// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #include "device.h" #include "../hash.h" #include "scene_triangle_mesh.h" #include "scene_user_geometry.h" #include "scene_instance.h" #include "scene_curves.h" #include "scene_subdiv_mesh.h" #include "../subdiv/tessellation_cache.h" #include "acceln.h" #include "geometry.h" #include "../geometry/cylinder.h" #include "../bvh/bvh4_factory.h" #include "../bvh/bvh8_factory.h" #include "../../common/tasking/taskscheduler.h" #include "../../common/sys/alloc.h" namespace embree { /*! some global variables that can be set via rtcSetParameter1i for debugging purposes */ ssize_t Device::debug_int0 = 0; ssize_t Device::debug_int1 = 0; ssize_t Device::debug_int2 = 0; ssize_t Device::debug_int3 = 0; DECLARE_SYMBOL2(RayStreamFilterFuncs,rayStreamFilterFuncs); static MutexSys g_mutex; static std::map g_cache_size_map; static std::map g_num_threads_map; Device::Device (const char* cfg) { /* check that CPU supports lowest ISA */ if (!hasISA(ISA)) { throw_RTCError(RTC_ERROR_UNSUPPORTED_CPU,"CPU does not support " ISA_STR); } /* set default frequency level for detected CPU */ switch (getCPUModel()) { case CPU::UNKNOWN: frequency_level = FREQUENCY_SIMD256; break; case CPU::XEON_ICE_LAKE: frequency_level = FREQUENCY_SIMD256; break; case CPU::CORE_ICE_LAKE: frequency_level = FREQUENCY_SIMD256; break; case CPU::CORE_TIGER_LAKE: frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE_COMET_LAKE: frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE_CANNON_LAKE:frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE_KABY_LAKE: frequency_level = FREQUENCY_SIMD128; break; case CPU::XEON_SKY_LAKE: frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE_SKY_LAKE: frequency_level = FREQUENCY_SIMD128; break; case CPU::XEON_BROADWELL: frequency_level = FREQUENCY_SIMD256; break; case CPU::CORE_BROADWELL: frequency_level = FREQUENCY_SIMD256; break; case CPU::XEON_HASWELL: frequency_level = FREQUENCY_SIMD256; break; case CPU::CORE_HASWELL: frequency_level = FREQUENCY_SIMD256; break; case CPU::XEON_IVY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break; case CPU::CORE_IVY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break; case CPU::SANDY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break; case CPU::NEHALEM: frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE2: frequency_level = FREQUENCY_SIMD128; break; case CPU::CORE1: frequency_level = FREQUENCY_SIMD128; break; case CPU::XEON_PHI_KNIGHTS_MILL : frequency_level = FREQUENCY_SIMD512; break; case CPU::XEON_PHI_KNIGHTS_LANDING: frequency_level = FREQUENCY_SIMD512; break; #if defined(__APPLE__) case CPU::ARM: frequency_level = FREQUENCY_SIMD256; break; // Apple M1 supports high throughput for SIMD4 #else case CPU::ARM: frequency_level = FREQUENCY_SIMD128; break; #endif } /* initialize global state */ #if defined(EMBREE_CONFIG) State::parseString(EMBREE_CONFIG); #endif State::parseString(cfg); State::verify(); /* check whether selected ISA is supported by the HW, as the user could have forced an unsupported ISA */ if (!checkISASupport()) { throw_RTCError(RTC_ERROR_UNSUPPORTED_CPU,"CPU does not support selected ISA"); } /*! do some internal tests */ assert(isa::Cylinder::verify()); /*! enable huge page support if desired */ #if defined(__WIN32__) if (State::enable_selockmemoryprivilege) State::hugepages_success &= win_enable_selockmemoryprivilege(State::verbosity(3)); #endif State::hugepages_success &= os_init(State::hugepages,State::verbosity(3)); /*! set tessellation cache size */ setCacheSize( State::tessellation_cache_size ); /*! enable some floating point exceptions to catch bugs */ if (State::float_exceptions) { int exceptions = _MM_MASK_MASK; //exceptions &= ~_MM_MASK_INVALID; exceptions &= ~_MM_MASK_DENORM; exceptions &= ~_MM_MASK_DIV_ZERO; //exceptions &= ~_MM_MASK_OVERFLOW; //exceptions &= ~_MM_MASK_UNDERFLOW; //exceptions &= ~_MM_MASK_INEXACT; _MM_SET_EXCEPTION_MASK(exceptions); } /* print info header */ if (State::verbosity(1)) print(); if (State::verbosity(2)) State::print(); /* register all algorithms */ bvh4_factory = make_unique(new BVH4Factory(enabled_builder_cpu_features, enabled_cpu_features)); #if defined(EMBREE_TARGET_SIMD8) bvh8_factory = make_unique(new BVH8Factory(enabled_builder_cpu_features, enabled_cpu_features)); #endif /* setup tasking system */ initTaskingSystem(numThreads); /* ray stream SOA to AOS conversion */ #if defined(EMBREE_RAY_PACKETS) RayStreamFilterFuncsType rayStreamFilterFuncs; SELECT_SYMBOL_DEFAULT_SSE42_AVX_AVX2_AVX512(enabled_cpu_features,rayStreamFilterFuncs); rayStreamFilters = rayStreamFilterFuncs(); #endif } Device::~Device () { setCacheSize(0); exitTaskingSystem(); } std::string getEnabledTargets() { std::string v; #if defined(EMBREE_TARGET_SSE2) v += "SSE2 "; #endif #if defined(EMBREE_TARGET_SSE42) v += "SSE4.2 "; #endif #if defined(EMBREE_TARGET_AVX) v += "AVX "; #endif #if defined(EMBREE_TARGET_AVX2) v += "AVX2 "; #endif #if defined(EMBREE_TARGET_AVX512) v += "AVX512 "; #endif return v; } std::string getEmbreeFeatures() { std::string v; #if defined(EMBREE_RAY_MASK) v += "raymasks "; #endif #if defined (EMBREE_BACKFACE_CULLING) v += "backfaceculling "; #endif #if defined (EMBREE_BACKFACE_CULLING_CURVES) v += "backfacecullingcurves "; #endif #if defined(EMBREE_FILTER_FUNCTION) v += "intersection_filter "; #endif #if defined (EMBREE_COMPACT_POLYS) v += "compact_polys "; #endif return v; } void Device::print() { const int cpu_features = getCPUFeatures(); std::cout << std::endl; std::cout << "Embree Ray Tracing Kernels " << RTC_VERSION_STRING << " (" << RTC_HASH << ")" << std::endl; std::cout << " Compiler : " << getCompilerName() << std::endl; std::cout << " Build : "; #if defined(DEBUG) std::cout << "Debug " << std::endl; #else std::cout << "Release " << std::endl; #endif std::cout << " Platform : " << getPlatformName() << std::endl; std::cout << " CPU : " << stringOfCPUModel(getCPUModel()) << " (" << getCPUVendor() << ")" << std::endl; std::cout << " Threads : " << getNumberOfLogicalThreads() << std::endl; std::cout << " ISA : " << stringOfCPUFeatures(cpu_features) << std::endl; std::cout << " Targets : " << supportedTargetList(cpu_features) << std::endl; const bool hasFTZ = _mm_getcsr() & _MM_FLUSH_ZERO_ON; const bool hasDAZ = _mm_getcsr() & _MM_DENORMALS_ZERO_ON; std::cout << " MXCSR : " << "FTZ=" << hasFTZ << ", DAZ=" << hasDAZ << std::endl; std::cout << " Config" << std::endl; std::cout << " Threads : " << (numThreads ? toString(numThreads) : std::string("default")) << std::endl; std::cout << " ISA : " << stringOfCPUFeatures(enabled_cpu_features) << std::endl; std::cout << " Targets : " << supportedTargetList(enabled_cpu_features) << " (supported)" << std::endl; std::cout << " " << getEnabledTargets() << " (compile time enabled)" << std::endl; std::cout << " Features: " << getEmbreeFeatures() << std::endl; std::cout << " Tasking : "; #if defined(TASKING_TBB) std::cout << "TBB" << TBB_VERSION_MAJOR << "." << TBB_VERSION_MINOR << " "; #if TBB_INTERFACE_VERSION >= 12002 std::cout << "TBB_header_interface_" << TBB_INTERFACE_VERSION << " TBB_lib_interface_" << TBB_runtime_interface_version() << " "; #else std::cout << "TBB_header_interface_" << TBB_INTERFACE_VERSION << " TBB_lib_interface_" << tbb::TBB_runtime_interface_version() << " "; #endif #endif #if defined(TASKING_INTERNAL) std::cout << "internal_tasking_system "; #endif #if defined(TASKING_PPL) std::cout << "PPL "; #endif std::cout << std::endl; /* check of FTZ and DAZ flags are set in CSR */ if (!hasFTZ || !hasDAZ) { #if !defined(_DEBUG) if (State::verbosity(1)) #endif { std::cout << std::endl; std::cout << "================================================================================" << std::endl; std::cout << " WARNING: \"Flush to Zero\" or \"Denormals are Zero\" mode not enabled " << std::endl << " in the MXCSR control and status register. This can have a severe " << std::endl << " performance impact. Please enable these modes for each application " << std::endl << " thread the following way:" << std::endl << std::endl << " #include \"xmmintrin.h\"" << std::endl << " #include \"pmmintrin.h\"" << std::endl << std::endl << " _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);" << std::endl << " _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);" << std::endl; std::cout << "================================================================================" << std::endl; std::cout << std::endl; } } std::cout << std::endl; } void Device::setDeviceErrorCode(RTCError error) { RTCError* stored_error = errorHandler.error(); if (*stored_error == RTC_ERROR_NONE) *stored_error = error; } RTCError Device::getDeviceErrorCode() { RTCError* stored_error = errorHandler.error(); RTCError error = *stored_error; *stored_error = RTC_ERROR_NONE; return error; } void Device::setThreadErrorCode(RTCError error) { RTCError* stored_error = g_errorHandler.error(); if (*stored_error == RTC_ERROR_NONE) *stored_error = error; } RTCError Device::getThreadErrorCode() { RTCError* stored_error = g_errorHandler.error(); RTCError error = *stored_error; *stored_error = RTC_ERROR_NONE; return error; } void Device::process_error(Device* device, RTCError error, const char* str) { /* store global error code when device construction failed */ if (!device) return setThreadErrorCode(error); /* print error when in verbose mode */ if (device->verbosity(1)) { switch (error) { case RTC_ERROR_NONE : std::cerr << "Embree: No error"; break; case RTC_ERROR_UNKNOWN : std::cerr << "Embree: Unknown error"; break; case RTC_ERROR_INVALID_ARGUMENT : std::cerr << "Embree: Invalid argument"; break; case RTC_ERROR_INVALID_OPERATION: std::cerr << "Embree: Invalid operation"; break; case RTC_ERROR_OUT_OF_MEMORY : std::cerr << "Embree: Out of memory"; break; case RTC_ERROR_UNSUPPORTED_CPU : std::cerr << "Embree: Unsupported CPU"; break; default : std::cerr << "Embree: Invalid error code"; break; }; if (str) std::cerr << ", (" << str << ")"; std::cerr << std::endl; } /* call user specified error callback */ if (device->error_function) device->error_function(device->error_function_userptr,error,str); /* record error code */ device->setDeviceErrorCode(error); } void Device::memoryMonitor(ssize_t bytes, bool post) { if (State::memory_monitor_function && bytes != 0) { if (!State::memory_monitor_function(State::memory_monitor_userptr,bytes,post)) { if (bytes > 0) { // only throw exception when we allocate memory to never throw inside a destructor throw_RTCError(RTC_ERROR_OUT_OF_MEMORY,"memory monitor forced termination"); } } } } size_t getMaxNumThreads() { size_t maxNumThreads = 0; for (std::map::iterator i=g_num_threads_map.begin(); i != g_num_threads_map.end(); i++) maxNumThreads = max(maxNumThreads, (*i).second); if (maxNumThreads == 0) maxNumThreads = std::numeric_limits::max(); return maxNumThreads; } size_t getMaxCacheSize() { size_t maxCacheSize = 0; for (std::map::iterator i=g_cache_size_map.begin(); i!= g_cache_size_map.end(); i++) maxCacheSize = max(maxCacheSize, (*i).second); return maxCacheSize; } void Device::setCacheSize(size_t bytes) { #if defined(EMBREE_GEOMETRY_SUBDIVISION) Lock lock(g_mutex); if (bytes == 0) g_cache_size_map.erase(this); else g_cache_size_map[this] = bytes; size_t maxCacheSize = getMaxCacheSize(); resizeTessellationCache(maxCacheSize); #endif } void Device::initTaskingSystem(size_t numThreads) { Lock lock(g_mutex); if (numThreads == 0) g_num_threads_map[this] = std::numeric_limits::max(); else g_num_threads_map[this] = numThreads; /* create task scheduler */ size_t maxNumThreads = getMaxNumThreads(); TaskScheduler::create(maxNumThreads,State::set_affinity,State::start_threads); #if USE_TASK_ARENA const size_t nThreads = min(maxNumThreads,TaskScheduler::threadCount()); const size_t uThreads = min(max(numUserThreads,(size_t)1),nThreads); arena = make_unique(new tbb::task_arena((int)nThreads,(unsigned int)uThreads)); #endif } void Device::exitTaskingSystem() { Lock lock(g_mutex); g_num_threads_map.erase(this); /* terminate tasking system */ if (g_num_threads_map.size() == 0) { TaskScheduler::destroy(); } /* or configure new number of threads */ else { size_t maxNumThreads = getMaxNumThreads(); TaskScheduler::create(maxNumThreads,State::set_affinity,State::start_threads); } #if USE_TASK_ARENA arena.reset(); #endif } void Device::setProperty(const RTCDeviceProperty prop, ssize_t val) { /* hidden internal properties */ switch ((size_t)prop) { case 1000000: debug_int0 = val; return; case 1000001: debug_int1 = val; return; case 1000002: debug_int2 = val; return; case 1000003: debug_int3 = val; return; } throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown writable property"); } ssize_t Device::getProperty(const RTCDeviceProperty prop) { size_t iprop = (size_t)prop; /* get name of internal regression test */ if (iprop >= 2000000 && iprop < 3000000) { RegressionTest* test = getRegressionTest(iprop-2000000); if (test) return (ssize_t) test->name.c_str(); else return 0; } /* run internal regression test */ if (iprop >= 3000000 && iprop < 4000000) { RegressionTest* test = getRegressionTest(iprop-3000000); if (test) return test->run(); else return 0; } /* documented properties */ switch (prop) { case RTC_DEVICE_PROPERTY_VERSION_MAJOR: return RTC_VERSION_MAJOR; case RTC_DEVICE_PROPERTY_VERSION_MINOR: return RTC_VERSION_MINOR; case RTC_DEVICE_PROPERTY_VERSION_PATCH: return RTC_VERSION_PATCH; case RTC_DEVICE_PROPERTY_VERSION : return RTC_VERSION; #if defined(EMBREE_TARGET_SIMD4) && defined(EMBREE_RAY_PACKETS) case RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: return hasISA(SSE2); #else case RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: return 0; #endif #if defined(EMBREE_TARGET_SIMD8) && defined(EMBREE_RAY_PACKETS) case RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: return hasISA(AVX); #else case RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: return 0; #endif #if defined(EMBREE_TARGET_SIMD16) && defined(EMBREE_RAY_PACKETS) case RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: return hasISA(AVX512); #else case RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: return 0; #endif #if defined(EMBREE_RAY_PACKETS) case RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED: return 0; #endif #if defined(EMBREE_RAY_MASK) case RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: return 0; #endif #if defined(EMBREE_BACKFACE_CULLING) case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: return 1; #else case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: return 0; #endif #if defined(EMBREE_BACKFACE_CULLING_CURVES) case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_CURVES_ENABLED: return 1; #else case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_CURVES_ENABLED: return 0; #endif #if defined(EMBREE_COMPACT_POLYS) case RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: return 1; #else case RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: return 0; #endif #if defined(EMBREE_FILTER_FUNCTION) case RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: return 0; #endif #if defined(EMBREE_IGNORE_INVALID_RAYS) case RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: return 1; #else case RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: return 0; #endif #if defined(TASKING_INTERNAL) case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 0; #endif #if defined(TASKING_TBB) case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 1; #endif #if defined(TASKING_PPL) case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 2; #endif #if defined(EMBREE_GEOMETRY_TRIANGLE) case RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: return 0; #endif #if defined(EMBREE_GEOMETRY_QUAD) case RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: return 0; #endif #if defined(EMBREE_GEOMETRY_CURVE) case RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: return 0; #endif #if defined(EMBREE_GEOMETRY_SUBDIVISION) case RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: return 0; #endif #if defined(EMBREE_GEOMETRY_USER) case RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: return 0; #endif #if defined(EMBREE_GEOMETRY_POINT) case RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: return 0; #endif #if defined(TASKING_PPL) case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 0; #elif defined(TASKING_TBB) && (TBB_INTERFACE_VERSION_MAJOR < 8) case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 0; #else case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 1; #endif #if defined(TASKING_TBB) && TASKING_TBB_USE_TASK_ISOLATION case RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: return 1; #else case RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: return 0; #endif default: throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown readable property"); break; }; } }