/* Written by Xuchen Han <xuchenhan2015@u.northwestern.edu> Bullet Continuous Collision Detection and Physics Library Copyright (c) 2019 Google Inc. http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef BT_DEFORMABLE_BODY_SOLVERS_H #define BT_DEFORMABLE_BODY_SOLVERS_H #include "btSoftBodySolvers.h" #include "btDeformableBackwardEulerObjective.h" #include "btDeformableMultiBodyDynamicsWorld.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraint.h" #include "btConjugateResidual.h" #include "btConjugateGradient.h" struct btCollisionObjectWrapper; class btDeformableBackwardEulerObjective; class btDeformableMultiBodyDynamicsWorld; class btDeformableBodySolver : public btSoftBodySolver { typedef btAlignedObjectArray<btVector3> TVStack; protected: int m_numNodes; // total number of deformable body nodes TVStack m_dv; // v_{n+1} - v_n TVStack m_backup_dv; // backed up dv TVStack m_ddv; // incremental dv TVStack m_residual; // rhs of the linear solve btAlignedObjectArray<btSoftBody*> m_softBodies; // all deformable bodies TVStack m_backupVelocity; // backed up v, equals v_n for implicit, equals v_{n+1}^* for explicit btScalar m_dt; // dt btConjugateGradient<btDeformableBackwardEulerObjective> m_cg; // CG solver btConjugateResidual<btDeformableBackwardEulerObjective> m_cr; // CR solver bool m_implicit; // use implicit scheme if true, explicit scheme if false int m_maxNewtonIterations; // max number of newton iterations btScalar m_newtonTolerance; // stop newton iterations if f(x) < m_newtonTolerance bool m_lineSearch; // If true, use newton's method with line search under implicit scheme public: // handles data related to objective function btDeformableBackwardEulerObjective* m_objective; bool m_useProjection; btDeformableBodySolver(); virtual ~btDeformableBodySolver(); virtual SolverTypes getSolverType() const { return DEFORMABLE_SOLVER; } // update soft body normals virtual void updateSoftBodies(); virtual btScalar solveContactConstraints(btCollisionObject** deformableBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal); // solve the momentum equation virtual void solveDeformableConstraints(btScalar solverdt); // resize/clear data structures void reinitialize(const btAlignedObjectArray<btSoftBody*>& softBodies, btScalar dt); // set up contact constraints void setConstraints(const btContactSolverInfo& infoGlobal); // add in elastic forces and gravity to obtain v_{n+1}^* and calls predictDeformableMotion virtual void predictMotion(btScalar solverdt); // move to temporary position x_{n+1}^* = x_n + dt * v_{n+1}^* // x_{n+1}^* is stored in m_q void predictDeformableMotion(btSoftBody* psb, btScalar dt); // save the current velocity to m_backupVelocity void backupVelocity(); // set m_dv and m_backupVelocity to desired value to prepare for momentum solve void setupDeformableSolve(bool implicit); // set the current velocity to that backed up in m_backupVelocity void revertVelocity(); // set velocity to m_dv + m_backupVelocity void updateVelocity(); // update the node count bool updateNodes(); // calculate the change in dv resulting from the momentum solve void computeStep(TVStack& ddv, const TVStack& residual); // calculate the change in dv resulting from the momentum solve when line search is turned on btScalar computeDescentStep(TVStack& ddv, const TVStack& residual, bool verbose = false); virtual void copySoftBodyToVertexBuffer(const btSoftBody* const softBody, btVertexBufferDescriptor* vertexBuffer) {} // process collision between deformable and rigid virtual void processCollision(btSoftBody* softBody, const btCollisionObjectWrapper* collisionObjectWrap) { softBody->defaultCollisionHandler(collisionObjectWrap); } // process collision between deformable and deformable virtual void processCollision(btSoftBody* softBody, btSoftBody* otherSoftBody) { softBody->defaultCollisionHandler(otherSoftBody); } // If true, implicit time stepping scheme is used. // Otherwise, explicit time stepping scheme is used void setImplicit(bool implicit); // If true, newton's method with line search is used when implicit time stepping scheme is turned on void setLineSearch(bool lineSearch); // set temporary position x^* = x_n + dt * v // update the deformation gradient at position x^* void updateState(); // set dv = dv + scale * ddv void updateDv(btScalar scale = 1); // set temporary position x^* = x_n + dt * v^* void updateTempPosition(); // save the current dv to m_backup_dv; void backupDv(); // set dv to the backed-up value void revertDv(); // set dv = dv + scale * ddv // set v^* = v_n + dv // set temporary position x^* = x_n + dt * v^* // update the deformation gradient at position x^* void updateEnergy(btScalar scale); // calculates the appropriately scaled kinetic energy in the system, which is // 1/2 * dv^T * M * dv // used in line search btScalar kineticEnergy(); // unused functions virtual void optimize(btAlignedObjectArray<btSoftBody*>& softBodies, bool forceUpdate = false) {} virtual void solveConstraints(btScalar dt) {} virtual bool checkInitialized() { return true; } virtual void copyBackToSoftBodies(bool bMove = true) {} }; #endif /* btDeformableBodySolver_h */