// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/ray.h" #include "curve_intersector_precalculations.h" namespace embree { namespace isa { template<int M> struct LineIntersectorHitM { __forceinline LineIntersectorHitM() {} __forceinline LineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng) : vu(u), vv(v), vt(t), vNg(Ng) {} __forceinline void finalize() {} __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } __forceinline float t (const size_t i) const { return vt[i]; } __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); } __forceinline vfloat<M> t () const { return vt; } __forceinline Vec3vf<M> Ng() const { return vNg; } public: vfloat<M> vu; vfloat<M> vv; vfloat<M> vt; Vec3vf<M> vNg; }; template<int M> struct FlatLinearCurveIntersector1 { typedef CurvePrecalculations1 Precalculations; template<typename Ray, typename Epilog> static __forceinline bool intersect(const vbool<M>& valid_i, Ray& ray, IntersectContext* context, const LineSegments* geom, const Precalculations& pre, const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, const Epilog& epilog) { /* transform end points into ray space */ vbool<M> valid = valid_i; vfloat<M> depth_scale = pre.depth_scale; LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space; const Vec3vf<M> ray_org ((Vec3fa)ray.org); const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); /* approximative intersection with cone */ const Vec4vf<M> v = p1-p0; const Vec4vf<M> w = -p0; const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); const Vec4vf<M> p = madd(u,v,p0); const vfloat<M> t = p.z; const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); const vfloat<M> r = p.w; const vfloat<M> r2 = r*r; valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()) <= t) & (t <= vfloat<M>(ray.tfar)); if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections if (unlikely(none(valid))) return false; /* ignore denormalized segments */ const Vec3vf<M> T = v1.xyz()-v0.xyz(); valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); if (unlikely(none(valid))) return false; /* update hit information */ LineIntersectorHitM<M> hit(u,zero,t,T); return epilog(valid,hit); } }; template<int M, int K> struct FlatLinearCurveIntersectorK { typedef CurvePrecalculationsK<K> Precalculations; template<typename Epilog> static __forceinline bool intersect(const vbool<M>& valid_i, RayK<K>& ray, size_t k, IntersectContext* context, const LineSegments* geom, const Precalculations& pre, const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, const Epilog& epilog) { /* transform end points into ray space */ vbool<M> valid = valid_i; vfloat<M> depth_scale = pre.depth_scale[k]; LinearSpace3<Vec3vf<M>> ray_space = pre.ray_space[k]; const Vec3vf<M> ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]); const Vec3vf<M> ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]); const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i); const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i); Vec4vf<M> p0(xfmVector(ray_space,v0.xyz()-ray_org), v0.w); Vec4vf<M> p1(xfmVector(ray_space,v1.xyz()-ray_org), v1.w); /* approximative intersection with cone */ const Vec4vf<M> v = p1-p0; const Vec4vf<M> w = -p0; const vfloat<M> d0 = madd(w.x,v.x,w.y*v.y); const vfloat<M> d1 = madd(v.x,v.x,v.y*v.y); const vfloat<M> u = clamp(d0*rcp(d1),vfloat<M>(zero),vfloat<M>(one)); const Vec4vf<M> p = madd(u,v,p0); const vfloat<M> t = p.z; const vfloat<M> d2 = madd(p.x,p.x,p.y*p.y); const vfloat<M> r = p.w; const vfloat<M> r2 = r*r; valid &= (d2 <= r2) & (vfloat<M>(ray.tnear()[k]) <= t) & (t <= vfloat<M>(ray.tfar[k])); if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale; // ignore self intersections if (unlikely(none(valid))) return false; /* ignore denormalized segments */ const Vec3vf<M> T = v1.xyz()-v0.xyz(); valid &= (T.x != vfloat<M>(zero)) | (T.y != vfloat<M>(zero)) | (T.z != vfloat<M>(zero)); if (unlikely(none(valid))) return false; /* update hit information */ LineIntersectorHitM<M> hit(u,zero,t,T); return epilog(valid,hit); } }; } }