// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "default.h" #include "geometry.h" #include "buffer.h" namespace embree { /*! represents an array of line segments */ struct LineSegments : public Geometry { /*! type of this geometry */ static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE2; public: /*! line segments construction */ LineSegments (Device* device, Geometry::GType gtype); public: void setMask (unsigned mask); void setNumTimeSteps (unsigned int numTimeSteps); void setVertexAttributeCount (unsigned int N); void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref& buffer, size_t offset, size_t stride, unsigned int num); void* getBuffer(RTCBufferType type, unsigned int slot); void updateBuffer(RTCBufferType type, unsigned int slot); void commit(); bool verify (); void interpolate(const RTCInterpolateArguments* const args); void setTessellationRate(float N); void setMaxRadiusScale(float s); void addElementsToCount (GeometryCounts & counts) const; template void interpolate_impl(const RTCInterpolateArguments* const args) { unsigned int primID = args->primID; float u = args->u; RTCBufferType bufferType = args->bufferType; unsigned int bufferSlot = args->bufferSlot; float* P = args->P; float* dPdu = args->dPdu; float* ddPdudu = args->ddPdudu; unsigned int valueCount = args->valueCount; /* calculate base pointer and stride */ assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); const char* src = nullptr; size_t stride = 0; if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { src = vertexAttribs[bufferSlot].getPtr(); stride = vertexAttribs[bufferSlot].getStride(); } else { src = vertices[bufferSlot].getPtr(); stride = vertices[bufferSlot].getStride(); } for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint(int(valueCount)); const vfloat p0 = mem>::loadu(valid,(float*)&src[(segment+0)*stride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&src[(segment+1)*stride+ofs]); if (P ) mem>::storeu(valid,P+i,lerp(p0,p1,u)); if (dPdu ) mem>::storeu(valid,dPdu+i,p1-p0); if (ddPdudu) mem>::storeu(valid,dPdu+i,vfloat(zero)); } } public: /*! returns the number of vertices */ __forceinline size_t numVertices() const { return vertices[0].size(); } /*! returns the i'th segment */ __forceinline const unsigned int& segment(size_t i) const { return segments[i]; } /*! returns the segment to the left of the i'th segment */ __forceinline bool segmentLeftExists(size_t i) const { assert (flags); return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_LEFT) != 0; } /*! returns the segment to the right of the i'th segment */ __forceinline bool segmentRightExists(size_t i) const { assert (flags); return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_RIGHT) != 0; } /*! returns i'th vertex of the first time step */ __forceinline Vec3ff vertex(size_t i) const { return vertices0[i]; } /*! returns i'th vertex of the first time step */ __forceinline const char* vertexPtr(size_t i) const { return vertices0.getPtr(i); } /*! returns i'th normal of the first time step */ __forceinline Vec3fa normal(size_t i) const { return normals0[i]; } /*! returns i'th radius of the first time step */ __forceinline float radius(size_t i) const { return vertices0[i].w; } /*! returns i'th vertex of itime'th timestep */ __forceinline Vec3ff vertex(size_t i, size_t itime) const { return vertices[itime][i]; } /*! returns i'th vertex of itime'th timestep */ __forceinline const char* vertexPtr(size_t i, size_t itime) const { return vertices[itime].getPtr(i); } /*! returns i'th normal of itime'th timestep */ __forceinline Vec3fa normal(size_t i, size_t itime) const { return normals[itime][i]; } /*! returns i'th radius of itime'th timestep */ __forceinline float radius(size_t i, size_t itime) const { return vertices[itime][i].w; } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const Vec3ff& v0, const Vec3ff& v1) const { const BBox3ff b = merge(BBox3ff(v0),BBox3ff(v1)); return enlarge((BBox3fa)b,maxRadiusScale*Vec3fa(max(v0.w,v1.w))); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(size_t i) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0); const Vec3ff v1 = vertex(index+1); return bounds(v0,v1); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(size_t i, size_t itime) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); return bounds(v0,v1); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0); const Vec3ff v1 = vertex(index+1); const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w); const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w); return bounds(w0,w1); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w); const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w); return bounds(w0,w1); } /*! check if the i'th primitive is valid at the itime'th timestep */ __forceinline bool valid(size_t i, size_t itime) const { return valid(i, make_range(itime, itime)); } /*! check if the i'th primitive is valid between the specified time range */ __forceinline bool valid(size_t i, const range& itime_range) const { const unsigned int index = segment(i); if (index+1 >= numVertices()) return false; for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { const Vec3ff v0 = vertex(index+0,itime); if (unlikely(!isvalid4(v0))) return false; const Vec3ff v1 = vertex(index+1,itime); if (unlikely(!isvalid4(v1))) return false; if (min(v0.w,v1.w) < 0.0f) return false; } return true; } /*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */ __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1)); } /*! calculates the build bounds of the i'th primitive, if it's valid */ __forceinline bool buildBounds(size_t i, BBox3fa* bbox) const { if (!valid(i,0)) return false; *bbox = bounds(i); return true; } /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */ __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const { if (!valid(i,itime+0) || !valid(i,itime+1)) return false; bbox = bounds(i,itime); // use bounds of first time step in builder return true; } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const { if (!valid(i, timeSegmentRange(time_range))) return false; bbox = linearBounds(i, time_range); return true; } /*! get fast access to first vertex buffer */ __forceinline float * getCompactVertexArray () const { return (float*) vertices0.getPtr(); } public: BufferView segments; //!< array of line segment indices BufferView vertices0; //!< fast access to first vertex buffer BufferView normals0; //!< fast access to first normal buffer BufferView flags; //!< start, end flag per segment vector> vertices; //!< vertex array for each timestep vector> normals; //!< normal array for each timestep vector> vertexAttribs; //!< user buffers int tessellationRate; //!< tessellation rate for bezier curve float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii }; namespace isa { struct LineSegmentsISA : public LineSegments { LineSegmentsISA (Device* device, Geometry::GType gtype) : LineSegments(device,gtype) {} Vec3fa computeDirection(unsigned int primID) const { const unsigned vtxID = segment(primID); const Vec3fa v0 = vertex(vtxID+0); const Vec3fa v1 = vertex(vtxID+1); return v1-v0; } Vec3fa computeDirection(unsigned int primID, size_t time) const { const unsigned vtxID = segment(primID); const Vec3fa v0 = vertex(vtxID+0,time); const Vec3fa v1 = vertex(vtxID+1,time); return v1-v0; } PrimInfo createPrimRefArray(mvector& prims, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& prims, size_t itime, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& prims, const BBox1f& t0t1, const range& r, size_t k, unsigned int geomID) const { PrimInfoMB pinfo(empty); for (size_t j=r.begin(); jnumTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j)); pinfo.add_primref(prim); prims[k++] = prim; } return pinfo; } BBox3fa vbounds(size_t i) const { return bounds(i); } BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const { return bounds(space,i); } LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const { return linearBounds(primID,time_range); } LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const { return linearBounds(space,primID,time_range); } }; } DECLARE_ISA_FUNCTION(LineSegments*, createLineSegments, Device* COMMA Geometry::GType); }