#include "btMultiBodyConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro) btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA, btMultiBody* bodyB, int linkA, int linkB, int numRows, bool isUnilateral) : m_bodyA(bodyA), m_bodyB(bodyB), m_linkA(linkA), m_linkB(linkB), m_numRows(numRows), m_jacSizeA(0), m_jacSizeBoth(0), m_isUnilateral(isUnilateral), m_numDofsFinalized(-1), m_maxAppliedImpulse(100) { } void btMultiBodyConstraint::updateJacobianSizes() { if (m_bodyA) { m_jacSizeA = (6 + m_bodyA->getNumDofs()); } if (m_bodyB) { m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs(); } else m_jacSizeBoth = m_jacSizeA; } void btMultiBodyConstraint::allocateJacobiansMultiDof() { updateJacobianSizes(); m_posOffset = ((1 + m_jacSizeBoth) * m_numRows); m_data.resize((2 + m_jacSizeBoth) * m_numRows); } btMultiBodyConstraint::~btMultiBodyConstraint() { } void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof) { for (int i = 0; i < ndof; ++i) data.m_deltaVelocities[velocityIndex + i] += delta_vee[i] * impulse; } btScalar btMultiBodyConstraint::fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint, btMultiBodyJacobianData& data, btScalar* jacOrgA, btScalar* jacOrgB, const btVector3& constraintNormalAng, const btVector3& constraintNormalLin, const btVector3& posAworld, const btVector3& posBworld, btScalar posError, const btContactSolverInfo& infoGlobal, btScalar lowerLimit, btScalar upperLimit, bool angConstraint, btScalar relaxation, bool isFriction, btScalar desiredVelocity, btScalar cfmSlip) { solverConstraint.m_multiBodyA = m_bodyA; solverConstraint.m_multiBodyB = m_bodyB; solverConstraint.m_linkA = m_linkA; solverConstraint.m_linkB = m_linkB; btMultiBody* multiBodyA = solverConstraint.m_multiBodyA; btMultiBody* multiBodyB = solverConstraint.m_multiBodyB; btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA); btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB); btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody; btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody; btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary if (bodyA) rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin(); if (bodyB) rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin(); if (multiBodyA) { if (solverConstraint.m_linkA < 0) { rel_pos1 = posAworld - multiBodyA->getBasePos(); } else { rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin(); } const int ndofA = multiBodyA->getNumDofs() + 6; solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId(); if (solverConstraint.m_deltaVelAindex < 0) { solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size(); multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex); data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofA); } else { btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex + ndofA); } //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom //resize.. solverConstraint.m_jacAindex = data.m_jacobians.size(); data.m_jacobians.resize(data.m_jacobians.size() + ndofA); //copy/determine if (jacOrgA) { for (int i = 0; i < ndofA; i++) data.m_jacobians[solverConstraint.m_jacAindex + i] = jacOrgA[i]; } else { btScalar* jac1 = &data.m_jacobians[solverConstraint.m_jacAindex]; //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m); multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m); } //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint) //resize.. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; //determine.. multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex], delta, data.scratch_r, data.scratch_v); btVector3 torqueAxis0; if (angConstraint) { torqueAxis0 = constraintNormalAng; } else { torqueAxis0 = rel_pos1.cross(constraintNormalLin); } solverConstraint.m_relpos1CrossNormal = torqueAxis0; solverConstraint.m_contactNormal1 = constraintNormalLin; } else //if(rb0) { btVector3 torqueAxis0; if (angConstraint) { torqueAxis0 = constraintNormalAng; } else { torqueAxis0 = rel_pos1.cross(constraintNormalLin); } solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld() * torqueAxis0 * rb0->getAngularFactor() : btVector3(0, 0, 0); solverConstraint.m_relpos1CrossNormal = torqueAxis0; solverConstraint.m_contactNormal1 = constraintNormalLin; } if (multiBodyB) { if (solverConstraint.m_linkB < 0) { rel_pos2 = posBworld - multiBodyB->getBasePos(); } else { rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin(); } const int ndofB = multiBodyB->getNumDofs() + 6; solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId(); if (solverConstraint.m_deltaVelBindex < 0) { solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size(); multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex); data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofB); } //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom //resize.. solverConstraint.m_jacBindex = data.m_jacobians.size(); data.m_jacobians.resize(data.m_jacobians.size() + ndofB); //copy/determine.. if (jacOrgB) { for (int i = 0; i < ndofB; i++) data.m_jacobians[solverConstraint.m_jacBindex + i] = jacOrgB[i]; } else { //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m); multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m); } //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint) //resize.. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofB); btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; //determine.. multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex], delta, data.scratch_r, data.scratch_v); btVector3 torqueAxis1; if (angConstraint) { torqueAxis1 = constraintNormalAng; } else { torqueAxis1 = rel_pos2.cross(constraintNormalLin); } solverConstraint.m_relpos2CrossNormal = -torqueAxis1; solverConstraint.m_contactNormal2 = -constraintNormalLin; } else //if(rb1) { btVector3 torqueAxis1; if (angConstraint) { torqueAxis1 = constraintNormalAng; } else { torqueAxis1 = rel_pos2.cross(constraintNormalLin); } solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld() * -torqueAxis1 * rb1->getAngularFactor() : btVector3(0, 0, 0); solverConstraint.m_relpos2CrossNormal = -torqueAxis1; solverConstraint.m_contactNormal2 = -constraintNormalLin; } { btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; btScalar* jacB = 0; btScalar* jacA = 0; btScalar* deltaVelA = 0; btScalar* deltaVelB = 0; int ndofA = 0; //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i]) if (multiBodyA) { ndofA = multiBodyA->getNumDofs() + 6; jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; for (int i = 0; i < ndofA; ++i) { btScalar j = jacA[i]; btScalar l = deltaVelA[i]; denom0 += j * l; } } else if (rb0) { vec = (solverConstraint.m_angularComponentA).cross(rel_pos1); if (angConstraint) { denom0 = constraintNormalAng.dot(solverConstraint.m_angularComponentA); } else { denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec); } } // if (multiBodyB) { const int ndofB = multiBodyB->getNumDofs() + 6; jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; for (int i = 0; i < ndofB; ++i) { btScalar j = jacB[i]; btScalar l = deltaVelB[i]; denom1 += j * l; } } else if (rb1) { vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2); if (angConstraint) { denom1 = constraintNormalAng.dot(-solverConstraint.m_angularComponentB); } else { denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec); } } // btScalar d = denom0 + denom1; if (d > SIMD_EPSILON) { solverConstraint.m_jacDiagABInv = relaxation / (d); } else { //disable the constraint row to handle singularity/redundant constraint solverConstraint.m_jacDiagABInv = 0.f; } } //compute rhs and remaining solverConstraint fields btScalar penetration = isFriction ? 0 : posError; btScalar rel_vel = 0.f; int ndofA = 0; int ndofB = 0; { btVector3 vel1, vel2; if (multiBodyA) { ndofA = multiBodyA->getNumDofs() + 6; btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; for (int i = 0; i < ndofA; ++i) rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i]; } else if (rb0) { rel_vel += rb0->getLinearVelocity().dot(solverConstraint.m_contactNormal1); rel_vel += rb0->getAngularVelocity().dot(solverConstraint.m_relpos1CrossNormal); } if (multiBodyB) { ndofB = multiBodyB->getNumDofs() + 6; btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; for (int i = 0; i < ndofB; ++i) rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i]; } else if (rb1) { rel_vel += rb1->getLinearVelocity().dot(solverConstraint.m_contactNormal2); rel_vel += rb1->getAngularVelocity().dot(solverConstraint.m_relpos2CrossNormal); } solverConstraint.m_friction = 0.f; //cp.m_combinedFriction; } solverConstraint.m_appliedImpulse = 0.f; solverConstraint.m_appliedPushImpulse = 0.f; { btScalar positionalError = 0.f; btScalar velocityError = desiredVelocity - rel_vel; // * damping; btScalar erp = infoGlobal.m_erp2; //split impulse is not implemented yet for btMultiBody* //if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { erp = infoGlobal.m_erp; } positionalError = -penetration * erp / infoGlobal.m_timeStep; btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv; btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv; //split impulse is not implemented yet for btMultiBody* // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { //combine position and velocity into rhs solverConstraint.m_rhs = penetrationImpulse + velocityImpulse; solverConstraint.m_rhsPenetration = 0.f; } /*else { //split position and velocity into rhs and m_rhsPenetration solverConstraint.m_rhs = velocityImpulse; solverConstraint.m_rhsPenetration = penetrationImpulse; } */ solverConstraint.m_cfm = 0.f; solverConstraint.m_lowerLimit = lowerLimit; solverConstraint.m_upperLimit = upperLimit; } return rel_vel; }