/// @file Math utility functions used in inverse dynamics library. /// Defined here as they may not be provided by the math library. #ifndef IDMATH_HPP_ #define IDMATH_HPP_ #include "IDConfig.hpp" namespace btInverseDynamics { /// set all elements to zero void setZero(vec3& v); /// set all elements to zero void setZero(vecx& v); /// set all elements to zero void setZero(mat33& m); /// create a skew symmetric matrix from a vector (useful for cross product abstraction, e.g. v x a = V * a) void skew(vec3& v, mat33* result); /// return maximum absolute value idScalar maxAbs(const vecx& v); #ifndef ID_LINEAR_MATH_USE_EIGEN /// return maximum absolute value idScalar maxAbs(const vec3& v); #endif //ID_LINEAR_MATH_USE_EIGEN #if (defined BT_ID_HAVE_MAT3X) idScalar maxAbsMat3x(const mat3x& m); void setZero(mat3x&m); // define math functions on mat3x here to avoid allocations in operators. void mul(const mat33&a, const mat3x&b, mat3x* result); void add(const mat3x&a, const mat3x&b, mat3x* result); void sub(const mat3x&a, const mat3x&b, mat3x* result); #endif /// get offset vector & transform matrix from DH parameters /// TODO: add documentation void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3* r, mat33* T); /// Check if a 3x3 matrix is positive definite /// @param m a 3x3 matrix /// @return true if m>0, false otherwise bool isPositiveDefinite(const mat33& m); /// Check if a 3x3 matrix is positive semi definite /// @param m a 3x3 matrix /// @return true if m>=0, false otherwise bool isPositiveSemiDefinite(const mat33& m); /// Check if a 3x3 matrix is positive semi definite within numeric limits /// @param m a 3x3 matrix /// @return true if m>=-eps, false otherwise bool isPositiveSemiDefiniteFuzzy(const mat33& m); /// Determinant of 3x3 matrix /// NOTE: implemented here for portability, as determinant operation /// will be implemented differently for various matrix/vector libraries /// @param m a 3x3 matrix /// @return det(m) idScalar determinant(const mat33& m); /// Test if a 3x3 matrix satisfies some properties of inertia matrices /// @param I a 3x3 matrix /// @param index body index (for error messages) /// @param has_fixed_joint: if true, positive semi-definite matrices are accepted /// @return true if I satisfies inertia matrix properties, false otherwise. bool isValidInertiaMatrix(const mat33& I, int index, bool has_fixed_joint); /// Check if a 3x3 matrix is a valid transform (rotation) matrix /// @param m a 3x3 matrix /// @return true if m is a rotation matrix, false otherwise bool isValidTransformMatrix(const mat33& m); /// Transform matrix from parent to child frame, /// when the child frame is rotated about @param axis by @angle /// (mathematically positive) /// @param axis the axis of rotation /// @param angle rotation angle /// @param T pointer to transform matrix void bodyTParentFromAxisAngle(const vec3& axis, const idScalar& angle, mat33* T); /// Check if this is a unit vector /// @param vector /// @return true if |vector|=1 within numeric limits bool isUnitVector(const vec3& vector); /// @input a vector in R^3 /// @returns corresponding spin tensor mat33 tildeOperator(const vec3& v); /// @param alpha angle in radians /// @returns transform matrix for ratation with @param alpha about x-axis mat33 transformX(const idScalar& alpha); /// @param beta angle in radians /// @returns transform matrix for ratation with @param beta about y-axis mat33 transformY(const idScalar& beta); /// @param gamma angle in radians /// @returns transform matrix for ratation with @param gamma about z-axis mat33 transformZ(const idScalar& gamma); ///calculate rpy angles (x-y-z Euler angles) from a given rotation matrix /// @param rot rotation matrix /// @returns x-y-z Euler angles vec3 rpyFromMatrix(const mat33&rot); } #endif // IDMATH_HPP_