector2]; m_afrgbaDecodedColors[uiPixel1] = (m_frgbaColor1 + fDeltaRGB1).ClampRGB(); m_afrgbaDecodedColors[uiPixel2] = (m_frgbaColor2 + fDeltaRGB2).ClampRGB(); } m_fError1 = ptryBest1->m_fError; m_fError2 = ptryBest2->m_fError; m_fError = m_fError1 + m_fError2; } } // ---------------------------------------------------------------------------------------------------- // try an ETC1 differential mode encoding for a half of a 4x4 block // vary the basecolor components using a radius // void Block4x4Encoding_ETC1::TryIndividualHalf(IndividualTrys::Half *a_phalf) { a_phalf->m_ptryBest = nullptr; float fBestTryError = FLT_MAX; a_phalf->m_uiTrys = 0; for (int iRed = a_phalf->m_iRed - (int)a_phalf->m_uiRadius; iRed <= a_phalf->m_iRed + (int)a_phalf->m_uiRadius; iRed++) { assert(iRed >= 0 && iRed <= 15); for (int iGreen = a_phalf->m_iGreen - (int)a_phalf->m_uiRadius; iGreen <= a_phalf->m_iGreen + (int)a_phalf->m_uiRadius; iGreen++) { assert(iGreen >= 0 && iGreen <= 15); for (int iBlue = a_phalf->m_iBlue - (int)a_phalf->m_uiRadius; iBlue <= a_phalf->m_iBlue + (int)a_phalf->m_uiRadius; iBlue++) { assert(iBlue >= 0 && iBlue <= 15); IndividualTrys::Try *ptry = &a_phalf->m_atry[a_phalf->m_uiTrys]; assert(ptry < &a_phalf->m_atry[IndividualTrys::Half::MAX_TRYS]); ptry->m_iRed = iRed; ptry->m_iGreen = iGreen; ptry->m_iBlue = iBlue; ptry->m_fError = FLT_MAX; ColorFloatRGBA frgbaColor = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed, (unsigned char)iGreen, (unsigned char)iBlue); // try each CW for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++) { unsigned int auiPixelSelectors[PIXELS / 2]; ColorFloatRGBA afrgbaDecodedPixels[PIXELS / 2]; float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX }; // pre-compute decoded pixels for each selector ColorFloatRGBA afrgbaSelectors[SELECTORS]; assert(SELECTORS == 4); afrgbaSelectors[0] = (frgbaColor + s_aafCwTable[uiCW][0]).ClampRGB(); afrgbaSelectors[1] = (frgbaColor + s_aafCwTable[uiCW][1]).ClampRGB(); afrgbaSelectors[2] = (frgbaColor + s_aafCwTable[uiCW][2]).ClampRGB(); afrgbaSelectors[3] = (frgbaColor + s_aafCwTable[uiCW][3]).ClampRGB(); for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[a_phalf->m_pauiPixelMapping[uiPixel]]; ColorFloatRGBA frgbaDecodedPixel; for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++) { frgbaDecodedPixel = afrgbaSelectors[uiSelector]; float fPixelError; fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[a_phalf->m_pauiPixelMapping[uiPixel]], *pfrgbaSourcePixel); if (fPixelError < afPixelErrors[uiPixel]) { auiPixelSelectors[uiPixel] = uiSelector; afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel; afPixelErrors[uiPixel] = fPixelError; } } } // add up all pixel errors float fCWError = 0.0f; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { fCWError += afPixelErrors[uiPixel]; } // if best CW so far if (fCWError < ptry->m_fError) { ptry->m_uiCW = uiCW; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { ptry->m_auiSelectors[uiPixel] = auiPixelSelectors[uiPixel]; } ptry->m_fError = fCWError; } } if (ptry->m_fError < fBestTryError) { a_phalf->m_ptryBest = ptry; fBestTryError = ptry->m_fError; } assert(ptry->m_fError < FLT_MAX); a_phalf->m_uiTrys++; } } } } // ---------------------------------------------------------------------------------------------------- // try version 1 of the degenerate search // degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings // each subsequent version of the degenerate search uses more basecolor movement and is less likely to // be successfull // void Block4x4Encoding_ETC1::TryDegenerates1(void) { TryDifferential(m_boolMostLikelyFlip, 1, -2, 0); TryDifferential(m_boolMostLikelyFlip, 1, 2, 0); TryDifferential(m_boolMostLikelyFlip, 1, 0, 2); TryDifferential(m_boolMostLikelyFlip, 1, 0, -2); } // ---------------------------------------------------------------------------------------------------- // try version 2 of the degenerate search // degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings // each subsequent version of the degenerate search uses more basecolor movement and is less likely to // be successfull // void Block4x4Encoding_ETC1::TryDegenerates2(void) { TryDifferential(!m_boolMostLikelyFlip, 1, -2, 0); TryDifferential(!m_boolMostLikelyFlip, 1, 2, 0); TryDifferential(!m_boolMostLikelyFlip, 1, 0, 2); TryDifferential(!m_boolMostLikelyFlip, 1, 0, -2); } // ---------------------------------------------------------------------------------------------------- // try version 3 of the degenerate search // degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings // each subsequent version of the degenerate search uses more basecolor movement and is less likely to // be successfull // void Block4x4Encoding_ETC1::TryDegenerates3(void) { TryDifferential(m_boolMostLikelyFlip, 1, -2, -2); TryDifferential(m_boolMostLikelyFlip, 1, -2, 2); TryDifferential(m_boolMostLikelyFlip, 1, 2, -2); TryDifferential(m_boolMostLikelyFlip, 1, 2, 2); } // ---------------------------------------------------------------------------------------------------- // try version 4 of the degenerate search // degenerate encodings use basecolor movement and a subset of the selectors to find useful encodings // each subsequent version of the degenerate search uses more basecolor movement and is less likely to // be successfull // void Block4x4Encoding_ETC1::TryDegenerates4(void) { TryDifferential(m_boolMostLikelyFlip, 1, -4, 0); TryDifferential(m_boolMostLikelyFlip, 1, 4, 0); TryDifferential(m_boolMostLikelyFlip, 1, 0, 4); TryDifferential(m_boolMostLikelyFlip, 1, 0, -4); } // ---------------------------------------------------------------------------------------------------- // find the best selector for each pixel based on a particular basecolor and CW that have been previously set // calculate the selectors for each half of the block separately // set the block error as the sum of each half's error // void Block4x4Encoding_ETC1::CalculateSelectors() { if (m_boolFlip) { CalculateHalfOfTheSelectors(0, s_auiTopPixelMapping); CalculateHalfOfTheSelectors(1, s_auiBottomPixelMapping); } else { CalculateHalfOfTheSelectors(0, s_auiLeftPixelMapping); CalculateHalfOfTheSelectors(1, s_auiRightPixelMapping); } m_fError = m_fError1 + m_fError2; } // ---------------------------------------------------------------------------------------------------- // choose best selectors for half of the block // calculate the error for half of the block // void Block4x4Encoding_ETC1::CalculateHalfOfTheSelectors(unsigned int a_uiHalf, const unsigned int *pauiPixelMapping) { static const bool DEBUG_PRINT = false; ColorFloatRGBA *pfrgbaColor = a_uiHalf ? &m_frgbaColor2 : &m_frgbaColor1; unsigned int *puiCW = a_uiHalf ? &m_uiCW2 : &m_uiCW1; float *pfHalfError = a_uiHalf ? &m_fError2 : &m_fError1; *pfHalfError = FLT_MAX; // try each CW for (unsigned int uiCW = 0; uiCW < CW_RANGES; uiCW++) { if (DEBUG_PRINT) { printf("\ncw=%u\n", uiCW); } unsigned int auiPixelSelectors[PIXELS / 2]; ColorFloatRGBA afrgbaDecodedPixels[PIXELS / 2]; float afPixelErrors[PIXELS / 2] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX }; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { if (DEBUG_PRINT) { printf("\tsource [%.2f,%.2f,%.2f]\n", m_pafrgbaSource[pauiPixelMapping[uiPixel]].fR, m_pafrgbaSource[pauiPixelMapping[uiPixel]].fG, m_pafrgbaSource[pauiPixelMapping[uiPixel]].fB); } ColorFloatRGBA *pfrgbaSourcePixel = &m_pafrgbaSource[pauiPixelMapping[uiPixel]]; ColorFloatRGBA frgbaDecodedPixel; for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++) { float fDeltaRGB = s_aafCwTable[uiCW][uiSelector]; frgbaDecodedPixel = (*pfrgbaColor + fDeltaRGB).ClampRGB(); float fPixelError; fPixelError = CalcPixelError(frgbaDecodedPixel, m_afDecodedAlphas[pauiPixelMapping[uiPixel]], *pfrgbaSourcePixel); if (DEBUG_PRINT) { printf("\tpixel %u, index %u [%.2f,%.2f,%.2f], error %.2f", uiPixel, uiSelector, frgbaDecodedPixel.fR, frgbaDecodedPixel.fG, frgbaDecodedPixel.fB, fPixelError); } if (fPixelError < afPixelErrors[uiPixel]) { if (DEBUG_PRINT) { printf(" *"); } auiPixelSelectors[uiPixel] = uiSelector; afrgbaDecodedPixels[uiPixel] = frgbaDecodedPixel; afPixelErrors[uiPixel] = fPixelError; } if (DEBUG_PRINT) { printf("\n"); } } } // add up all pixel errors float fCWError = 0.0f; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { fCWError += afPixelErrors[uiPixel]; } if (DEBUG_PRINT) { printf("\terror %.2f\n", fCWError); } // if best CW so far if (fCWError < *pfHalfError) { *pfHalfError = fCWError; *puiCW = uiCW; for (unsigned int uiPixel = 0; uiPixel < 8; uiPixel++) { m_auiSelectors[pauiPixelMapping[uiPixel]] = auiPixelSelectors[uiPixel]; m_afrgbaDecodedColors[pauiPixelMapping[uiPixel]] = afrgbaDecodedPixels[uiPixel]; } } } } // ---------------------------------------------------------------------------------------------------- // set the encoding bits based on encoding state // void Block4x4Encoding_ETC1::SetEncodingBits(void) { assert(m_mode == MODE_ETC1); if (m_boolDiff) { int iRed1 = m_frgbaColor1.IntRed(31.0f); int iGreen1 = m_frgbaColor1.IntGreen(31.0f); int iBlue1 = m_frgbaColor1.IntBlue(31.0f); int iRed2 = m_frgbaColor2.IntRed(31.0f); int iGreen2 = m_frgbaColor2.IntGreen(31.0f); int iBlue2 = m_frgbaColor2.IntBlue(31.0f); int iDRed2 = iRed2 - iRed1; int iDGreen2 = iGreen2 - iGreen1; int iDBlue2 = iBlue2 - iBlue1; assert(iDRed2 >= -4 && iDRed2 < 4); assert(iDGreen2 >= -4 && iDGreen2 < 4); assert(iDBlue2 >= -4 && iDBlue2 < 4); m_pencodingbitsRGB8->differential.red1 = (unsigned int)iRed1; m_pencodingbitsRGB8->differential.green1 = (unsigned int)iGreen1; m_pencodingbitsRGB8->differential.blue1 = (unsigned int)iBlue1; m_pencodingbitsRGB8->differential.dred2 = iDRed2; m_pencodingbitsRGB8->differential.dgreen2 = iDGreen2; m_pencodingbitsRGB8->differential.dblue2 = iDBlue2; } else { m_pencodingbitsRGB8->individual.red1 = (unsigned int)m_frgbaColor1.IntRed(15.0f); m_pencodingbitsRGB8->individual.green1 = (unsigned int)m_frgbaColor1.IntGreen(15.0f); m_pencodingbitsRGB8->individual.blue1 = (unsigned int)m_frgbaColor1.IntBlue(15.0f); m_pencodingbitsRGB8->individual.red2 = (unsigned int)m_frgbaColor2.IntRed(15.0f); m_pencodingbitsRGB8->individual.green2 = (unsigned int)m_frgbaColor2.IntGreen(15.0f); m_pencodingbitsRGB8->individual.blue2 = (unsigned int)m_frgbaColor2.IntBlue(15.0f); } m_pencodingbitsRGB8->individual.cw1 = m_uiCW1; m_pencodingbitsRGB8->individual.cw2 = m_uiCW2; SetEncodingBits_Selectors(); m_pencodingbitsRGB8->individual.diff = (unsigned int)m_boolDiff; m_pencodingbitsRGB8->individual.flip = (unsigned int)m_boolFlip; } // ---------------------------------------------------------------------------------------------------- // set the selectors in the encoding bits // void Block4x4Encoding_ETC1::SetEncodingBits_Selectors(void) { m_pencodingbitsRGB8->individual.selectors = 0; for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++) { unsigned int uiSelector = m_auiSelectors[uiPixel]; // set index msb m_pencodingbitsRGB8->individual.selectors |= (uiSelector >> 1) << (uiPixel ^ 8); // set index lsb m_pencodingbitsRGB8->individual.selectors |= (uiSelector & 1) << ((16 + uiPixel) ^ 8); } } // ---------------------------------------------------------------------------------------------------- // set the decoded colors and decoded alpha based on the encoding state // void Block4x4Encoding_ETC1::Decode(void) { const unsigned int *pauiPixelOrder = m_boolFlip ? s_auiPixelOrderFlip1 : s_auiPixelOrderFlip0; for (unsigned int uiPixelOrder = 0; uiPixelOrder < PIXELS; uiPixelOrder++) { ColorFloatRGBA *pfrgbaCenter = uiPixelOrder < 8 ? &m_frgbaColor1 : &m_frgbaColor2; unsigned int uiCW = uiPixelOrder < 8 ? m_uiCW1 : m_uiCW2; unsigned int uiPixel = pauiPixelOrder[uiPixelOrder]; float fDelta = s_aafCwTable[uiCW][m_auiSelectors[uiPixel]]; m_afrgbaDecodedColors[uiPixel] = (*pfrgbaCenter + fDelta).ClampRGB(); m_afDecodedAlphas[uiPixel] = 1.0f; } } // ---------------------------------------------------------------------------------------------------- // } // namespace Etc