/*** * --------------------------------- * Copyright (c)2012 Daniel Fiser * * This file was ported from mpr.c file, part of libccd. * The Minkoski Portal Refinement implementation was ported * to OpenCL by Erwin Coumans for the Bullet 3 Physics library. * The original MPR idea and implementation is by Gary Snethen * in XenoCollide, see http://github.com/erwincoumans/xenocollide * * Distributed under the OSI-approved BSD License (the "License"); * see . * This software is distributed WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the License for more information. */ ///2014 Oct, Erwin Coumans, Use templates to avoid void* casts #ifndef BT_MPR_PENETRATION_H #define BT_MPR_PENETRATION_H #define BT_DEBUG_MPR1 #include "LinearMath/btTransform.h" #include "LinearMath/btAlignedObjectArray.h" //#define MPR_AVERAGE_CONTACT_POSITIONS struct btMprCollisionDescription { btVector3 m_firstDir; int m_maxGjkIterations; btScalar m_maximumDistanceSquared; btScalar m_gjkRelError2; btMprCollisionDescription() : m_firstDir(0, 1, 0), m_maxGjkIterations(1000), m_maximumDistanceSquared(1e30f), m_gjkRelError2(1.0e-6) { } virtual ~btMprCollisionDescription() { } }; struct btMprDistanceInfo { btVector3 m_pointOnA; btVector3 m_pointOnB; btVector3 m_normalBtoA; btScalar m_distance; }; #ifdef __cplusplus #define BT_MPR_SQRT sqrtf #else #define BT_MPR_SQRT sqrt #endif #define BT_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y)) #define BT_MPR_FABS fabs #define BT_MPR_TOLERANCE 1E-6f #define BT_MPR_MAX_ITERATIONS 1000 struct _btMprSupport_t { btVector3 v; //!< Support point in minkowski sum btVector3 v1; //!< Support point in obj1 btVector3 v2; //!< Support point in obj2 }; typedef struct _btMprSupport_t btMprSupport_t; struct _btMprSimplex_t { btMprSupport_t ps[4]; int last; //!< index of last added point }; typedef struct _btMprSimplex_t btMprSimplex_t; inline btMprSupport_t *btMprSimplexPointW(btMprSimplex_t *s, int idx) { return &s->ps[idx]; } inline void btMprSimplexSetSize(btMprSimplex_t *s, int size) { s->last = size - 1; } #ifdef DEBUG_MPR inline void btPrintPortalVertex(_btMprSimplex_t *portal, int index) { printf("portal[%d].v = %f,%f,%f, v1=%f,%f,%f, v2=%f,%f,%f\n", index, portal->ps[index].v.x(), portal->ps[index].v.y(), portal->ps[index].v.z(), portal->ps[index].v1.x(), portal->ps[index].v1.y(), portal->ps[index].v1.z(), portal->ps[index].v2.x(), portal->ps[index].v2.y(), portal->ps[index].v2.z()); } #endif //DEBUG_MPR inline int btMprSimplexSize(const btMprSimplex_t *s) { return s->last + 1; } inline const btMprSupport_t *btMprSimplexPoint(const btMprSimplex_t *s, int idx) { // here is no check on boundaries return &s->ps[idx]; } inline void btMprSupportCopy(btMprSupport_t *d, const btMprSupport_t *s) { *d = *s; } inline void btMprSimplexSet(btMprSimplex_t *s, size_t pos, const btMprSupport_t *a) { btMprSupportCopy(s->ps + pos, a); } inline void btMprSimplexSwap(btMprSimplex_t *s, size_t pos1, size_t pos2) { btMprSupport_t supp; btMprSupportCopy(&supp, &s->ps[pos1]); btMprSupportCopy(&s->ps[pos1], &s->ps[pos2]); btMprSupportCopy(&s->ps[pos2], &supp); } inline int btMprIsZero(float val) { return BT_MPR_FABS(val) < FLT_EPSILON; } inline int btMprEq(float _a, float _b) { float ab; float a, b; ab = BT_MPR_FABS(_a - _b); if (BT_MPR_FABS(ab) < FLT_EPSILON) return 1; a = BT_MPR_FABS(_a); b = BT_MPR_FABS(_b); if (b > a) { return ab < FLT_EPSILON * b; } else { return ab < FLT_EPSILON * a; } } inline int btMprVec3Eq(const btVector3 *a, const btVector3 *b) { return btMprEq((*a).x(), (*b).x()) && btMprEq((*a).y(), (*b).y()) && btMprEq((*a).z(), (*b).z()); } template inline void btFindOrigin(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprSupport_t *center) { center->v1 = a.getObjectCenterInWorld(); center->v2 = b.getObjectCenterInWorld(); center->v = center->v1 - center->v2; } inline void btMprVec3Set(btVector3 *v, float x, float y, float z) { v->setValue(x, y, z); } inline void btMprVec3Add(btVector3 *v, const btVector3 *w) { *v += *w; } inline void btMprVec3Copy(btVector3 *v, const btVector3 *w) { *v = *w; } inline void btMprVec3Scale(btVector3 *d, float k) { *d *= k; } inline float btMprVec3Dot(const btVector3 *a, const btVector3 *b) { float dot; dot = btDot(*a, *b); return dot; } inline float btMprVec3Len2(const btVector3 *v) { return btMprVec3Dot(v, v); } inline void btMprVec3Normalize(btVector3 *d) { float k = 1.f / BT_MPR_SQRT(btMprVec3Len2(d)); btMprVec3Scale(d, k); } inline void btMprVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b) { *d = btCross(*a, *b); } inline void btMprVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w) { *d = *v - *w; } inline void btPortalDir(const btMprSimplex_t *portal, btVector3 *dir) { btVector3 v2v1, v3v1; btMprVec3Sub2(&v2v1, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 1)->v); btMprVec3Sub2(&v3v1, &btMprSimplexPoint(portal, 3)->v, &btMprSimplexPoint(portal, 1)->v); btMprVec3Cross(dir, &v2v1, &v3v1); btMprVec3Normalize(dir); } inline int portalEncapsulesOrigin(const btMprSimplex_t *portal, const btVector3 *dir) { float dot; dot = btMprVec3Dot(dir, &btMprSimplexPoint(portal, 1)->v); return btMprIsZero(dot) || dot > 0.f; } inline int portalReachTolerance(const btMprSimplex_t *portal, const btMprSupport_t *v4, const btVector3 *dir) { float dv1, dv2, dv3, dv4; float dot1, dot2, dot3; // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4} dv1 = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, dir); dv2 = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, dir); dv3 = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, dir); dv4 = btMprVec3Dot(&v4->v, dir); dot1 = dv4 - dv1; dot2 = dv4 - dv2; dot3 = dv4 - dv3; dot1 = BT_MPR_FMIN(dot1, dot2); dot1 = BT_MPR_FMIN(dot1, dot3); return btMprEq(dot1, BT_MPR_TOLERANCE) || dot1 < BT_MPR_TOLERANCE; } inline int portalCanEncapsuleOrigin(const btMprSimplex_t *portal, const btMprSupport_t *v4, const btVector3 *dir) { float dot; dot = btMprVec3Dot(&v4->v, dir); return btMprIsZero(dot) || dot > 0.f; } inline void btExpandPortal(btMprSimplex_t *portal, const btMprSupport_t *v4) { float dot; btVector3 v4v0; btMprVec3Cross(&v4v0, &v4->v, &btMprSimplexPoint(portal, 0)->v); dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &v4v0); if (dot > 0.f) { dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &v4v0); if (dot > 0.f) { btMprSimplexSet(portal, 1, v4); } else { btMprSimplexSet(portal, 3, v4); } } else { dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &v4v0); if (dot > 0.f) { btMprSimplexSet(portal, 2, v4); } else { btMprSimplexSet(portal, 1, v4); } } } template inline void btMprSupport(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, const btVector3 &dir, btMprSupport_t *supp) { btVector3 seperatingAxisInA = dir * a.getWorldTransform().getBasis(); btVector3 seperatingAxisInB = -dir * b.getWorldTransform().getBasis(); btVector3 pInA = a.getLocalSupportWithMargin(seperatingAxisInA); btVector3 qInB = b.getLocalSupportWithMargin(seperatingAxisInB); supp->v1 = a.getWorldTransform()(pInA); supp->v2 = b.getWorldTransform()(qInB); supp->v = supp->v1 - supp->v2; } template static int btDiscoverPortal(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprSimplex_t *portal) { btVector3 dir, va, vb; float dot; int cont; // vertex 0 is center of portal btFindOrigin(a, b, colDesc, btMprSimplexPointW(portal, 0)); // vertex 0 is center of portal btMprSimplexSetSize(portal, 1); btVector3 zero = btVector3(0, 0, 0); btVector3 *org = &zero; if (btMprVec3Eq(&btMprSimplexPoint(portal, 0)->v, org)) { // Portal's center lies on origin (0,0,0) => we know that objects // intersect but we would need to know penetration info. // So move center little bit... btMprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f); btMprVec3Add(&btMprSimplexPointW(portal, 0)->v, &va); } // vertex 1 = support in direction of origin btMprVec3Copy(&dir, &btMprSimplexPoint(portal, 0)->v); btMprVec3Scale(&dir, -1.f); btMprVec3Normalize(&dir); btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 1)); btMprSimplexSetSize(portal, 2); // test if origin isn't outside of v1 dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &dir); if (btMprIsZero(dot) || dot < 0.f) return -1; // vertex 2 btMprVec3Cross(&dir, &btMprSimplexPoint(portal, 0)->v, &btMprSimplexPoint(portal, 1)->v); if (btMprIsZero(btMprVec3Len2(&dir))) { if (btMprVec3Eq(&btMprSimplexPoint(portal, 1)->v, org)) { // origin lies on v1 return 1; } else { // origin lies on v0-v1 segment return 2; } } btMprVec3Normalize(&dir); btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 2)); dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &dir); if (btMprIsZero(dot) || dot < 0.f) return -1; btMprSimplexSetSize(portal, 3); // vertex 3 direction btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 0)->v); btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 0)->v); btMprVec3Cross(&dir, &va, &vb); btMprVec3Normalize(&dir); // it is better to form portal faces to be oriented "outside" origin dot = btMprVec3Dot(&dir, &btMprSimplexPoint(portal, 0)->v); if (dot > 0.f) { btMprSimplexSwap(portal, 1, 2); btMprVec3Scale(&dir, -1.f); } while (btMprSimplexSize(portal) < 4) { btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 3)); dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &dir); if (btMprIsZero(dot) || dot < 0.f) return -1; cont = 0; // test if origin is outside (v1, v0, v3) - set v2 as v3 and // continue btMprVec3Cross(&va, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 3)->v); dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v); if (dot < 0.f && !btMprIsZero(dot)) { btMprSimplexSet(portal, 2, btMprSimplexPoint(portal, 3)); cont = 1; } if (!cont) { // test if origin is outside (v3, v0, v2) - set v1 as v3 and // continue btMprVec3Cross(&va, &btMprSimplexPoint(portal, 3)->v, &btMprSimplexPoint(portal, 2)->v); dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v); if (dot < 0.f && !btMprIsZero(dot)) { btMprSimplexSet(portal, 1, btMprSimplexPoint(portal, 3)); cont = 1; } } if (cont) { btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 0)->v); btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 0)->v); btMprVec3Cross(&dir, &va, &vb); btMprVec3Normalize(&dir); } else { btMprSimplexSetSize(portal, 4); } } return 0; } template static int btRefinePortal(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprSimplex_t *portal) { btVector3 dir; btMprSupport_t v4; for (int i = 0; i < BT_MPR_MAX_ITERATIONS; i++) //while (1) { // compute direction outside the portal (from v0 throught v1,v2,v3 // face) btPortalDir(portal, &dir); // test if origin is inside the portal if (portalEncapsulesOrigin(portal, &dir)) return 0; // get next support point btMprSupport(a, b, colDesc, dir, &v4); // test if v4 can expand portal to contain origin and if portal // expanding doesn't reach given tolerance if (!portalCanEncapsuleOrigin(portal, &v4, &dir) || portalReachTolerance(portal, &v4, &dir)) { return -1; } // v1-v2-v3 triangle must be rearranged to face outside Minkowski // difference (direction from v0). btExpandPortal(portal, &v4); } return -1; } static void btFindPos(const btMprSimplex_t *portal, btVector3 *pos) { btVector3 zero = btVector3(0, 0, 0); btVector3 *origin = &zero; btVector3 dir; size_t i; float b[4], sum, inv; btVector3 vec, p1, p2; btPortalDir(portal, &dir); // use barycentric coordinates of tetrahedron to find origin btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 2)->v); b[0] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v); btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v, &btMprSimplexPoint(portal, 2)->v); b[1] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v); btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 0)->v, &btMprSimplexPoint(portal, 1)->v); b[2] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v); btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 1)->v); b[3] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v); sum = b[0] + b[1] + b[2] + b[3]; if (btMprIsZero(sum) || sum < 0.f) { b[0] = 0.f; btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 3)->v); b[1] = btMprVec3Dot(&vec, &dir); btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v, &btMprSimplexPoint(portal, 1)->v); b[2] = btMprVec3Dot(&vec, &dir); btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 2)->v); b[3] = btMprVec3Dot(&vec, &dir); sum = b[1] + b[2] + b[3]; } inv = 1.f / sum; btMprVec3Copy(&p1, origin); btMprVec3Copy(&p2, origin); for (i = 0; i < 4; i++) { btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v1); btMprVec3Scale(&vec, b[i]); btMprVec3Add(&p1, &vec); btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v2); btMprVec3Scale(&vec, b[i]); btMprVec3Add(&p2, &vec); } btMprVec3Scale(&p1, inv); btMprVec3Scale(&p2, inv); #ifdef MPR_AVERAGE_CONTACT_POSITIONS btMprVec3Copy(pos, &p1); btMprVec3Add(pos, &p2); btMprVec3Scale(pos, 0.5); #else btMprVec3Copy(pos, &p2); #endif //MPR_AVERAGE_CONTACT_POSITIONS } inline float btMprVec3Dist2(const btVector3 *a, const btVector3 *b) { btVector3 ab; btMprVec3Sub2(&ab, a, b); return btMprVec3Len2(&ab); } inline float _btMprVec3PointSegmentDist2(const btVector3 *P, const btVector3 *x0, const btVector3 *b, btVector3 *witness) { // The computation comes from solving equation of segment: // S(t) = x0 + t.d // where - x0 is initial point of segment // - d is direction of segment from x0 (|d| > 0) // - t belongs to <0, 1> interval // // Than, distance from a segment to some point P can be expressed: // D(t) = |x0 + t.d - P|^2 // which is distance from any point on segment. Minimization // of this function brings distance from P to segment. // Minimization of D(t) leads to simple quadratic equation that's // solving is straightforward. // // Bonus of this method is witness point for free. float dist, t; btVector3 d, a; // direction of segment btMprVec3Sub2(&d, b, x0); // precompute vector from P to x0 btMprVec3Sub2(&a, x0, P); t = -1.f * btMprVec3Dot(&a, &d); t /= btMprVec3Len2(&d); if (t < 0.f || btMprIsZero(t)) { dist = btMprVec3Dist2(x0, P); if (witness) btMprVec3Copy(witness, x0); } else if (t > 1.f || btMprEq(t, 1.f)) { dist = btMprVec3Dist2(b, P); if (witness) btMprVec3Copy(witness, b); } else { if (witness) { btMprVec3Copy(witness, &d); btMprVec3Scale(witness, t); btMprVec3Add(witness, x0); dist = btMprVec3Dist2(witness, P); } else { // recycling variables btMprVec3Scale(&d, t); btMprVec3Add(&d, &a); dist = btMprVec3Len2(&d); } } return dist; } inline float btMprVec3PointTriDist2(const btVector3 *P, const btVector3 *x0, const btVector3 *B, const btVector3 *C, btVector3 *witness) { // Computation comes from analytic expression for triangle (x0, B, C) // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and // Then equation for distance is: // D(s, t) = | T(s, t) - P |^2 // This leads to minimization of quadratic function of two variables. // The solution from is taken only if s is between 0 and 1, t is // between 0 and 1 and t + s < 1, otherwise distance from segment is // computed. btVector3 d1, d2, a; float u, v, w, p, q, r; float s, t, dist, dist2; btVector3 witness2; btMprVec3Sub2(&d1, B, x0); btMprVec3Sub2(&d2, C, x0); btMprVec3Sub2(&a, x0, P); u = btMprVec3Dot(&a, &a); v = btMprVec3Dot(&d1, &d1); w = btMprVec3Dot(&d2, &d2); p = btMprVec3Dot(&a, &d1); q = btMprVec3Dot(&a, &d2); r = btMprVec3Dot(&d1, &d2); btScalar div = (w * v - r * r); if (btMprIsZero(div)) { s = -1; } else { s = (q * r - w * p) / div; t = (-s * r - q) / w; } if ((btMprIsZero(s) || s > 0.f) && (btMprEq(s, 1.f) || s < 1.f) && (btMprIsZero(t) || t > 0.f) && (btMprEq(t, 1.f) || t < 1.f) && (btMprEq(t + s, 1.f) || t + s < 1.f)) { if (witness) { btMprVec3Scale(&d1, s); btMprVec3Scale(&d2, t); btMprVec3Copy(witness, x0); btMprVec3Add(witness, &d1); btMprVec3Add(witness, &d2); dist = btMprVec3Dist2(witness, P); } else { dist = s * s * v; dist += t * t * w; dist += 2.f * s * t * r; dist += 2.f * s * p; dist += 2.f * t * q; dist += u; } } else { dist = _btMprVec3PointSegmentDist2(P, x0, B, witness); dist2 = _btMprVec3PointSegmentDist2(P, x0, C, &witness2); if (dist2 < dist) { dist = dist2; if (witness) btMprVec3Copy(witness, &witness2); } dist2 = _btMprVec3PointSegmentDist2(P, B, C, &witness2); if (dist2 < dist) { dist = dist2; if (witness) btMprVec3Copy(witness, &witness2); } } return dist; } template static void btFindPenetr(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprSimplex_t *portal, float *depth, btVector3 *pdir, btVector3 *pos) { btVector3 dir; btMprSupport_t v4; unsigned long iterations; btVector3 zero = btVector3(0, 0, 0); btVector3 *origin = &zero; iterations = 1UL; for (int i = 0; i < BT_MPR_MAX_ITERATIONS; i++) //while (1) { // compute portal direction and obtain next support point btPortalDir(portal, &dir); btMprSupport(a, b, colDesc, dir, &v4); // reached tolerance -> find penetration info if (portalReachTolerance(portal, &v4, &dir) || iterations == BT_MPR_MAX_ITERATIONS) { *depth = btMprVec3PointTriDist2(origin, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 3)->v, pdir); *depth = BT_MPR_SQRT(*depth); if (btMprIsZero((*pdir).x()) && btMprIsZero((*pdir).y()) && btMprIsZero((*pdir).z())) { *pdir = dir; } btMprVec3Normalize(pdir); // barycentric coordinates: btFindPos(portal, pos); return; } btExpandPortal(portal, &v4); iterations++; } } static void btFindPenetrTouch(btMprSimplex_t *portal, float *depth, btVector3 *dir, btVector3 *pos) { // Touching contact on portal's v1 - so depth is zero and direction // is unimportant and pos can be guessed *depth = 0.f; btVector3 zero = btVector3(0, 0, 0); btVector3 *origin = &zero; btMprVec3Copy(dir, origin); #ifdef MPR_AVERAGE_CONTACT_POSITIONS btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1); btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2); btMprVec3Scale(pos, 0.5); #else btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2); #endif } static void btFindPenetrSegment(btMprSimplex_t *portal, float *depth, btVector3 *dir, btVector3 *pos) { // Origin lies on v0-v1 segment. // Depth is distance to v1, direction also and position must be // computed #ifdef MPR_AVERAGE_CONTACT_POSITIONS btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1); btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2); btMprVec3Scale(pos, 0.5f); #else btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2); #endif //MPR_AVERAGE_CONTACT_POSITIONS btMprVec3Copy(dir, &btMprSimplexPoint(portal, 1)->v); *depth = BT_MPR_SQRT(btMprVec3Len2(dir)); btMprVec3Normalize(dir); } template inline int btMprPenetration(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, float *depthOut, btVector3 *dirOut, btVector3 *posOut) { btMprSimplex_t portal; // Phase 1: Portal discovery int result = btDiscoverPortal(a, b, colDesc, &portal); //sepAxis[pairIndex] = *pdir;//or -dir? switch (result) { case 0: { // Phase 2: Portal refinement result = btRefinePortal(a, b, colDesc, &portal); if (result < 0) return -1; // Phase 3. Penetration info btFindPenetr(a, b, colDesc, &portal, depthOut, dirOut, posOut); break; } case 1: { // Touching contact on portal's v1. btFindPenetrTouch(&portal, depthOut, dirOut, posOut); result = 0; break; } case 2: { btFindPenetrSegment(&portal, depthOut, dirOut, posOut); result = 0; break; } default: { //if (res < 0) //{ // Origin isn't inside portal - no collision. result = -1; //} } }; return result; }; template inline int btComputeMprPenetration(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprDistanceTemplate *distInfo) { btVector3 dir, pos; float depth; int res = btMprPenetration(a, b, colDesc, &depth, &dir, &pos); if (res == 0) { distInfo->m_distance = -depth; distInfo->m_pointOnB = pos; distInfo->m_normalBtoA = -dir; distInfo->m_pointOnA = pos - distInfo->m_distance * dir; return 0; } return -1; } #endif //BT_MPR_PENETRATION_H