/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef BT_SERIALIZER_H
#define BT_SERIALIZER_H

#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
#include "btHashMap.h"

#if !defined( __CELLOS_LV2__) && !defined(__MWERKS__)
#include <memory.h>
#endif
#include <string.h>




extern char sBulletDNAstr[];
extern int sBulletDNAlen;
extern char sBulletDNAstr64[];
extern int sBulletDNAlen64;

SIMD_FORCE_INLINE	int btStrLen(const char* str)
{
    if (!str)
		return(0);
	int len = 0;

	while (*str != 0)
	{
        str++;
        len++;
    }

    return len;
}


class btChunk
{
public:
	int		m_chunkCode;
	int		m_length;
	void	*m_oldPtr;
	int		m_dna_nr;
	int		m_number;
};

enum	btSerializationFlags
{
	BT_SERIALIZE_NO_BVH = 1,
	BT_SERIALIZE_NO_TRIANGLEINFOMAP = 2,
	BT_SERIALIZE_NO_DUPLICATE_ASSERT = 4
};

class	btSerializer
{

public:

	virtual ~btSerializer() {}

	virtual	const unsigned char*		getBufferPointer() const = 0;

	virtual	int		getCurrentBufferSize() const = 0;

	virtual	btChunk*	allocate(size_t size, int numElements) = 0;

	virtual	void	finalizeChunk(btChunk* chunk, const char* structType, int chunkCode,void* oldPtr)= 0;

	virtual	 void*	findPointer(void* oldPtr)  = 0;

	virtual	void*	getUniquePointer(void*oldPtr) = 0;

	virtual	void	startSerialization() = 0;

	virtual	void	finishSerialization() = 0;

	virtual	const char*	findNameForPointer(const void* ptr) const = 0;

	virtual	void	registerNameForPointer(const void* ptr, const char* name) = 0;

	virtual void	serializeName(const char* ptr) = 0;

	virtual int		getSerializationFlags() const = 0;

	virtual void	setSerializationFlags(int flags) = 0;

	virtual int getNumChunks() const = 0;

	virtual const btChunk* getChunk(int chunkIndex) const = 0;

};



#define BT_HEADER_LENGTH 12
#if defined(__sgi) || defined (__sparc) || defined (__sparc__) || defined (__PPC__) || defined (__ppc__) || defined (__BIG_ENDIAN__)
#	define BT_MAKE_ID(a,b,c,d) ( (int)(a)<<24 | (int)(b)<<16 | (c)<<8 | (d) )
#else
#	define BT_MAKE_ID(a,b,c,d) ( (int)(d)<<24 | (int)(c)<<16 | (b)<<8 | (a) )
#endif


#define BT_MULTIBODY_CODE       BT_MAKE_ID('M','B','D','Y')
#define BT_SOFTBODY_CODE		BT_MAKE_ID('S','B','D','Y')
#define BT_COLLISIONOBJECT_CODE BT_MAKE_ID('C','O','B','J')
#define BT_RIGIDBODY_CODE		BT_MAKE_ID('R','B','D','Y')
#define BT_CONSTRAINT_CODE		BT_MAKE_ID('C','O','N','S')
#define BT_BOXSHAPE_CODE		BT_MAKE_ID('B','O','X','S')
#define BT_QUANTIZED_BVH_CODE	BT_MAKE_ID('Q','B','V','H')
#define BT_TRIANLGE_INFO_MAP	BT_MAKE_ID('T','M','A','P')
#define BT_SHAPE_CODE			BT_MAKE_ID('S','H','A','P')
#define BT_ARRAY_CODE			BT_MAKE_ID('A','R','A','Y')
#define BT_SBMATERIAL_CODE		BT_MAKE_ID('S','B','M','T')
#define BT_SBNODE_CODE			BT_MAKE_ID('S','B','N','D')
#define BT_DYNAMICSWORLD_CODE	BT_MAKE_ID('D','W','L','D')
#define BT_DNA_CODE				BT_MAKE_ID('D','N','A','1')


struct	btPointerUid
{
	union
	{
		void*	m_ptr;
		int		m_uniqueIds[2];
	};
};

struct btBulletSerializedArrays
{
	btBulletSerializedArrays()
	{
	}
	btAlignedObjectArray<struct btQuantizedBvhDoubleData*>	m_bvhsDouble;
	btAlignedObjectArray<struct btQuantizedBvhFloatData*>	m_bvhsFloat;
	btAlignedObjectArray<struct btCollisionShapeData*> m_colShapeData;
	btAlignedObjectArray<struct btDynamicsWorldDoubleData*> m_dynamicWorldInfoDataDouble;
	btAlignedObjectArray<struct btDynamicsWorldFloatData*> m_dynamicWorldInfoDataFloat;
	btAlignedObjectArray<struct btRigidBodyDoubleData*> m_rigidBodyDataDouble;
	btAlignedObjectArray<struct btRigidBodyFloatData*> m_rigidBodyDataFloat;
	btAlignedObjectArray<struct btCollisionObjectDoubleData*> m_collisionObjectDataDouble;
	btAlignedObjectArray<struct btCollisionObjectFloatData*> m_collisionObjectDataFloat;
	btAlignedObjectArray<struct btTypedConstraintFloatData*> m_constraintDataFloat;
	btAlignedObjectArray<struct btTypedConstraintDoubleData*> m_constraintDataDouble;
	btAlignedObjectArray<struct btTypedConstraintData*> m_constraintData;//for backwards compatibility
	btAlignedObjectArray<struct btSoftBodyFloatData*> m_softBodyFloatData;
	btAlignedObjectArray<struct btSoftBodyDoubleData*> m_softBodyDoubleData;

};


///The btDefaultSerializer is the main Bullet serialization class.
///The constructor takes an optional argument for backwards compatibility, it is recommended to leave this empty/zero.
class btDefaultSerializer	:	public btSerializer
{

protected:

	btAlignedObjectArray<char*>			mTypes;
	btAlignedObjectArray<short*>			mStructs;
	btAlignedObjectArray<short>			mTlens;
	btHashMap<btHashInt, int>			mStructReverse;
	btHashMap<btHashString,int>	mTypeLookup;
	


	btHashMap<btHashPtr,void*>	m_chunkP;

	btHashMap<btHashPtr,const char*>	m_nameMap;

	btHashMap<btHashPtr,btPointerUid>	m_uniquePointers;
	int	m_uniqueIdGenerator;

	int					m_totalSize;
	unsigned char*		m_buffer;
	bool                m_ownsBuffer;
	int					m_currentSize;
	void*				m_dna;
	int					m_dnaLength;

	int					m_serializationFlags;


	btAlignedObjectArray<btChunk*>	m_chunkPtrs;

protected:

	
	virtual	void*	findPointer(void* oldPtr)
	{
		void** ptr = m_chunkP.find(oldPtr);
		if (ptr && *ptr)
			return *ptr;
		return 0;
	}





		virtual void	writeDNA()
		{
			btChunk* dnaChunk = allocate(m_dnaLength,1);
			memcpy(dnaChunk->m_oldPtr,m_dna,m_dnaLength);
			finalizeChunk(dnaChunk,"DNA1",BT_DNA_CODE, m_dna);
		}

		int getReverseType(const char *type) const
		{

			btHashString key(type);
			const int* valuePtr = mTypeLookup.find(key);
			if (valuePtr)
				return *valuePtr;

			return -1;
		}

		void initDNA(const char* bdnaOrg,int dnalen)
		{
			///was already initialized
			if (m_dna)
				return;

			int littleEndian= 1;
			littleEndian= ((char*)&littleEndian)[0];


			m_dna = btAlignedAlloc(dnalen,16);
			memcpy(m_dna,bdnaOrg,dnalen);
			m_dnaLength = dnalen;

			int *intPtr=0;
			short *shtPtr=0;
			char *cp = 0;int dataLen =0;
			intPtr = (int*)m_dna;

			/*
				SDNA (4 bytes) (magic number)
				NAME (4 bytes)
				<nr> (4 bytes) amount of names (int)
				<string>
				<string>
			*/

			if (strncmp((const char*)m_dna, "SDNA", 4)==0)
			{
				// skip ++ NAME
				intPtr++; intPtr++;
			}

			// Parse names
			if (!littleEndian)
				*intPtr = btSwapEndian(*intPtr);

			dataLen = *intPtr;

			intPtr++;

			cp = (char*)intPtr;
			int i;
			for ( i=0; i<dataLen; i++)
			{

				while (*cp)cp++;
				cp++;
			}
			cp = btAlignPointer(cp,4);

			/*
				TYPE (4 bytes)
				<nr> amount of types (int)
				<string>
				<string>
			*/

			intPtr = (int*)cp;
			btAssert(strncmp(cp, "TYPE", 4)==0); intPtr++;

			if (!littleEndian)
				*intPtr =  btSwapEndian(*intPtr);

			dataLen = *intPtr;
			intPtr++;


			cp = (char*)intPtr;
			for (i=0; i<dataLen; i++)
			{
				mTypes.push_back(cp);
				while (*cp)cp++;
				cp++;
			}

			cp = btAlignPointer(cp,4);


			/*
				TLEN (4 bytes)
				<len> (short) the lengths of types
				<len>
			*/

			// Parse type lens
			intPtr = (int*)cp;
			btAssert(strncmp(cp, "TLEN", 4)==0); intPtr++;

			dataLen = (int)mTypes.size();

			shtPtr = (short*)intPtr;
			for (i=0; i<dataLen; i++, shtPtr++)
			{
				if (!littleEndian)
					shtPtr[0] = btSwapEndian(shtPtr[0]);
				mTlens.push_back(shtPtr[0]);
			}

			if (dataLen & 1) shtPtr++;

			/*
				STRC (4 bytes)
				<nr> amount of structs (int)
				<typenr>
				<nr_of_elems>
				<typenr>
				<namenr>
				<typenr>
				<namenr>
			*/

			intPtr = (int*)shtPtr;
			cp = (char*)intPtr;
			btAssert(strncmp(cp, "STRC", 4)==0); intPtr++;

			if (!littleEndian)
				*intPtr = btSwapEndian(*intPtr);
			dataLen = *intPtr ;
			intPtr++;


			shtPtr = (short*)intPtr;
			for (i=0; i<dataLen; i++)
			{
				mStructs.push_back (shtPtr);

				if (!littleEndian)
				{
					shtPtr[0]= btSwapEndian(shtPtr[0]);
					shtPtr[1]= btSwapEndian(shtPtr[1]);

					int len = shtPtr[1];
					shtPtr+= 2;

					for (int a=0; a<len; a++, shtPtr+=2)
					{
							shtPtr[0]= btSwapEndian(shtPtr[0]);
							shtPtr[1]= btSwapEndian(shtPtr[1]);
					}

				} else
				{
					shtPtr+= (2*shtPtr[1])+2;
				}
			}

			// build reverse lookups
			for (i=0; i<(int)mStructs.size(); i++)
			{
				short *strc = mStructs.at(i);
				mStructReverse.insert(strc[0], i);
				mTypeLookup.insert(btHashString(mTypes[strc[0]]),i);
			}
		}

public:

	btHashMap<btHashPtr,void*> m_skipPointers;


		btDefaultSerializer(int totalSize=0, unsigned char*	buffer=0)
			:m_uniqueIdGenerator(0),
			m_totalSize(totalSize),
			m_currentSize(0),
			m_dna(0),
			m_dnaLength(0),
			m_serializationFlags(0)
		{
		    if (buffer==0)
            {
                m_buffer = m_totalSize?(unsigned char*)btAlignedAlloc(totalSize,16):0;
                m_ownsBuffer = true;
            } else
            {
                m_buffer = buffer;
                m_ownsBuffer = false;
            }

			const bool VOID_IS_8 = ((sizeof(void*)==8));

#ifdef BT_INTERNAL_UPDATE_SERIALIZATION_STRUCTURES
			if (VOID_IS_8)
			{
#if _WIN64
				initDNA((const char*)sBulletDNAstr64,sBulletDNAlen64);
#else
				btAssert(0);
#endif
			} else
			{
#ifndef _WIN64
				initDNA((const char*)sBulletDNAstr,sBulletDNAlen);
#else
				btAssert(0);
#endif
			}

#else //BT_INTERNAL_UPDATE_SERIALIZATION_STRUCTURES
			if (VOID_IS_8)
			{
				initDNA((const char*)sBulletDNAstr64,sBulletDNAlen64);
			} else
			{
				initDNA((const char*)sBulletDNAstr,sBulletDNAlen);
			}
#endif //BT_INTERNAL_UPDATE_SERIALIZATION_STRUCTURES

		}

		virtual ~btDefaultSerializer()
		{
			if (m_buffer && m_ownsBuffer)
				btAlignedFree(m_buffer);
			if (m_dna)
				btAlignedFree(m_dna);
		}

		static int getMemoryDnaSizeInBytes()
		{
			const bool VOID_IS_8 = ((sizeof(void*) == 8));

			if (VOID_IS_8)
			{
				return sBulletDNAlen64;
			}
			return sBulletDNAlen;
		}
		static const char* getMemoryDna()
		{
			const bool VOID_IS_8 = ((sizeof(void*) == 8));
			if (VOID_IS_8)
			{
				return (const char*)sBulletDNAstr64;
			}
			return (const char*)sBulletDNAstr;
		}

		void	insertHeader()
		{
			writeHeader(m_buffer);
			m_currentSize += BT_HEADER_LENGTH;
		}

		void	writeHeader(unsigned char* buffer) const
		{


#ifdef  BT_USE_DOUBLE_PRECISION
			memcpy(buffer, "BULLETd", 7);
#else
			memcpy(buffer, "BULLETf", 7);
#endif //BT_USE_DOUBLE_PRECISION

			int littleEndian= 1;
			littleEndian= ((char*)&littleEndian)[0];

			if (sizeof(void*)==8)
			{
				buffer[7] = '-';
			} else
			{
				buffer[7] = '_';
			}

			if (littleEndian)
			{
				buffer[8]='v';
			} else
			{
				buffer[8]='V';
			}


			buffer[9] = '2';
			buffer[10] = '8';
			buffer[11] = '7';

		}

		virtual	void	startSerialization()
		{
			m_uniqueIdGenerator= 1;
			if (m_totalSize)
			{
				unsigned char* buffer = internalAlloc(BT_HEADER_LENGTH);
				writeHeader(buffer);
			}

		}

		virtual	void	finishSerialization()
		{
			writeDNA();

			//if we didn't pre-allocate a buffer, we need to create a contiguous buffer now
			int mysize = 0;
			if (!m_totalSize)
			{
				if (m_buffer)
					btAlignedFree(m_buffer);

				m_currentSize += BT_HEADER_LENGTH;
				m_buffer = (unsigned char*)btAlignedAlloc(m_currentSize,16);

				unsigned char* currentPtr = m_buffer;
				writeHeader(m_buffer);
				currentPtr += BT_HEADER_LENGTH;
				mysize+=BT_HEADER_LENGTH;
				for (int i=0;i<	m_chunkPtrs.size();i++)
				{
					int curLength = sizeof(btChunk)+m_chunkPtrs[i]->m_length;
					memcpy(currentPtr,m_chunkPtrs[i], curLength);
					btAlignedFree(m_chunkPtrs[i]);
					currentPtr+=curLength;
					mysize+=curLength;
				}
			}

			mTypes.clear();
			mStructs.clear();
			mTlens.clear();
			mStructReverse.clear();
			mTypeLookup.clear();
			m_skipPointers.clear();
			m_chunkP.clear();
			m_nameMap.clear();
			m_uniquePointers.clear();
			m_chunkPtrs.clear();
		}

		virtual	void*	getUniquePointer(void*oldPtr)
		{
			btAssert(m_uniqueIdGenerator >= 0);
			if (!oldPtr)
				return 0;

			btPointerUid* uptr = (btPointerUid*)m_uniquePointers.find(oldPtr);
			if (uptr)
			{
				return uptr->m_ptr;
			}

			void** ptr2 = m_skipPointers[oldPtr];
            if (ptr2)
			{
				return 0;
			}

			m_uniqueIdGenerator++;

			btPointerUid uid;
			uid.m_uniqueIds[0] = m_uniqueIdGenerator;
			uid.m_uniqueIds[1] = m_uniqueIdGenerator;
			m_uniquePointers.insert(oldPtr,uid);
			return uid.m_ptr;

		}

		virtual	const unsigned char*		getBufferPointer() const
		{
			return m_buffer;
		}

		virtual	int					getCurrentBufferSize() const
		{
			return	m_currentSize;
		}

		virtual	void	finalizeChunk(btChunk* chunk, const char* structType, int chunkCode,void* oldPtr)
		{
			if (!(m_serializationFlags&BT_SERIALIZE_NO_DUPLICATE_ASSERT))
			{
				btAssert(!findPointer(oldPtr));
			}

			chunk->m_dna_nr = getReverseType(structType);

			chunk->m_chunkCode = chunkCode;

			void* uniquePtr = getUniquePointer(oldPtr);

			m_chunkP.insert(oldPtr,uniquePtr);//chunk->m_oldPtr);
			chunk->m_oldPtr = uniquePtr;//oldPtr;

		}


		virtual unsigned char* internalAlloc(size_t size)
		{
			unsigned char* ptr = 0;

			if (m_totalSize)
			{
				ptr = m_buffer+m_currentSize;
				m_currentSize += int(size);
				btAssert(m_currentSize<m_totalSize);
			} else
			{
				ptr = (unsigned char*)btAlignedAlloc(size,16);
				m_currentSize += int(size);
			}
			return ptr;
		}



		virtual	btChunk*	allocate(size_t size, int numElements)
		{

			unsigned char* ptr = internalAlloc(int(size)*numElements+sizeof(btChunk));

			unsigned char* data = ptr + sizeof(btChunk);

			btChunk* chunk = (btChunk*)ptr;
			chunk->m_chunkCode = 0;
			chunk->m_oldPtr = data;
			chunk->m_length = int(size)*numElements;
			chunk->m_number = numElements;

			m_chunkPtrs.push_back(chunk);


			return chunk;
		}

		virtual	const char*	findNameForPointer(const void* ptr) const
		{
			const char*const * namePtr = m_nameMap.find(ptr);
			if (namePtr && *namePtr)
				return *namePtr;
			return 0;

		}

		virtual	void	registerNameForPointer(const void* ptr, const char* name)
		{
			m_nameMap.insert(ptr,name);
		}

		virtual void	serializeName(const char* name)
		{
			if (name)
			{
				//don't serialize name twice
				if (findPointer((void*)name))
					return;

				int len = btStrLen(name);
				if (len)
				{

					int newLen = len+1;
					int padding = ((newLen+3)&~3)-newLen;
					newLen += padding;

					//serialize name string now
					btChunk* chunk = allocate(sizeof(char),newLen);
					char* destinationName = (char*)chunk->m_oldPtr;
					for (int i=0;i<len;i++)
					{
						destinationName[i] = name[i];
					}
					destinationName[len] = 0;
					finalizeChunk(chunk,"char",BT_ARRAY_CODE,(void*)name);
				}
			}
		}

		virtual int		getSerializationFlags() const
		{
			return m_serializationFlags;
		}

		virtual void	setSerializationFlags(int flags)
		{
			m_serializationFlags = flags;
		}
		int getNumChunks() const
		{
			return m_chunkPtrs.size();
		}

		const btChunk* getChunk(int chunkIndex) const
		{
			return m_chunkPtrs[chunkIndex];
		}
};


///In general it is best to use btDefaultSerializer,
///in particular when writing the data to disk or sending it over the network.
///The btInMemorySerializer is experimental and only suitable in a few cases.
///The btInMemorySerializer takes a shortcut and can be useful to create a deep-copy
///of objects. There will be a demo on how to use the btInMemorySerializer.
#ifdef ENABLE_INMEMORY_SERIALIZER

struct btInMemorySerializer : public btDefaultSerializer
{
    btHashMap<btHashPtr,btChunk*> m_uid2ChunkPtr;
    btHashMap<btHashPtr,void*> m_orgPtr2UniqueDataPtr;
    btHashMap<btHashString,const void*> m_names2Ptr;
    

    btBulletSerializedArrays    m_arrays;

    btInMemorySerializer(int totalSize=0, unsigned char*	buffer=0)
    :btDefaultSerializer(totalSize,buffer)
    {
        
    }

    virtual void startSerialization()
    {
        m_uid2ChunkPtr.clear();
        //todo: m_arrays.clear();
        btDefaultSerializer::startSerialization();
    }

    

    btChunk* findChunkFromUniquePointer(void* uniquePointer)
    {
        btChunk** chkPtr = m_uid2ChunkPtr[uniquePointer];
        if (chkPtr)
        {
            return *chkPtr;
        }
        return 0;
    }

	virtual	void	registerNameForPointer(const void* ptr, const char* name)
    {
       btDefaultSerializer::registerNameForPointer(ptr,name);
       m_names2Ptr.insert(name,ptr);
    }

    virtual void finishSerialization()
    {
    }

    virtual void* getUniquePointer(void*oldPtr)
    {
        if (oldPtr==0)
            return 0;

        // void* uniquePtr = getUniquePointer(oldPtr);
        btChunk* chunk = findChunkFromUniquePointer(oldPtr);
        if (chunk)
        {
            return chunk->m_oldPtr;
        } else
        {
            const char* n = (const char*) oldPtr;
            const void** ptr = m_names2Ptr[n];
            if (ptr)
            {
                return oldPtr;
            } else
            {
            		void** ptr2 = m_skipPointers[oldPtr];
            		if (ptr2)
								{
									return 0;
								} else
								{
									//If this assert hit, serialization happened in the wrong order
									// 'getUniquePointer'
									btAssert(0);
								}

            }
            return 0;
        }
				return oldPtr;
    }

    virtual void finalizeChunk(btChunk* chunk, const char* structType, int chunkCode,void* oldPtr)
    {
        if (!(m_serializationFlags&BT_SERIALIZE_NO_DUPLICATE_ASSERT))
        {
            btAssert(!findPointer(oldPtr));
        }

        chunk->m_dna_nr = getReverseType(structType);
        chunk->m_chunkCode = chunkCode;
        //void* uniquePtr = getUniquePointer(oldPtr);
        m_chunkP.insert(oldPtr,oldPtr);//chunk->m_oldPtr);
        // chunk->m_oldPtr = uniquePtr;//oldPtr;

        void* uid = findPointer(oldPtr);
        m_uid2ChunkPtr.insert(uid,chunk);

        switch (chunk->m_chunkCode)
			{
			case BT_SOFTBODY_CODE:
			{
	#ifdef BT_USE_DOUBLE_PRECISION
					m_arrays.m_softBodyDoubleData.push_back((btSoftBodyDoubleData*) chunk->m_oldPtr);
	#else
					m_arrays.m_softBodyFloatData.push_back((btSoftBodyFloatData*) chunk->m_oldPtr);
	#endif
					break;
				}
			case BT_COLLISIONOBJECT_CODE:
				{
	#ifdef BT_USE_DOUBLE_PRECISION
					m_arrays.m_collisionObjectDataDouble.push_back((btCollisionObjectDoubleData*)chunk->m_oldPtr);
	#else//BT_USE_DOUBLE_PRECISION
					m_arrays.m_collisionObjectDataFloat.push_back((btCollisionObjectFloatData*)chunk->m_oldPtr);
	#endif //BT_USE_DOUBLE_PRECISION
					break;
				}
			case BT_RIGIDBODY_CODE:
				{
	#ifdef BT_USE_DOUBLE_PRECISION
					m_arrays.m_rigidBodyDataDouble.push_back((btRigidBodyDoubleData*)chunk->m_oldPtr);
	#else
					m_arrays.m_rigidBodyDataFloat.push_back((btRigidBodyFloatData*)chunk->m_oldPtr);
	#endif//BT_USE_DOUBLE_PRECISION
					break;
				};
			case BT_CONSTRAINT_CODE:
				{
	#ifdef BT_USE_DOUBLE_PRECISION
					m_arrays.m_constraintDataDouble.push_back((btTypedConstraintDoubleData*)chunk->m_oldPtr);
	#else
					m_arrays.m_constraintDataFloat.push_back((btTypedConstraintFloatData*)chunk->m_oldPtr);
	#endif
					break;
				}
			case BT_QUANTIZED_BVH_CODE:
				{
	#ifdef BT_USE_DOUBLE_PRECISION
					m_arrays.m_bvhsDouble.push_back((btQuantizedBvhDoubleData*) chunk->m_oldPtr);
	#else
					m_arrays.m_bvhsFloat.push_back((btQuantizedBvhFloatData*) chunk->m_oldPtr);
	#endif
					break;
				}

			case BT_SHAPE_CODE:
				{
					btCollisionShapeData* shapeData = (btCollisionShapeData*) chunk->m_oldPtr;
					m_arrays.m_colShapeData.push_back(shapeData);
					break;
				}
			case BT_TRIANLGE_INFO_MAP:
			case BT_ARRAY_CODE:
			case BT_SBMATERIAL_CODE:
			case BT_SBNODE_CODE:
			case BT_DYNAMICSWORLD_CODE:
			case BT_DNA_CODE:
				{
					break;
				}
			default:
				{
				}
			};
    }

    int getNumChunks() const
    {
        return m_uid2ChunkPtr.size();
    }

    const btChunk* getChunk(int chunkIndex) const
    {
        return *m_uid2ChunkPtr.getAtIndex(chunkIndex);
    }

};
#endif //ENABLE_INMEMORY_SERIALIZER

#endif //BT_SERIALIZER_H