#include "MultiBodyTree.hpp" #include <cmath> #include <limits> #include <vector> #include "IDMath.hpp" #include "details/MultiBodyTreeImpl.hpp" #include "details/MultiBodyTreeInitCache.hpp" namespace btInverseDynamics { MultiBodyTree::MultiBodyTree() : m_is_finalized(false), m_mass_parameters_are_valid(true), m_accept_invalid_mass_parameters(false), m_impl(0x0), m_init_cache(0x0) { m_init_cache = new InitCache(); } MultiBodyTree::~MultiBodyTree() { delete m_impl; delete m_init_cache; } void MultiBodyTree::setAcceptInvalidMassParameters(bool flag) { m_accept_invalid_mass_parameters = flag; } bool MultiBodyTree::getAcceptInvalidMassProperties() const { return m_accept_invalid_mass_parameters; } int MultiBodyTree::getBodyOrigin(const int body_index, vec3 *world_origin) const { return m_impl->getBodyOrigin(body_index, world_origin); } int MultiBodyTree::getBodyCoM(const int body_index, vec3 *world_com) const { return m_impl->getBodyCoM(body_index, world_com); } int MultiBodyTree::getBodyTransform(const int body_index, mat33 *world_T_body) const { return m_impl->getBodyTransform(body_index, world_T_body); } int MultiBodyTree::getBodyAngularVelocity(const int body_index, vec3 *world_omega) const { return m_impl->getBodyAngularVelocity(body_index, world_omega); } int MultiBodyTree::getBodyLinearVelocity(const int body_index, vec3 *world_velocity) const { return m_impl->getBodyLinearVelocity(body_index, world_velocity); } int MultiBodyTree::getBodyLinearVelocityCoM(const int body_index, vec3 *world_velocity) const { return m_impl->getBodyLinearVelocityCoM(body_index, world_velocity); } int MultiBodyTree::getBodyAngularAcceleration(const int body_index, vec3 *world_dot_omega) const { return m_impl->getBodyAngularAcceleration(body_index, world_dot_omega); } int MultiBodyTree::getBodyLinearAcceleration(const int body_index, vec3 *world_acceleration) const { return m_impl->getBodyLinearAcceleration(body_index, world_acceleration); } int MultiBodyTree::getParentRParentBodyRef(const int body_index, vec3* r) const { return m_impl->getParentRParentBodyRef(body_index, r); } int MultiBodyTree::getBodyTParentRef(const int body_index, mat33* T) const { return m_impl->getBodyTParentRef(body_index, T); } int MultiBodyTree::getBodyAxisOfMotion(const int body_index, vec3* axis) const { return m_impl->getBodyAxisOfMotion(body_index, axis); } void MultiBodyTree::printTree() { m_impl->printTree(); } void MultiBodyTree::printTreeData() { m_impl->printTreeData(); } int MultiBodyTree::numBodies() const { return m_impl->m_num_bodies; } int MultiBodyTree::numDoFs() const { return m_impl->m_num_dofs; } int MultiBodyTree::calculateInverseDynamics(const vecx &q, const vecx &u, const vecx &dot_u, vecx *joint_forces) { if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateInverseDynamics(q, u, dot_u, joint_forces)) { error_message("error in inverse dynamics calculation\n"); return -1; } return 0; } int MultiBodyTree::calculateMassMatrix(const vecx &q, const bool update_kinematics, const bool initialize_matrix, const bool set_lower_triangular_matrix, matxx *mass_matrix) { if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateMassMatrix(q, update_kinematics, initialize_matrix, set_lower_triangular_matrix, mass_matrix)) { error_message("error in mass matrix calculation\n"); return -1; } return 0; } int MultiBodyTree::calculateMassMatrix(const vecx &q, matxx *mass_matrix) { return calculateMassMatrix(q, true, true, true, mass_matrix); } int MultiBodyTree::calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u) { vec3 world_gravity(m_impl->m_world_gravity); // temporarily set gravity to zero, to ensure we get the actual accelerations setZero(m_impl->m_world_gravity); if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateKinematics(q, u, dot_u, MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY_ACCELERATION)) { error_message("error in kinematics calculation\n"); return -1; } m_impl->m_world_gravity=world_gravity; return 0; } int MultiBodyTree::calculatePositionKinematics(const vecx& q) { if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateKinematics(q, q, q, MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) { error_message("error in kinematics calculation\n"); return -1; } return 0; } int MultiBodyTree::calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u) { if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateKinematics(q, u, u, MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) { error_message("error in kinematics calculation\n"); return -1; } return 0; } #if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) int MultiBodyTree::calculateJacobians(const vecx& q, const vecx& u) { if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateJacobians(q, u, MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) { error_message("error in jacobian calculation\n"); return -1; } return 0; } int MultiBodyTree::calculateJacobians(const vecx& q){ if (false == m_is_finalized) { error_message("system has not been initialized\n"); return -1; } if (-1 == m_impl->calculateJacobians(q, q, MultiBodyTree::MultiBodyImpl::POSITION_ONLY)) { error_message("error in jacobian calculation\n"); return -1; } return 0; } int MultiBodyTree::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const { return m_impl->getBodyDotJacobianTransU(body_index,world_dot_jac_trans_u); } int MultiBodyTree::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const { return m_impl->getBodyDotJacobianRotU(body_index,world_dot_jac_rot_u); } int MultiBodyTree::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const { return m_impl->getBodyJacobianTrans(body_index,world_jac_trans); } int MultiBodyTree::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const { return m_impl->getBodyJacobianRot(body_index,world_jac_rot); } #endif int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_type, const vec3 &parent_r_parent_body_ref, const mat33 &body_T_parent_ref, const vec3 &body_axis_of_motion_, idScalar mass, const vec3 &body_r_body_com, const mat33 &body_I_body, const int user_int, void *user_ptr) { if (body_index < 0) { error_message("body index must be positive (got %d)\n", body_index); return -1; } vec3 body_axis_of_motion(body_axis_of_motion_); switch (joint_type) { case REVOLUTE: case PRISMATIC: // check if axis is unit vector if (!isUnitVector(body_axis_of_motion)) { warning_message( "axis of motion not a unit axis ([%f %f %f]), will use normalized vector\n", body_axis_of_motion(0), body_axis_of_motion(1), body_axis_of_motion(2)); idScalar length = BT_ID_SQRT(BT_ID_POW(body_axis_of_motion(0), 2) + BT_ID_POW(body_axis_of_motion(1), 2) + BT_ID_POW(body_axis_of_motion(2), 2)); if (length < BT_ID_SQRT(std::numeric_limits<idScalar>::min())) { error_message("axis of motion vector too short (%e)\n", length); return -1; } body_axis_of_motion = (1.0 / length) * body_axis_of_motion; } break; case FIXED: break; case FLOATING: break; default: error_message("unknown joint type %d\n", joint_type); return -1; } // sanity check for mass properties. Zero mass is OK. if (mass < 0) { m_mass_parameters_are_valid = false; error_message("Body %d has invalid mass %e\n", body_index, mass); if (!m_accept_invalid_mass_parameters) { return -1; } } if (!isValidInertiaMatrix(body_I_body, body_index, FIXED == joint_type)) { m_mass_parameters_are_valid = false; // error message printed in function call if (!m_accept_invalid_mass_parameters) { return -1; } } if (!isValidTransformMatrix(body_T_parent_ref)) { return -1; } return m_init_cache->addBody(body_index, parent_index, joint_type, parent_r_parent_body_ref, body_T_parent_ref, body_axis_of_motion, mass, body_r_body_com, body_I_body, user_int, user_ptr); } int MultiBodyTree::getParentIndex(const int body_index, int *parent_index) const { return m_impl->getParentIndex(body_index, parent_index); } int MultiBodyTree::getUserInt(const int body_index, int *user_int) const { return m_impl->getUserInt(body_index, user_int); } int MultiBodyTree::getUserPtr(const int body_index, void **user_ptr) const { return m_impl->getUserPtr(body_index, user_ptr); } int MultiBodyTree::setUserInt(const int body_index, const int user_int) { return m_impl->setUserInt(body_index, user_int); } int MultiBodyTree::setUserPtr(const int body_index, void *const user_ptr) { return m_impl->setUserPtr(body_index, user_ptr); } int MultiBodyTree::finalize() { const int &num_bodies = m_init_cache->numBodies(); const int &num_dofs = m_init_cache->numDoFs(); if(num_dofs<=0) { error_message("Need num_dofs>=1, but num_dofs= %d\n", num_dofs); //return -1; } // 1 allocate internal MultiBody structure m_impl = new MultiBodyImpl(num_bodies, num_dofs); // 2 build new index set assuring index(parent) < index(child) if (-1 == m_init_cache->buildIndexSets()) { return -1; } m_init_cache->getParentIndexArray(&m_impl->m_parent_index); // 3 setup internal kinematic and dynamic data for (int index = 0; index < num_bodies; index++) { InertiaData inertia; JointData joint; if (-1 == m_init_cache->getInertiaData(index, &inertia)) { return -1; } if (-1 == m_init_cache->getJointData(index, &joint)) { return -1; } RigidBody &rigid_body = m_impl->m_body_list[index]; rigid_body.m_mass = inertia.m_mass; rigid_body.m_body_mass_com = inertia.m_mass * inertia.m_body_pos_body_com; rigid_body.m_body_I_body = inertia.m_body_I_body; rigid_body.m_joint_type = joint.m_type; rigid_body.m_parent_pos_parent_body_ref = joint.m_parent_pos_parent_child_ref; rigid_body.m_body_T_parent_ref = joint.m_child_T_parent_ref; rigid_body.m_parent_pos_parent_body_ref = joint.m_parent_pos_parent_child_ref; rigid_body.m_joint_type = joint.m_type; // Set joint Jacobians. Note that the dimension is always 3x1 here to avoid variable sized // matrices. switch (rigid_body.m_joint_type) { case REVOLUTE: rigid_body.m_Jac_JR(0) = joint.m_child_axis_of_motion(0); rigid_body.m_Jac_JR(1) = joint.m_child_axis_of_motion(1); rigid_body.m_Jac_JR(2) = joint.m_child_axis_of_motion(2); rigid_body.m_Jac_JT(0) = 0.0; rigid_body.m_Jac_JT(1) = 0.0; rigid_body.m_Jac_JT(2) = 0.0; break; case PRISMATIC: rigid_body.m_Jac_JR(0) = 0.0; rigid_body.m_Jac_JR(1) = 0.0; rigid_body.m_Jac_JR(2) = 0.0; rigid_body.m_Jac_JT(0) = joint.m_child_axis_of_motion(0); rigid_body.m_Jac_JT(1) = joint.m_child_axis_of_motion(1); rigid_body.m_Jac_JT(2) = joint.m_child_axis_of_motion(2); break; case FIXED: // NOTE/TODO: dimension really should be zero .. rigid_body.m_Jac_JR(0) = 0.0; rigid_body.m_Jac_JR(1) = 0.0; rigid_body.m_Jac_JR(2) = 0.0; rigid_body.m_Jac_JT(0) = 0.0; rigid_body.m_Jac_JT(1) = 0.0; rigid_body.m_Jac_JT(2) = 0.0; break; case FLOATING: // NOTE/TODO: this is not really correct. // the Jacobians should be 3x3 matrices here ! rigid_body.m_Jac_JR(0) = 0.0; rigid_body.m_Jac_JR(1) = 0.0; rigid_body.m_Jac_JR(2) = 0.0; rigid_body.m_Jac_JT(0) = 0.0; rigid_body.m_Jac_JT(1) = 0.0; rigid_body.m_Jac_JT(2) = 0.0; break; default: error_message("unsupported joint type %d\n", rigid_body.m_joint_type); return -1; } } // 4 assign degree of freedom indices & build per-joint-type index arrays if (-1 == m_impl->generateIndexSets()) { error_message("generating index sets\n"); return -1; } // 5 do some pre-computations .. m_impl->calculateStaticData(); // 6. make sure all user forces are set to zero, as this might not happen // in the vector ctors. m_impl->clearAllUserForcesAndMoments(); m_is_finalized = true; return 0; } int MultiBodyTree::setGravityInWorldFrame(const vec3 &gravity) { return m_impl->setGravityInWorldFrame(gravity); } int MultiBodyTree::getJointType(const int body_index, JointType *joint_type) const { return m_impl->getJointType(body_index, joint_type); } int MultiBodyTree::getJointTypeStr(const int body_index, const char **joint_type) const { return m_impl->getJointTypeStr(body_index, joint_type); } int MultiBodyTree::getDoFOffset(const int body_index, int *q_offset) const { return m_impl->getDoFOffset(body_index, q_offset); } int MultiBodyTree::setBodyMass(const int body_index, idScalar mass) { return m_impl->setBodyMass(body_index, mass); } int MultiBodyTree::setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment) { return m_impl->setBodyFirstMassMoment(body_index, first_mass_moment); } int MultiBodyTree::setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment) { return m_impl->setBodySecondMassMoment(body_index, second_mass_moment); } int MultiBodyTree::getBodyMass(const int body_index, idScalar *mass) const { return m_impl->getBodyMass(body_index, mass); } int MultiBodyTree::getBodyFirstMassMoment(const int body_index, vec3 *first_mass_moment) const { return m_impl->getBodyFirstMassMoment(body_index, first_mass_moment); } int MultiBodyTree::getBodySecondMassMoment(const int body_index, mat33 *second_mass_moment) const { return m_impl->getBodySecondMassMoment(body_index, second_mass_moment); } void MultiBodyTree::clearAllUserForcesAndMoments() { m_impl->clearAllUserForcesAndMoments(); } int MultiBodyTree::addUserForce(const int body_index, const vec3 &body_force) { return m_impl->addUserForce(body_index, body_force); } int MultiBodyTree::addUserMoment(const int body_index, const vec3 &body_moment) { return m_impl->addUserMoment(body_index, body_moment); } }