// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "default.h" #include "geometry.h" #include "buffer.h" #include "../subdiv/bezier_curve.h" #include "../subdiv/hermite_curve.h" #include "../subdiv/bspline_curve.h" #include "../subdiv/catmullrom_curve.h" #include "../subdiv/linear_bezier_patch.h" namespace embree { /*! represents an array of bicubic bezier curves */ struct CurveGeometry : public Geometry { /*! type of this geometry */ static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE4; public: /*! bezier curve construction */ CurveGeometry (Device* device, Geometry::GType gtype); public: void setMask(unsigned mask); void setNumTimeSteps (unsigned int numTimeSteps); void setVertexAttributeCount (unsigned int N); void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref& buffer, size_t offset, size_t stride, unsigned int num); void* getBuffer(RTCBufferType type, unsigned int slot); void updateBuffer(RTCBufferType type, unsigned int slot); void commit(); bool verify(); void setTessellationRate(float N); void setMaxRadiusScale(float s); void addElementsToCount (GeometryCounts & counts) const; public: /*! returns the number of vertices */ __forceinline size_t numVertices() const { return vertices[0].size(); } /*! returns the i'th curve */ __forceinline const unsigned int& curve(size_t i) const { return curves[i]; } /*! returns i'th vertex of the first time step */ __forceinline Vec3ff vertex(size_t i) const { return vertices0[i]; } /*! returns i'th normal of the first time step */ __forceinline Vec3fa normal(size_t i) const { return normals0[i]; } /*! returns i'th tangent of the first time step */ __forceinline Vec3ff tangent(size_t i) const { return tangents0[i]; } /*! returns i'th normal derivative of the first time step */ __forceinline Vec3fa dnormal(size_t i) const { return dnormals0[i]; } /*! returns i'th radius of the first time step */ __forceinline float radius(size_t i) const { return vertices0[i].w; } /*! returns i'th vertex of itime'th timestep */ __forceinline Vec3ff vertex(size_t i, size_t itime) const { return vertices[itime][i]; } /*! returns i'th normal of itime'th timestep */ __forceinline Vec3fa normal(size_t i, size_t itime) const { return normals[itime][i]; } /*! returns i'th tangent of itime'th timestep */ __forceinline Vec3ff tangent(size_t i, size_t itime) const { return tangents[itime][i]; } /*! returns i'th normal derivative of itime'th timestep */ __forceinline Vec3fa dnormal(size_t i, size_t itime) const { return dnormals[itime][i]; } /*! returns i'th radius of itime'th timestep */ __forceinline float radius(size_t i, size_t itime) const { return vertices[itime][i].w; } /*! gathers the curve starting with i'th vertex */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i) const { p0 = vertex(i+0); p1 = vertex(i+1); p2 = vertex(i+2); p3 = vertex(i+3); } /*! gathers the curve starting with i'th vertex of itime'th timestep */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, size_t itime) const { p0 = vertex(i+0,itime); p1 = vertex(i+1,itime); p2 = vertex(i+2,itime); p3 = vertex(i+3,itime); } /*! gathers the curve starting with i'th vertex */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i) const { p0 = vertex(i+0); p1 = vertex(i+1); p2 = vertex(i+2); p3 = vertex(i+3); n0 = normal(i+0); n1 = normal(i+1); n2 = normal(i+2); n3 = normal(i+3); } /*! gathers the curve starting with i'th vertex of itime'th timestep */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, size_t itime) const { p0 = vertex(i+0,itime); p1 = vertex(i+1,itime); p2 = vertex(i+2,itime); p3 = vertex(i+3,itime); n0 = normal(i+0,itime); n1 = normal(i+1,itime); n2 = normal(i+2,itime); n3 = normal(i+3,itime); } /*! prefetches the curve starting with i'th vertex of itime'th timestep */ __forceinline void prefetchL1_vertices(size_t i) const { prefetchL1(vertices0.getPtr(i)+0); prefetchL1(vertices0.getPtr(i)+64); } /*! prefetches the curve starting with i'th vertex of itime'th timestep */ __forceinline void prefetchL2_vertices(size_t i) const { prefetchL2(vertices0.getPtr(i)+0); prefetchL2(vertices0.getPtr(i)+64); } /*! loads curve vertices for specified time */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3ff a0,a1,a2,a3; gather(a0,a1,a2,a3,i,itime); Vec3ff b0,b1,b2,b3; gather(b0,b1,b2,b3,i,itime+1); p0 = madd(Vec3ff(t0),a0,t1*b0); p1 = madd(Vec3ff(t0),a1,t1*b1); p2 = madd(Vec3ff(t0),a2,t1*b2); p3 = madd(Vec3ff(t0),a3,t1*b3); } /*! loads curve vertices for specified time */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, Vec3fa& n0, Vec3fa& n1, Vec3fa& n2, Vec3fa& n3, size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3ff a0,a1,a2,a3; Vec3fa an0,an1,an2,an3; gather(a0,a1,a2,a3,an0,an1,an2,an3,i,itime); Vec3ff b0,b1,b2,b3; Vec3fa bn0,bn1,bn2,bn3; gather(b0,b1,b2,b3,bn0,bn1,bn2,bn3,i,itime+1); p0 = madd(Vec3ff(t0),a0,t1*b0); p1 = madd(Vec3ff(t0),a1,t1*b1); p2 = madd(Vec3ff(t0),a2,t1*b2); p3 = madd(Vec3ff(t0),a3,t1*b3); n0 = madd(Vec3ff(t0),an0,t1*bn0); n1 = madd(Vec3ff(t0),an1,t1*bn1); n2 = madd(Vec3ff(t0),an2,t1*bn2); n3 = madd(Vec3ff(t0),an3,t1*bn3); } template __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const { Vec3ff v0,v1,v2,v3; Vec3fa n0,n1,n2,n3; unsigned int vertexID = curve(primID); gather(v0,v1,v2,v3,n0,n1,n2,n3,vertexID,itime); SourceCurve3ff ccurve(v0,v1,v2,v3); SourceCurve3fa ncurve(n0,n1,n2,n3); ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve); return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); } template __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedCurve(context,ray_org,primID,itime+0); const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedCurve(context,ray_org,primID,itime+1); return clerp(curve0,curve1,ftime); } /*! gathers the hermite curve starting with i'th vertex */ __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i) const { p0 = vertex (i+0); p1 = vertex (i+1); t0 = tangent(i+0); t1 = tangent(i+1); } /*! gathers the hermite curve starting with i'th vertex of itime'th timestep */ __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, size_t itime) const { p0 = vertex (i+0,itime); p1 = vertex (i+1,itime); t0 = tangent(i+0,itime); t1 = tangent(i+1,itime); } /*! loads curve vertices for specified time */ __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3ff& p1, Vec3ff& t1, size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float f0 = 1.0f - ftime, f1 = ftime; Vec3ff ap0,at0,ap1,at1; gather_hermite(ap0,at0,ap1,at1,i,itime); Vec3ff bp0,bt0,bp1,bt1; gather_hermite(bp0,bt0,bp1,bt1,i,itime+1); p0 = madd(Vec3ff(f0),ap0,f1*bp0); t0 = madd(Vec3ff(f0),at0,f1*bt0); p1 = madd(Vec3ff(f0),ap1,f1*bp1); t1 = madd(Vec3ff(f0),at1,f1*bt1); } /*! gathers the hermite curve starting with i'th vertex */ __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i) const { p0 = vertex (i+0); p1 = vertex (i+1); t0 = tangent(i+0); t1 = tangent(i+1); n0 = normal(i+0); n1 = normal(i+1); dn0 = dnormal(i+0); dn1 = dnormal(i+1); } /*! gathers the hermite curve starting with i'th vertex of itime'th timestep */ __forceinline void gather_hermite(Vec3ff& p0, Vec3ff& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3ff& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, size_t itime) const { p0 = vertex (i+0,itime); p1 = vertex (i+1,itime); t0 = tangent(i+0,itime); t1 = tangent(i+1,itime); n0 = normal(i+0,itime); n1 = normal(i+1,itime); dn0 = dnormal(i+0,itime); dn1 = dnormal(i+1,itime); } /*! loads curve vertices for specified time */ __forceinline void gather_hermite(Vec3ff& p0, Vec3fa& t0, Vec3fa& n0, Vec3fa& dn0, Vec3ff& p1, Vec3fa& t1, Vec3fa& n1, Vec3fa& dn1, size_t i, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float f0 = 1.0f - ftime, f1 = ftime; Vec3ff ap0,at0,ap1,at1; Vec3fa an0,adn0,an1,adn1; gather_hermite(ap0,at0,an0,adn0,ap1,at1,an1,adn1,i,itime); Vec3ff bp0,bt0,bp1,bt1; Vec3fa bn0,bdn0,bn1,bdn1; gather_hermite(bp0,bt0,bn0,bdn0,bp1,bt1,bn1,bdn1,i,itime+1); p0 = madd(Vec3ff(f0),ap0,f1*bp0); t0 = madd(Vec3ff(f0),at0,f1*bt0); n0 = madd(Vec3ff(f0),an0,f1*bn0); dn0= madd(Vec3ff(f0),adn0,f1*bdn0); p1 = madd(Vec3ff(f0),ap1,f1*bp1); t1 = madd(Vec3ff(f0),at1,f1*bt1); n1 = madd(Vec3ff(f0),an1,f1*bn1); dn1= madd(Vec3ff(f0),adn1,f1*bdn1); } template __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const size_t itime) const { Vec3ff v0,t0,v1,t1; Vec3fa n0,dn0,n1,dn1; unsigned int vertexID = curve(primID); gather_hermite(v0,t0,n0,dn0,v1,t1,n1,dn1,vertexID,itime); SourceCurve3ff ccurve(v0,t0,v1,t1); SourceCurve3fa ncurve(n0,dn0,n1,dn1); ccurve = enlargeRadiusToMinWidth(context,this,ray_org,ccurve); return TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); } template __forceinline TensorLinearCubicBezierSurface3fa getNormalOrientedHermiteCurve(IntersectContext* context, const Vec3fa& ray_org, const unsigned int primID, const float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const TensorLinearCubicBezierSurface3fa curve0 = getNormalOrientedHermiteCurve(context, ray_org, primID,itime+0); const TensorLinearCubicBezierSurface3fa curve1 = getNormalOrientedHermiteCurve(context, ray_org, primID,itime+1); return clerp(curve0,curve1,ftime); } private: void resizeBuffers(unsigned int numSteps); public: BufferView curves; //!< array of curve indices BufferView vertices0; //!< fast access to first vertex buffer BufferView normals0; //!< fast access to first normal buffer BufferView tangents0; //!< fast access to first tangent buffer BufferView dnormals0; //!< fast access to first normal derivative buffer vector> vertices; //!< vertex array for each timestep vector> normals; //!< normal array for each timestep vector> tangents; //!< tangent array for each timestep vector> dnormals; //!< normal derivative array for each timestep BufferView flags; //!< start, end flag per segment vector> vertexAttribs; //!< user buffers int tessellationRate; //!< tessellation rate for flat curve float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii }; namespace isa { template class Curve> struct CurveGeometryInterface : public CurveGeometry { typedef Curve Curve3ff; typedef Curve Curve3fa; CurveGeometryInterface (Device* device, Geometry::GType gtype) : CurveGeometry(device,gtype) {} __forceinline const Curve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const { const unsigned int index = curve(i); Vec3ff v0 = vertex(index+0,itime); Vec3ff v1 = vertex(index+1,itime); Vec3ff v2 = vertex(index+2,itime); Vec3ff v3 = vertex(index+3,itime); v0.w *= maxRadiusScale; v1.w *= maxRadiusScale; v2.w *= maxRadiusScale; v3.w *= maxRadiusScale; return Curve3ff (v0,v1,v2,v3); } __forceinline const Curve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { const unsigned int index = curve(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff v2 = vertex(index+2,itime); const Vec3ff v3 = vertex(index+3,itime); const Vec3ff w0(xfmPoint(space,(Vec3fa)v0), maxRadiusScale*v0.w); const Vec3ff w1(xfmPoint(space,(Vec3fa)v1), maxRadiusScale*v1.w); const Vec3ff w2(xfmPoint(space,(Vec3fa)v2), maxRadiusScale*v2.w); const Vec3ff w3(xfmPoint(space,(Vec3fa)v3), maxRadiusScale*v3.w); return Curve3ff(w0,w1,w2,w3); } __forceinline const Curve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { const float r_scale = r_scale0*scale; const unsigned int index = curve(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff v2 = vertex(index+2,itime); const Vec3ff v3 = vertex(index+3,itime); const Vec3ff w0(xfmPoint(space,((Vec3fa)v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale); const Vec3ff w1(xfmPoint(space,((Vec3fa)v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale); const Vec3ff w2(xfmPoint(space,((Vec3fa)v2-ofs)*Vec3fa(scale)), maxRadiusScale*v2.w*r_scale); const Vec3ff w3(xfmPoint(space,((Vec3fa)v3-ofs)*Vec3fa(scale)), maxRadiusScale*v3.w*r_scale); return Curve3ff(w0,w1,w2,w3); } __forceinline const Curve3fa getNormalCurve(size_t i, size_t itime = 0) const { const unsigned int index = curve(i); const Vec3fa n0 = normal(index+0,itime); const Vec3fa n1 = normal(index+1,itime); const Vec3fa n2 = normal(index+2,itime); const Vec3fa n3 = normal(index+3,itime); return Curve3fa (n0,n1,n2,n3); } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const { const Curve3ff center = getCurveScaledRadius(i,itime); const Curve3fa normal = getNormalCurve(i,itime); const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal); return ocurve; } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { return getOrientedCurveScaledRadius(i,itime).xfm(space); } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale); } /*! check if the i'th primitive is valid at the itime'th time step */ __forceinline bool valid(Geometry::GType ctype, size_t i, const range& itime_range) const { const unsigned int index = curve(i); if (index+3 >= numVertices()) return false; for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { const float r0 = radius(index+0,itime); const float r1 = radius(index+1,itime); const float r2 = radius(index+2,itime); const float r3 = radius(index+3,itime); if (!isvalid(r0) || !isvalid(r1) || !isvalid(r2) || !isvalid(r3)) return false; const Vec3fa v0 = vertex(index+0,itime); const Vec3fa v1 = vertex(index+1,itime); const Vec3fa v2 = vertex(index+2,itime); const Vec3fa v3 = vertex(index+3,itime); if (!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3)) return false; if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE) { const Vec3fa n0 = normal(index+0,itime); const Vec3fa n1 = normal(index+1,itime); if (!isvalid(n0) || !isvalid(n1)) return false; const BBox3fa b = getOrientedCurveScaledRadius(i,itime).accurateBounds(); if (!isvalid(b)) return false; } } return true; } template void interpolate_impl(const RTCInterpolateArguments* const args) { unsigned int primID = args->primID; float u = args->u; RTCBufferType bufferType = args->bufferType; unsigned int bufferSlot = args->bufferSlot; float* P = args->P; float* dPdu = args->dPdu; float* ddPdudu = args->ddPdudu; unsigned int valueCount = args->valueCount; /* calculate base pointer and stride */ assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); const char* src = nullptr; size_t stride = 0; if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { src = vertexAttribs[bufferSlot].getPtr(); stride = vertexAttribs[bufferSlot].getStride(); } else { src = vertices[bufferSlot].getPtr(); stride = vertices[bufferSlot].getStride(); } for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint((int)valueCount); const vfloat p0 = mem>::loadu(valid,(float*)&src[(index+0)*stride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&src[(index+1)*stride+ofs]); const vfloat p2 = mem>::loadu(valid,(float*)&src[(index+2)*stride+ofs]); const vfloat p3 = mem>::loadu(valid,(float*)&src[(index+3)*stride+ofs]); const Curve> curve(p0,p1,p2,p3); if (P ) mem>::storeu(valid,P+i, curve.eval(u)); if (dPdu ) mem>::storeu(valid,dPdu+i, curve.eval_du(u)); if (ddPdudu) mem>::storeu(valid,ddPdudu+i,curve.eval_dudu(u)); } } void interpolate(const RTCInterpolateArguments* const args) { interpolate_impl<4>(args); } }; template class Curve> struct HermiteCurveGeometryInterface : public CurveGeometry { typedef Curve HermiteCurve3ff; typedef Curve HermiteCurve3fa; HermiteCurveGeometryInterface (Device* device, Geometry::GType gtype) : CurveGeometry(device,gtype) {} __forceinline const HermiteCurve3ff getCurveScaledRadius(size_t i, size_t itime = 0) const { const unsigned int index = curve(i); Vec3ff v0 = vertex(index+0,itime); Vec3ff v1 = vertex(index+1,itime); Vec3ff t0 = tangent(index+0,itime); Vec3ff t1 = tangent(index+1,itime); v0.w *= maxRadiusScale; v1.w *= maxRadiusScale; t0.w *= maxRadiusScale; t1.w *= maxRadiusScale; return HermiteCurve3ff (v0,t0,v1,t1); } __forceinline const HermiteCurve3ff getCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { const unsigned int index = curve(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff t0 = tangent(index+0,itime); const Vec3ff t1 = tangent(index+1,itime); const Vec3ff V0(xfmPoint(space,(Vec3fa)v0),maxRadiusScale*v0.w); const Vec3ff V1(xfmPoint(space,(Vec3fa)v1),maxRadiusScale*v1.w); const Vec3ff T0(xfmVector(space,(Vec3fa)t0),maxRadiusScale*t0.w); const Vec3ff T1(xfmVector(space,(Vec3fa)t1),maxRadiusScale*t1.w); return HermiteCurve3ff(V0,T0,V1,T1); } __forceinline const HermiteCurve3ff getCurveScaledRadius(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { const float r_scale = r_scale0*scale; const unsigned int index = curve(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff t0 = tangent(index+0,itime); const Vec3ff t1 = tangent(index+1,itime); const Vec3ff V0(xfmPoint(space,(v0-ofs)*Vec3fa(scale)), maxRadiusScale*v0.w*r_scale); const Vec3ff V1(xfmPoint(space,(v1-ofs)*Vec3fa(scale)), maxRadiusScale*v1.w*r_scale); const Vec3ff T0(xfmVector(space,t0*Vec3fa(scale)), maxRadiusScale*t0.w*r_scale); const Vec3ff T1(xfmVector(space,t1*Vec3fa(scale)), maxRadiusScale*t1.w*r_scale); return HermiteCurve3ff(V0,T0,V1,T1); } __forceinline const HermiteCurve3fa getNormalCurve(size_t i, size_t itime = 0) const { const unsigned int index = curve(i); const Vec3fa n0 = normal(index+0,itime); const Vec3fa n1 = normal(index+1,itime); const Vec3fa dn0 = dnormal(index+0,itime); const Vec3fa dn1 = dnormal(index+1,itime); return HermiteCurve3fa (n0,dn0,n1,dn1); } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(size_t i, size_t itime = 0) const { const HermiteCurve3ff center = getCurveScaledRadius(i,itime); const HermiteCurve3fa normal = getNormalCurve(i,itime); const TensorLinearCubicBezierSurface3fa ocurve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(center,normal); return ocurve; } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const LinearSpace3fa& space, size_t i, size_t itime = 0) const { return getOrientedCurveScaledRadius(i,itime).xfm(space); } __forceinline const TensorLinearCubicBezierSurface3fa getOrientedCurveScaledRadius(const Vec3fa& ofs, const float scale, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { return getOrientedCurveScaledRadius(i,itime).xfm(space,ofs,scale); } /*! check if the i'th primitive is valid at the itime'th time step */ __forceinline bool valid(Geometry::GType ctype, size_t i, const range& itime_range) const { const unsigned int index = curve(i); if (index+1 >= numVertices()) return false; for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); if (!isvalid4(v0) || !isvalid4(v1)) return false; const Vec3ff t0 = tangent(index+0,itime); const Vec3ff t1 = tangent(index+1,itime); if (!isvalid4(t0) || !isvalid4(t1)) return false; if (ctype == Geometry::GTY_SUBTYPE_ORIENTED_CURVE) { const Vec3fa n0 = normal(index+0,itime); const Vec3fa n1 = normal(index+1,itime); if (!isvalid(n0) || !isvalid(n1)) return false; const Vec3fa dn0 = dnormal(index+0,itime); const Vec3fa dn1 = dnormal(index+1,itime); if (!isvalid(dn0) || !isvalid(dn1)) return false; const BBox3fa b = getOrientedCurveScaledRadius(i,itime).accurateBounds(); if (!isvalid(b)) return false; } } return true; } template void interpolate_impl(const RTCInterpolateArguments* const args) { unsigned int primID = args->primID; float u = args->u; RTCBufferType bufferType = args->bufferType; unsigned int bufferSlot = args->bufferSlot; float* P = args->P; float* dPdu = args->dPdu; float* ddPdudu = args->ddPdudu; unsigned int valueCount = args->valueCount; /* we interpolate vertex attributes linearly for hermite basis */ if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { assert(bufferSlot <= vertexAttribs.size()); const char* vsrc = vertexAttribs[bufferSlot].getPtr(); const size_t vstride = vertexAttribs[bufferSlot].getStride(); for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint((int)valueCount); const vfloat p0 = mem>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]); if (P ) mem>::storeu(valid,P+i, madd(1.0f-u,p0,u*p1)); if (dPdu ) mem>::storeu(valid,dPdu+i, p1-p0); if (ddPdudu) mem>::storeu(valid,ddPdudu+i,vfloat(zero)); } } /* interpolation for vertex buffers */ else { assert(bufferSlot < numTimeSteps); const char* vsrc = vertices[bufferSlot].getPtr(); const char* tsrc = tangents[bufferSlot].getPtr(); const size_t vstride = vertices[bufferSlot].getStride(); const size_t tstride = vertices[bufferSlot].getStride(); for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint((int)valueCount); const vfloat p0 = mem>::loadu(valid,(float*)&vsrc[(index+0)*vstride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&vsrc[(index+1)*vstride+ofs]); const vfloat t0 = mem>::loadu(valid,(float*)&tsrc[(index+0)*tstride+ofs]); const vfloat t1 = mem>::loadu(valid,(float*)&tsrc[(index+1)*tstride+ofs]); const HermiteCurveT> curve(p0,t0,p1,t1); if (P ) mem>::storeu(valid,P+i, curve.eval(u)); if (dPdu ) mem>::storeu(valid,dPdu+i, curve.eval_du(u)); if (ddPdudu) mem>::storeu(valid,ddPdudu+i,curve.eval_dudu(u)); } } } void interpolate(const RTCInterpolateArguments* const args) { interpolate_impl<4>(args); } }; } DECLARE_ISA_FUNCTION(CurveGeometry*, createCurves, Device* COMMA Geometry::GType); }