/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#ifndef BT_HASH_MAP_H
#define BT_HASH_MAP_H

#include "btAlignedObjectArray.h"

///very basic hashable string implementation, compatible with btHashMap
struct btHashString
{
	const char* m_string;
	unsigned int	m_hash;

	SIMD_FORCE_INLINE	unsigned int getHash()const
	{
		return m_hash;
	}

	btHashString(const char* name)
		:m_string(name)
	{
		/* magic numbers from http://www.isthe.com/chongo/tech/comp/fnv/ */
		static const unsigned int  InitialFNV = 2166136261u;
		static const unsigned int FNVMultiple = 16777619u;

		/* Fowler / Noll / Vo (FNV) Hash */
		unsigned int hash = InitialFNV;
		
		for(int i = 0; m_string[i]; i++)
		{
			hash = hash ^ (m_string[i]);       /* xor  the low 8 bits */
			hash = hash * FNVMultiple;  /* multiply by the magic number */
		}
		m_hash = hash;
	}

	int portableStringCompare(const char* src,	const char* dst) const
	{
			int ret = 0 ;

			while( ! (ret = *(const unsigned char *)src - *(const unsigned char *)dst) && *dst)
					++src, ++dst;

			if ( ret < 0 )
					ret = -1 ;
			else if ( ret > 0 )
					ret = 1 ;

			return( ret );
	}

	bool equals(const btHashString& other) const
	{
		return (m_string == other.m_string) ||
			(0==portableStringCompare(m_string,other.m_string));

	}

};

const int BT_HASH_NULL=0xffffffff;


class btHashInt
{
	int	m_uid;
public:

	btHashInt()
	{
	}

	btHashInt(int uid)	:m_uid(uid)
	{
	}

	int	getUid1() const
	{
		return m_uid;
	}

	void	setUid1(int uid)
	{
		m_uid = uid;
	}

	bool equals(const btHashInt& other) const
	{
		return getUid1() == other.getUid1();
	}
	//to our success
	SIMD_FORCE_INLINE	unsigned int getHash()const
	{
		unsigned int key = m_uid;
		// Thomas Wang's hash
		key += ~(key << 15);	key ^=  (key >> 10);	key +=  (key << 3);	key ^=  (key >> 6);	key += ~(key << 11);	key ^=  (key >> 16);
		
		return key;
	}
};



class btHashPtr
{

	union
	{
		const void*	m_pointer;
		unsigned int	m_hashValues[2];
	};

public:

	btHashPtr(const void* ptr)
		:m_pointer(ptr)
	{
	}

	const void*	getPointer() const
	{
		return m_pointer;
	}

	bool equals(const btHashPtr& other) const
	{
		return getPointer() == other.getPointer();
	}

	//to our success
	SIMD_FORCE_INLINE	unsigned int getHash()const
	{
		const bool VOID_IS_8 = ((sizeof(void*)==8));
		
		unsigned int key = VOID_IS_8? m_hashValues[0]+m_hashValues[1] : m_hashValues[0];
		// Thomas Wang's hash
		key += ~(key << 15);	key ^=  (key >> 10);	key +=  (key << 3);	key ^=  (key >> 6);	key += ~(key << 11);	key ^=  (key >> 16);
		return key;
	}

	
};


template <class Value>
class btHashKeyPtr
{
        int     m_uid;
public:

        btHashKeyPtr(int uid)    :m_uid(uid)
        {
        }

        int     getUid1() const
        {
                return m_uid;
        }

        bool equals(const btHashKeyPtr<Value>& other) const
        {
                return getUid1() == other.getUid1();
        }

        //to our success
        SIMD_FORCE_INLINE       unsigned int getHash()const
        {
                unsigned int key = m_uid;
                // Thomas Wang's hash
                key += ~(key << 15);	key ^=  (key >> 10);	key +=  (key << 3);	key ^=  (key >> 6);	key += ~(key << 11);	key ^=  (key >> 16);
                return key;
        }

        
};


template <class Value>
class btHashKey
{
	int	m_uid;
public:

	btHashKey(int uid)	:m_uid(uid)
	{
	}

	int	getUid1() const
	{
		return m_uid;
	}

	bool equals(const btHashKey<Value>& other) const
	{
		return getUid1() == other.getUid1();
	}
	//to our success
	SIMD_FORCE_INLINE	unsigned int getHash()const
	{
		unsigned int key = m_uid;
		// Thomas Wang's hash
		key += ~(key << 15);	key ^=  (key >> 10);	key +=  (key << 3);	key ^=  (key >> 6);	key += ~(key << 11);	key ^=  (key >> 16);
		return key;
	}
};


///The btHashMap template class implements a generic and lightweight hashmap.
///A basic sample of how to use btHashMap is located in Demos\BasicDemo\main.cpp
template <class Key, class Value>
class btHashMap
{

protected:
	btAlignedObjectArray<int>		m_hashTable;
	btAlignedObjectArray<int>		m_next;
	
	btAlignedObjectArray<Value>		m_valueArray;
	btAlignedObjectArray<Key>		m_keyArray;

	void	growTables(const Key& /*key*/)
	{
		int newCapacity = m_valueArray.capacity();

		if (m_hashTable.size() < newCapacity)
		{
			//grow hashtable and next table
			int curHashtableSize = m_hashTable.size();

			m_hashTable.resize(newCapacity);
			m_next.resize(newCapacity);

			int i;

			for (i= 0; i < newCapacity; ++i)
			{
				m_hashTable[i] = BT_HASH_NULL;
			}
			for (i = 0; i < newCapacity; ++i)
			{
				m_next[i] = BT_HASH_NULL;
			}

			for(i=0;i<curHashtableSize;i++)
			{
				//const Value& value = m_valueArray[i];
				//const Key& key = m_keyArray[i];

				int	hashValue = m_keyArray[i].getHash() & (m_valueArray.capacity()-1);	// New hash value with new mask
				m_next[i] = m_hashTable[hashValue];
				m_hashTable[hashValue] = i;
			}


		}
	}

	public:

	void insert(const Key& key, const Value& value) {
		int hash = key.getHash() & (m_valueArray.capacity()-1);

		//replace value if the key is already there
		int index = findIndex(key);
		if (index != BT_HASH_NULL)
		{
			m_valueArray[index]=value;
			return;
		}

		int count = m_valueArray.size();
		int oldCapacity = m_valueArray.capacity();
		m_valueArray.push_back(value);
		m_keyArray.push_back(key);

		int newCapacity = m_valueArray.capacity();
		if (oldCapacity < newCapacity)
		{
			growTables(key);
			//hash with new capacity
			hash = key.getHash() & (m_valueArray.capacity()-1);
		}
		m_next[count] = m_hashTable[hash];
		m_hashTable[hash] = count;
	}

	void remove(const Key& key) {

		int hash = key.getHash() & (m_valueArray.capacity()-1);

		int pairIndex = findIndex(key);
		
		if (pairIndex ==BT_HASH_NULL)
		{
			return;
		}

		// Remove the pair from the hash table.
		int index = m_hashTable[hash];
		btAssert(index != BT_HASH_NULL);

		int previous = BT_HASH_NULL;
		while (index != pairIndex)
		{
			previous = index;
			index = m_next[index];
		}

		if (previous != BT_HASH_NULL)
		{
			btAssert(m_next[previous] == pairIndex);
			m_next[previous] = m_next[pairIndex];
		}
		else
		{
			m_hashTable[hash] = m_next[pairIndex];
		}

		// We now move the last pair into spot of the
		// pair being removed. We need to fix the hash
		// table indices to support the move.

		int lastPairIndex = m_valueArray.size() - 1;

		// If the removed pair is the last pair, we are done.
		if (lastPairIndex == pairIndex)
		{
			m_valueArray.pop_back();
			m_keyArray.pop_back();
			return;
		}

		// Remove the last pair from the hash table.
		int lastHash = m_keyArray[lastPairIndex].getHash() & (m_valueArray.capacity()-1);

		index = m_hashTable[lastHash];
		btAssert(index != BT_HASH_NULL);

		previous = BT_HASH_NULL;
		while (index != lastPairIndex)
		{
			previous = index;
			index = m_next[index];
		}

		if (previous != BT_HASH_NULL)
		{
			btAssert(m_next[previous] == lastPairIndex);
			m_next[previous] = m_next[lastPairIndex];
		}
		else
		{
			m_hashTable[lastHash] = m_next[lastPairIndex];
		}

		// Copy the last pair into the remove pair's spot.
		m_valueArray[pairIndex] = m_valueArray[lastPairIndex];
		m_keyArray[pairIndex] = m_keyArray[lastPairIndex];

		// Insert the last pair into the hash table
		m_next[pairIndex] = m_hashTable[lastHash];
		m_hashTable[lastHash] = pairIndex;

		m_valueArray.pop_back();
		m_keyArray.pop_back();

	}


	int size() const
	{
		return m_valueArray.size();
	}

	const Value* getAtIndex(int index) const
	{
		btAssert(index < m_valueArray.size());
		btAssert(index>=0);
		if (index>=0 && index < m_valueArray.size())
		{
			return &m_valueArray[index];
		}
		return 0;
	}

	Value* getAtIndex(int index)
	{
		btAssert(index < m_valueArray.size());
		btAssert(index>=0);
		if (index>=0 && index < m_valueArray.size())
		{
			return &m_valueArray[index];
		}
		return 0;
	}

    Key getKeyAtIndex(int index)
    {
        btAssert(index < m_keyArray.size());
		btAssert(index>=0);
		return m_keyArray[index];
    }
    
    const Key getKeyAtIndex(int index) const
    {
        btAssert(index < m_keyArray.size());
		btAssert(index>=0);
		return m_keyArray[index];
   }


	Value* operator[](const Key& key) {
		return find(key);
	}

	const Value* operator[](const Key& key) const {
		return find(key);
	}

	const Value*	find(const Key& key) const
	{
		int index = findIndex(key);
		if (index == BT_HASH_NULL)
		{
			return NULL;
		}
		return &m_valueArray[index];
	}

	Value*	find(const Key& key)
	{
		int index = findIndex(key);
		if (index == BT_HASH_NULL)
		{
			return NULL;
		}
		return &m_valueArray[index];
	}


	int	findIndex(const Key& key) const
	{
		unsigned int hash = key.getHash() & (m_valueArray.capacity()-1);

		if (hash >= (unsigned int)m_hashTable.size())
		{
			return BT_HASH_NULL;
		}

		int index = m_hashTable[hash];
		while ((index != BT_HASH_NULL) && key.equals(m_keyArray[index]) == false)
		{
			index = m_next[index];
		}
		return index;
	}

	void	clear()
	{
		m_hashTable.clear();
		m_next.clear();
		m_valueArray.clear();
		m_keyArray.clear();
	}

};

#endif //BT_HASH_MAP_H