// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "catmullclark_patch.h" #include "bezier_curve.h" namespace embree { template<typename Vertex, typename Vertex_t = Vertex> class __aligned(64) BilinearPatchT { typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing; typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch; public: Vertex v[4]; public: __forceinline BilinearPatchT () {} __forceinline BilinearPatchT (const HalfEdge* edge, const BufferView<Vertex>& vertices) { init(edge,vertices.getPtr(),vertices.getStride()); } __forceinline BilinearPatchT (const HalfEdge* edge, const char* vertices, size_t stride) { init(edge,vertices,stride); } __forceinline void init (const HalfEdge* edge, const char* vertices, size_t stride) { v[0] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); v[1] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); v[2] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); v[3] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); } __forceinline BilinearPatchT (const CatmullClarkPatch& patch) { v[0] = patch.ring[0].getLimitVertex(); v[1] = patch.ring[1].getLimitVertex(); v[2] = patch.ring[2].getLimitVertex(); v[3] = patch.ring[3].getLimitVertex(); } __forceinline BBox<Vertex> bounds() const { BBox<Vertex> bounds (v[0]); bounds.extend(v[1]); bounds.extend(v[2]); bounds.extend(v[3]); return bounds; } __forceinline Vertex eval(const float uu, const float vv) const { return lerp(lerp(v[0],v[1],uu),lerp(v[3],v[2],uu),vv); } __forceinline Vertex eval_du(const float uu, const float vv) const { return lerp(v[1]-v[0],v[2]-v[3],vv); } __forceinline Vertex eval_dv(const float uu, const float vv) const { return lerp(v[3]-v[0],v[2]-v[1],uu); } __forceinline Vertex eval_dudu(const float uu, const float vv) const { return Vertex(zero); } __forceinline Vertex eval_dvdv(const float uu, const float vv) const { return Vertex(zero); } __forceinline Vertex eval_dudv(const float uu, const float vv) const { return (v[2]-v[3]) - (v[1]-v[0]); } __forceinline Vertex normal(const float uu, const float vv) const { return cross(eval_du(uu,vv),eval_dv(uu,vv)); } __forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const { if (P) { *P = eval(u,v); } if (dPdu) { assert(dPdu); *dPdu = eval_du(u,v)*dscale; assert(dPdv); *dPdv = eval_dv(u,v)*dscale; } if (ddPdudu) { assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale); assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale); assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale); } } template<class vfloat> __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const { const vfloat x = lerp(lerp(v[0].x,v[1].x,uu),lerp(v[3].x,v[2].x,uu),vv); const vfloat y = lerp(lerp(v[0].y,v[1].y,uu),lerp(v[3].y,v[2].y,uu),vv); const vfloat z = lerp(lerp(v[0].z,v[1].z,uu),lerp(v[3].z,v[2].z,uu),vv); return Vec3<vfloat>(x,y,z); } template<class vfloat> __forceinline Vec3<vfloat> eval_du(const vfloat& uu, const vfloat& vv) const { const vfloat x = lerp(v[1].x-v[0].x,v[2].x-v[3].x,vv); const vfloat y = lerp(v[1].y-v[0].y,v[2].y-v[3].y,vv); const vfloat z = lerp(v[1].z-v[0].z,v[2].z-v[3].z,vv); return Vec3<vfloat>(x,y,z); } template<class vfloat> __forceinline Vec3<vfloat> eval_dv(const vfloat& uu, const vfloat& vv) const { const vfloat x = lerp(v[3].x-v[0].x,v[2].x-v[1].x,uu); const vfloat y = lerp(v[3].y-v[0].y,v[2].y-v[1].y,uu); const vfloat z = lerp(v[3].z-v[0].z,v[2].z-v[1].z,uu); return Vec3<vfloat>(x,y,z); } template<typename vfloat> __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const { return cross(eval_du(uu,vv),eval_dv(uu,vv)); } template<class vfloat> __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv) const { return lerp(lerp(v[0][i],v[1][i],uu),lerp(v[3][i],v[2][i],uu),vv); } template<class vfloat> __forceinline vfloat eval_du(const size_t i, const vfloat& uu, const vfloat& vv) const { return lerp(v[1][i]-v[0][i],v[2][i]-v[3][i],vv); } template<class vfloat> __forceinline vfloat eval_dv(const size_t i, const vfloat& uu, const vfloat& vv) const { return lerp(v[3][i]-v[0][i],v[2][i]-v[1][i],uu); } template<class vfloat> __forceinline vfloat eval_dudu(const size_t i, const vfloat& uu, const vfloat& vv) const { return vfloat(zero); } template<class vfloat> __forceinline vfloat eval_dvdv(const size_t i, const vfloat& uu, const vfloat& vv) const { return vfloat(zero); } template<class vfloat> __forceinline vfloat eval_dudv(const size_t i, const vfloat& uu, const vfloat& vv) const { return (v[2][i]-v[3][i]) - (v[1][i]-v[0][i]); } template<typename vbool, typename vfloat> __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const float dscale, const size_t dstride, const size_t N) const { if (P) { for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv)); } if (dPdu) { for (size_t i=0; i<N; i++) { assert(dPdu); vfloat::store(valid,dPdu+i*dstride,eval_du(i,uu,vv)*dscale); assert(dPdv); vfloat::store(valid,dPdv+i*dstride,eval_dv(i,uu,vv)*dscale); } } if (ddPdudu) { for (size_t i=0; i<N; i++) { assert(ddPdudu); vfloat::store(valid,ddPdudu+i*dstride,eval_dudu(i,uu,vv)*sqr(dscale)); assert(ddPdvdv); vfloat::store(valid,ddPdvdv+i*dstride,eval_dvdv(i,uu,vv)*sqr(dscale)); assert(ddPdudv); vfloat::store(valid,ddPdudv+i*dstride,eval_dudv(i,uu,vv)*sqr(dscale)); } } } }; typedef BilinearPatchT<Vec3fa,Vec3fa_t> BilinearPatch3fa; }