// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "patch.h" namespace embree { namespace isa { template<typename vbool, typename vint, typename vfloat, typename Vertex, typename Vertex_t = Vertex> struct FeatureAdaptiveEvalSimd { public: typedef PatchT<Vertex,Vertex_t> Patch; typedef typename Patch::Ref Ref; typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch; typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing; typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch; typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch; typedef BezierPatchT<Vertex,Vertex_t> BezierPatch; typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch; typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch; typedef BezierCurveT<Vertex> BezierCurve; FeatureAdaptiveEvalSimd (const HalfEdge* edge, const char* vertices, size_t stride, const vbool& valid, const vfloat& u, const vfloat& v, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N) : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N) { switch (edge->patch_type) { case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break; case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break; #if PATCH_USE_GREGORY == 2 case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatchT<Vertex,Vertex_t>(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break; #endif default: { GeneralCatmullClarkPatch patch(edge,vertices,stride); eval_direct(valid,patch,Vec2<vfloat>(u,v),0); break; } } } FeatureAdaptiveEvalSimd (const CatmullClarkPatch& patch, const vbool& valid, const vfloat& u, const vfloat& v, float dscale, size_t depth, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N) : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N) { eval_direct(valid,patch,Vec2<vfloat>(u,v),dscale,depth); } template<size_t N> __forceinline void eval_quad_direct(const vbool& valid, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth) { const vfloat u = uv.x, v = uv.y; const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f; const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f; const vbool u0v0_mask = valid & u0_mask & v0_mask; const vbool u0v1_mask = valid & u0_mask & v1_mask; const vbool u1v0_mask = valid & u1_mask & v0_mask; const vbool u1v1_mask = valid & u1_mask & v1_mask; if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1); if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1); if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1); if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1); } template<size_t N> __forceinline void eval_general_quad_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth) { #if PATCH_USE_GREGORY == 2 BezierCurve borders[GeneralCatmullClarkPatch::SIZE]; patch.getLimitBorder(borders); BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r); BezierCurve border1l,border1r; borders[1].subdivide(border1l,border1r); BezierCurve border2l,border2r; borders[2].subdivide(border2l,border2r); BezierCurve border3l,border3r; borders[3].subdivide(border3l,border3r); #endif GeneralCatmullClarkPatch::fix_quad_ring_order(patches); const vfloat u = uv.x, v = uv.y; const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f; const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f; const vbool u0v0_mask = valid & u0_mask & v0_mask; const vbool u0v1_mask = valid & u0_mask & v1_mask; const vbool u1v0_mask = valid & u1_mask & v0_mask; const vbool u1v1_mask = valid & u1_mask & v1_mask; #if PATCH_USE_GREGORY == 2 if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1,&border0l,nullptr,nullptr,&border3r); if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1,&border0r,&border1l,nullptr,nullptr); if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,&border1r,&border2l,nullptr); if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,nullptr,&border2r,&border3l); #else if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1); if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1); if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1); if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1); #endif } __forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth) { const size_t max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR; //#if PATCH_MIN_RESOLUTION // return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth; //#else return depth>=max_eval_depth; //#endif } void eval_direct(const vbool& valid, const CatmullClarkPatch& patch, const Vec2<vfloat>& uv, float dscale, size_t depth, BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr) { typename CatmullClarkPatch::Type ty = patch.type(); if (unlikely(final(patch,ty,depth))) { if (ty & CatmullClarkRing::TYPE_REGULAR) { RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N); } else { IrregularFillPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N); } } else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) { assert(depth > 0); RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N); } #if PATCH_USE_GREGORY == 2 else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) { assert(depth > 0); GregoryPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N); } #endif else { array_t<CatmullClarkPatch,4> patches; patch.subdivide(patches); // FIXME: only have to generate one of the patches eval_quad_direct(valid,patches,uv,dscale,depth); } } void eval_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, const Vec2<vfloat>& uv, const size_t depth) { /* convert into standard quad patch if possible */ if (likely(patch.isQuadPatch())) { CatmullClarkPatch qpatch; patch.init(qpatch); return eval_direct(valid,qpatch,uv,1.0f,depth); } /* subdivide patch */ unsigned Nc; array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches; patch.subdivide(patches,Nc); // FIXME: only have to generate one of the patches /* parametrization for quads */ if (Nc == 4) eval_general_quad_direct(valid,patch,patches,uv,1.0f,depth); /* parametrization for arbitrary polygons */ else { const vint l = (vint)floor(0.5f*uv.x); const vfloat u = 2.0f*frac(0.5f*uv.x)-0.5f; const vint h = (vint)floor(0.5f*uv.y); const vfloat v = 2.0f*frac(0.5f*uv.y)-0.5f; const vint i = (h<<2)+l; assert(all(valid,i<Nc)); foreach_unique(valid,i,[&](const vbool& valid, const int i) { #if PATCH_USE_GREGORY == 2 BezierCurve borders[2]; patch.getLimitBorder(borders,i); BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r); BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r); eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r); #else eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1); #endif }); } } private: float* const P; float* const dPdu; float* const dPdv; float* const ddPdudu; float* const ddPdvdv; float* const ddPdudv; const size_t dstride; const size_t N; }; } }