// Copyright 2009-2020 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/ray.h" namespace embree { namespace isa { struct Cone { const Vec3fa p0; //!< start position of cone const Vec3fa p1; //!< end position of cone const float r0; //!< start radius of cone const float r1; //!< end radius of cone __forceinline Cone(const Vec3fa& p0, const float r0, const Vec3fa& p1, const float r1) : p0(p0), p1(p1), r0(r0), r1(r1) {} __forceinline bool intersect(const Vec3fa& org, const Vec3fa& dir, BBox1f& t_o, float& u0_o, Vec3fa& Ng0_o, float& u1_o, Vec3fa& Ng1_o) const { /* calculate quadratic equation to solve */ const Vec3fa v0 = p0-org; const Vec3fa v1 = p1-org; const float rl = rcp_length(v1-v0); const Vec3fa P0 = v0, dP = (v1-v0)*rl; const float dr = (r1-r0)*rl; const Vec3fa O = -P0, dO = dir; const float dOdO = dot(dO,dO); const float OdO = dot(dO,O); const float OO = dot(O,O); const float dOz = dot(dP,dO); const float Oz = dot(dP,O); const float R = r0 + Oz*dr; const float A = dOdO - sqr(dOz) * (1.0f+sqr(dr)); const float B = 2.0f * (OdO - dOz*(Oz + R*dr)); const float C = OO - (sqr(Oz) + sqr(R)); /* we miss the cone if determinant is smaller than zero */ const float D = B*B - 4.0f*A*C; if (D < 0.0f) return false; /* special case for rays that are "parallel" to the cone */ const float eps = float(1<<8)*float(ulp)*max(abs(dOdO),abs(sqr(dOz))); if (unlikely(abs(A) < eps)) { /* cylinder case */ if (abs(dr) < 16.0f*float(ulp)) { if (C <= 0.0f) { t_o = BBox1f(neg_inf,pos_inf); return true; } else { t_o = BBox1f(pos_inf,neg_inf); return false; } } /* cone case */ else { /* if we hit the negative cone there cannot be a hit */ const float t = -C/B; const float z0 = Oz+t*dOz; const float z0r = r0+z0*dr; if (z0r < 0.0f) return false; /* test if we start inside or outside the cone */ if (dOz*dr > 0.0f) t_o = BBox1f(t,pos_inf); else t_o = BBox1f(neg_inf,t); } } /* standard case for "non-parallel" rays */ else { const float Q = sqrt(D); const float rcp_2A = rcp(2.0f*A); t_o.lower = (-B-Q)*rcp_2A; t_o.upper = (-B+Q)*rcp_2A; /* standard case where both hits are on same cone */ if (likely(A > 0.0f)) { const float z0 = Oz+t_o.lower*dOz; const float z0r = r0+z0*dr; if (z0r < 0.0f) return false; } /* special case where the hits are on the positive and negative cone */ else { /* depending on the ray direction and the open direction * of the cone we have a hit from inside or outside the * cone */ if (dOz*dr > 0) t_o.upper = pos_inf; else t_o.lower = neg_inf; } } /* calculates u and Ng for near hit */ { u0_o = (Oz+t_o.lower*dOz)*rl; const Vec3fa Pr = t_o.lower*dir; const Vec3fa Pl = v0 + u0_o*(v1-v0); const Vec3fa R = normalize(Pr-Pl); const Vec3fa U = (p1-p0)+(r1-r0)*R; const Vec3fa V = cross(p1-p0,R); Ng0_o = cross(V,U); } /* calculates u and Ng for far hit */ { u1_o = (Oz+t_o.upper*dOz)*rl; const Vec3fa Pr = t_o.upper*dir; const Vec3fa Pl = v0 + u1_o*(v1-v0); const Vec3fa R = normalize(Pr-Pl); const Vec3fa U = (p1-p0)+(r1-r0)*R; const Vec3fa V = cross(p1-p0,R); Ng1_o = cross(V,U); } return true; } __forceinline bool intersect(const Vec3fa& org, const Vec3fa& dir, BBox1f& t_o) const { float u0_o; Vec3fa Ng0_o; float u1_o; Vec3fa Ng1_o; return intersect(org,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o); } static bool verify(const size_t id, const Cone& cone, const Ray& ray, bool shouldhit, const float t0, const float t1) { float eps = 0.001f; BBox1f t; bool hit; hit = cone.intersect(ray.org,ray.dir,t); bool failed = hit != shouldhit; if (shouldhit) failed |= std::isinf(t0) ? t0 != t.lower : (t0 == -1E6) ? t.lower > -1E6f : abs(t0-t.lower) > eps; if (shouldhit) failed |= std::isinf(t1) ? t1 != t.upper : (t1 == +1E6) ? t.upper < +1E6f : abs(t1-t.upper) > eps; if (!failed) return true; embree_cout << "Cone test " << id << " failed: cone = " << cone << ", ray = " << ray << ", hit = " << hit << ", t = " << t << embree_endl; return false; } /* verify cone class */ static bool verify() { bool passed = true; const Cone cone0(Vec3fa(0.0f,0.0f,0.0f),0.0f,Vec3fa(1.0f,0.0f,0.0f),1.0f); passed &= verify(0,cone0,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,3.0f,pos_inf); passed &= verify(1,cone0,Ray(Vec3fa(+2.0f,1.0f,0.0f),Vec3fa(-1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,1.0f); passed &= verify(2,cone0,Ray(Vec3fa(-1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),false,0.0f,0.0f); passed &= verify(3,cone0,Ray(Vec3fa(+1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,1.0f,3.0f); passed &= verify(4,cone0,Ray(Vec3fa(-1.0f,0.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,1.0f,pos_inf); passed &= verify(5,cone0,Ray(Vec3fa(+1.0f,0.0f,0.0f),Vec3fa(-1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,1.0f); passed &= verify(6,cone0,Ray(Vec3fa(+0.0f,0.0f,1.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,1.0f,1.0f); passed &= verify(7,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(-1.0f,-1.0f,+0.0f),0.0f,float(inf)),false,0.0f,0.0f); passed &= verify(8,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(+1.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.5f,+1E6); passed &= verify(9,cone0,Ray(Vec3fa(+0.0f,1.0f,0.0f),Vec3fa(-1.0f,+1.0f,+0.0f),0.0f,float(inf)),true,-1E6,-0.5f); const Cone cone1(Vec3fa(0.0f,0.0f,0.0f),1.0f,Vec3fa(1.0f,0.0f,0.0f),0.0f); passed &= verify(10,cone1,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa(+1.0f,+0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,2.0f); passed &= verify(11,cone1,Ray(Vec3fa(-1.0f,0.0f,2.0f),Vec3fa(+0.0f,+0.0f,-1.0f),0.0f,float(inf)),true,0.0f,4.0f); const Cone cylinder(Vec3fa(0.0f,0.0f,0.0f),1.0f,Vec3fa(1.0f,0.0f,0.0f),1.0f); passed &= verify(12,cylinder,Ray(Vec3fa(-2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f); passed &= verify(13,cylinder,Ray(Vec3fa(+2.0f,1.0f,0.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),true,0.0f,2.0f); passed &= verify(14,cylinder,Ray(Vec3fa(+2.0f,1.0f,2.0f),Vec3fa( 0.0f,-1.0f,+0.0f),0.0f,float(inf)),false,0.0f,0.0f); passed &= verify(15,cylinder,Ray(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf); passed &= verify(16,cylinder,Ray(Vec3fa(+0.0f,0.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),true,neg_inf,pos_inf); passed &= verify(17,cylinder,Ray(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa( 1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf); passed &= verify(18,cylinder,Ray(Vec3fa(+0.0f,2.0f,0.0f),Vec3fa(-1.0f, 0.0f,+0.0f),0.0f,float(inf)),false,pos_inf,neg_inf); return passed; } /*! output operator */ friend __forceinline embree_ostream operator<<(embree_ostream cout, const Cone& c) { return cout << "Cone { p0 = " << c.p0 << ", r0 = " << c.r0 << ", p1 = " << c.p1 << ", r1 = " << c.r1 << "}"; } }; template struct ConeN { typedef Vec3> Vec3vfN; const Vec3vfN p0; //!< start position of cone const Vec3vfN p1; //!< end position of cone const vfloat r0; //!< start radius of cone const vfloat r1; //!< end radius of cone __forceinline ConeN(const Vec3vfN& p0, const vfloat& r0, const Vec3vfN& p1, const vfloat& r1) : p0(p0), p1(p1), r0(r0), r1(r1) {} __forceinline Cone operator[] (const size_t i) const { assert(i intersect(const Vec3fa& org, const Vec3fa& dir, BBox>& t_o, vfloat& u0_o, Vec3vfN& Ng0_o, vfloat& u1_o, Vec3vfN& Ng1_o) const { /* calculate quadratic equation to solve */ const Vec3vfN v0 = p0-Vec3vfN(org); const Vec3vfN v1 = p1-Vec3vfN(org); const vfloat rl = rcp_length(v1-v0); const Vec3vfN P0 = v0, dP = (v1-v0)*rl; const vfloat dr = (r1-r0)*rl; const Vec3vfN O = -P0, dO = dir; const vfloat dOdO = dot(dO,dO); const vfloat OdO = dot(dO,O); const vfloat OO = dot(O,O); const vfloat dOz = dot(dP,dO); const vfloat Oz = dot(dP,O); const vfloat R = r0 + Oz*dr; const vfloat A = dOdO - sqr(dOz) * (vfloat(1.0f)+sqr(dr)); const vfloat B = 2.0f * (OdO - dOz*(Oz + R*dr)); const vfloat C = OO - (sqr(Oz) + sqr(R)); /* we miss the cone if determinant is smaller than zero */ const vfloat D = B*B - 4.0f*A*C; vbool valid = D >= 0.0f; if (none(valid)) return valid; /* special case for rays that are "parallel" to the cone */ const vfloat eps = float(1<<8)*float(ulp)*max(abs(dOdO),abs(sqr(dOz))); const vbool validt = valid & (abs(A) < eps); const vbool validf = valid & !(abs(A) < eps); if (unlikely(any(validt))) { const vboolx validtt = validt & (abs(dr) < 16.0f*float(ulp)); const vboolx validtf = validt & (abs(dr) >= 16.0f*float(ulp)); /* cylinder case */ if (unlikely(any(validtt))) { t_o.lower = select(validtt, select(C <= 0.0f, vfloat(neg_inf), vfloat(pos_inf)), t_o.lower); t_o.upper = select(validtt, select(C <= 0.0f, vfloat(pos_inf), vfloat(neg_inf)), t_o.upper); valid &= !validtt | C <= 0.0f; } /* cone case */ if (any(validtf)) { /* if we hit the negative cone there cannot be a hit */ const vfloat t = -C/B; const vfloat z0 = Oz+t*dOz; const vfloat z0r = r0+z0*dr; valid &= !validtf | z0r >= 0.0f; /* test if we start inside or outside the cone */ t_o.lower = select(validtf, select(dOz*dr > 0.0f, t, vfloat(neg_inf)), t_o.lower); t_o.upper = select(validtf, select(dOz*dr > 0.0f, vfloat(pos_inf), t), t_o.upper); } } /* standard case for "non-parallel" rays */ if (likely(any(validf))) { const vfloat Q = sqrt(D); const vfloat rcp_2A = 0.5f*rcp(A); t_o.lower = select(validf, (-B-Q)*rcp_2A, t_o.lower); t_o.upper = select(validf, (-B+Q)*rcp_2A, t_o.upper); /* standard case where both hits are on same cone */ const vbool validft = validf & A>0.0f; const vbool validff = validf & !(A>0.0f); if (any(validft)) { const vfloat z0 = Oz+t_o.lower*dOz; const vfloat z0r = r0+z0*dr; valid &= !validft | z0r >= 0.0f; } /* special case where the hits are on the positive and negative cone */ if (any(validff)) { /* depending on the ray direction and the open direction * of the cone we have a hit from inside or outside the * cone */ t_o.lower = select(validff, select(dOz*dr > 0.0f, t_o.lower, float(neg_inf)), t_o.lower); t_o.upper = select(validff, select(dOz*dr > 0.0f, float(pos_inf), t_o.upper), t_o.upper); } } /* calculates u and Ng for near hit */ { u0_o = (Oz+t_o.lower*dOz)*rl; const Vec3vfN Pr = t_o.lower*Vec3vfN(dir); const Vec3vfN Pl = v0 + u0_o*(v1-v0); const Vec3vfN R = normalize(Pr-Pl); const Vec3vfN U = (p1-p0)+(r1-r0)*R; const Vec3vfN V = cross(p1-p0,R); Ng0_o = cross(V,U); } /* calculates u and Ng for far hit */ { u1_o = (Oz+t_o.upper*dOz)*rl; const Vec3vfN Pr = t_o.lower*Vec3vfN(dir); const Vec3vfN Pl = v0 + u1_o*(v1-v0); const Vec3vfN R = normalize(Pr-Pl); const Vec3vfN U = (p1-p0)+(r1-r0)*R; const Vec3vfN V = cross(p1-p0,R); Ng1_o = cross(V,U); } return valid; } __forceinline vbool intersect(const Vec3fa& org, const Vec3fa& dir, BBox>& t_o) const { vfloat u0_o; Vec3vfN Ng0_o; vfloat u1_o; Vec3vfN Ng1_o; return intersect(org,dir,t_o,u0_o,Ng0_o,u1_o,Ng1_o); } }; } }