// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "geometry.h" #include "buffer.h" namespace embree { /*! Quad Mesh */ struct QuadMesh : public Geometry { /*! type of this geometry */ static const Geometry::GTypeMask geom_type = Geometry::MTY_QUAD_MESH; /*! triangle indices */ struct Quad { uint32_t v[4]; /*! outputs triangle indices */ __forceinline friend embree_ostream operator<<(embree_ostream cout, const Quad& q) { return cout << "Quad {" << q.v[0] << ", " << q.v[1] << ", " << q.v[2] << ", " << q.v[3] << " }"; } }; public: /*! quad mesh construction */ QuadMesh (Device* device); /* geometry interface */ public: void setMask(unsigned mask); void setNumTimeSteps (unsigned int numTimeSteps); void setVertexAttributeCount (unsigned int N); void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref& buffer, size_t offset, size_t stride, unsigned int num); void* getBuffer(RTCBufferType type, unsigned int slot); void updateBuffer(RTCBufferType type, unsigned int slot); void commit(); bool verify(); void interpolate(const RTCInterpolateArguments* const args); void addElementsToCount (GeometryCounts & counts) const; template void interpolate_impl(const RTCInterpolateArguments* const args) { unsigned int primID = args->primID; float u = args->u; float v = args->v; RTCBufferType bufferType = args->bufferType; unsigned int bufferSlot = args->bufferSlot; float* P = args->P; float* dPdu = args->dPdu; float* dPdv = args->dPdv; float* ddPdudu = args->ddPdudu; float* ddPdvdv = args->ddPdvdv; float* ddPdudv = args->ddPdudv; unsigned int valueCount = args->valueCount; /* calculate base pointer and stride */ assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); const char* src = nullptr; size_t stride = 0; if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { src = vertexAttribs[bufferSlot].getPtr(); stride = vertexAttribs[bufferSlot].getStride(); } else { src = vertices[bufferSlot].getPtr(); stride = vertices[bufferSlot].getStride(); } for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint(int(valueCount)); const size_t ofs = i*sizeof(float); const Quad& tri = quad(primID); const vfloat p0 = mem>::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]); const vfloat p2 = mem>::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]); const vfloat p3 = mem>::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]); const vbool left = u+v <= 1.0f; const vfloat Q0 = select(left,p0,p2); const vfloat Q1 = select(left,p1,p3); const vfloat Q2 = select(left,p3,p1); const vfloat U = select(left,u,vfloat(1.0f)-u); const vfloat V = select(left,v,vfloat(1.0f)-v); const vfloat W = 1.0f-U-V; if (P) { mem>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2))); } if (dPdu) { assert(dPdu); mem>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1)); assert(dPdv); mem>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2)); } if (ddPdudu) { assert(ddPdudu); mem>::storeu(valid,ddPdudu+i,vfloat(zero)); assert(ddPdvdv); mem>::storeu(valid,ddPdvdv+i,vfloat(zero)); assert(ddPdudv); mem>::storeu(valid,ddPdudv+i,vfloat(zero)); } } } public: /*! returns number of vertices */ __forceinline size_t numVertices() const { return vertices[0].size(); } /*! returns i'th quad */ __forceinline const Quad& quad(size_t i) const { return quads[i]; } /*! returns i'th vertex of itime'th timestep */ __forceinline const Vec3fa vertex(size_t i) const { return vertices0[i]; } /*! returns i'th vertex of itime'th timestep */ __forceinline const char* vertexPtr(size_t i) const { return vertices0.getPtr(i); } /*! returns i'th vertex of itime'th timestep */ __forceinline const Vec3fa vertex(size_t i, size_t itime) const { return vertices[itime][i]; } /*! returns i'th vertex of itime'th timestep */ __forceinline const char* vertexPtr(size_t i, size_t itime) const { return vertices[itime].getPtr(i); } /*! calculates the bounds of the i'th quad */ __forceinline BBox3fa bounds(size_t i) const { const Quad& q = quad(i); const Vec3fa v0 = vertex(q.v[0]); const Vec3fa v1 = vertex(q.v[1]); const Vec3fa v2 = vertex(q.v[2]); const Vec3fa v3 = vertex(q.v[3]); return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3)); } /*! calculates the bounds of the i'th quad at the itime'th timestep */ __forceinline BBox3fa bounds(size_t i, size_t itime) const { const Quad& q = quad(i); const Vec3fa v0 = vertex(q.v[0],itime); const Vec3fa v1 = vertex(q.v[1],itime); const Vec3fa v2 = vertex(q.v[2],itime); const Vec3fa v3 = vertex(q.v[3],itime); return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3)); } /*! check if the i'th primitive is valid at the itime'th timestep */ __forceinline bool valid(size_t i, size_t itime) const { return valid(i, make_range(itime, itime)); } /*! check if the i'th primitive is valid between the specified time range */ __forceinline bool valid(size_t i, const range& itime_range) const { const Quad& q = quad(i); if (unlikely(q.v[0] >= numVertices())) return false; if (unlikely(q.v[1] >= numVertices())) return false; if (unlikely(q.v[2] >= numVertices())) return false; if (unlikely(q.v[3] >= numVertices())) return false; for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { if (!isvalid(vertex(q.v[0],itime))) return false; if (!isvalid(vertex(q.v[1],itime))) return false; if (!isvalid(vertex(q.v[2],itime))) return false; if (!isvalid(vertex(q.v[3],itime))) return false; } return true; } /*! calculates the linear bounds of the i'th quad at the itimeGlobal'th time segment */ __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1)); } /*! calculates the build bounds of the i'th primitive, if it's valid */ __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const { const Quad& q = quad(i); if (q.v[0] >= numVertices()) return false; if (q.v[1] >= numVertices()) return false; if (q.v[2] >= numVertices()) return false; if (q.v[3] >= numVertices()) return false; for (unsigned int t=0; t= numVertices())) return false; if (unlikely(q.v[1] >= numVertices())) return false; if (unlikely(q.v[2] >= numVertices())) return false; if (unlikely(q.v[3] >= numVertices())) return false; assert(itime+1 < numTimeSteps); const Vec3fa a0 = vertex(q.v[0],itime+0); if (unlikely(!isvalid(a0))) return false; const Vec3fa a1 = vertex(q.v[1],itime+0); if (unlikely(!isvalid(a1))) return false; const Vec3fa a2 = vertex(q.v[2],itime+0); if (unlikely(!isvalid(a2))) return false; const Vec3fa a3 = vertex(q.v[3],itime+0); if (unlikely(!isvalid(a3))) return false; const Vec3fa b0 = vertex(q.v[0],itime+1); if (unlikely(!isvalid(b0))) return false; const Vec3fa b1 = vertex(q.v[1],itime+1); if (unlikely(!isvalid(b1))) return false; const Vec3fa b2 = vertex(q.v[2],itime+1); if (unlikely(!isvalid(b2))) return false; const Vec3fa b3 = vertex(q.v[3],itime+1); if (unlikely(!isvalid(b3))) return false; /* use bounds of first time step in builder */ bbox = BBox3fa(min(a0,a1,a2,a3),max(a0,a1,a2,a3)); return true; } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline bool linearBounds(size_t i, const BBox1f& dt, LBBox3fa& bbox) const { if (!valid(i, timeSegmentRange(dt))) return false; bbox = linearBounds(i, dt); return true; } /*! get fast access to first vertex buffer */ __forceinline float * getCompactVertexArray () const { return (float*) vertices0.getPtr(); } /* gets version info of topology */ unsigned int getTopologyVersion() const { return quads.modCounter; } /* returns true if topology changed */ bool topologyChanged(unsigned int otherVersion) const { return quads.isModified(otherVersion); // || numPrimitivesChanged; } /* returns the projected area */ __forceinline float projectedPrimitiveArea(const size_t i) const { const Quad& q = quad(i); const Vec3fa v0 = vertex(q.v[0]); const Vec3fa v1 = vertex(q.v[1]); const Vec3fa v2 = vertex(q.v[2]); const Vec3fa v3 = vertex(q.v[3]); return areaProjectedTriangle(v0,v1,v3) + areaProjectedTriangle(v1,v2,v3); } public: BufferView quads; //!< array of quads BufferView vertices0; //!< fast access to first vertex buffer vector> vertices; //!< vertex array for each timestep vector> vertexAttribs; //!< vertex attribute buffers }; namespace isa { struct QuadMeshISA : public QuadMesh { QuadMeshISA (Device* device) : QuadMesh(device) {} PrimInfo createPrimRefArray(mvector& prims, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& prims, size_t itime, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& prims, const BBox1f& t0t1, const range& r, size_t k, unsigned int geomID) const { PrimInfoMB pinfo(empty); for (size_t j=r.begin(); jnumTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j)); pinfo.add_primref(prim); prims[k++] = prim; } return pinfo; } }; } DECLARE_ISA_FUNCTION(QuadMesh*, createQuadMesh, Device*); }