/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btMinkowskiPenetrationDepthSolver.h" #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h" #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #define NUM_UNITSPHERE_POINTS 42 bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& simplexSolver, const btConvexShape* convexA, const btConvexShape* convexB, const btTransform& transA, const btTransform& transB, btVector3& v, btVector3& pa, btVector3& pb, class btIDebugDraw* debugDraw) { (void)v; bool check2d = convexA->isConvex2d() && convexB->isConvex2d(); struct btIntermediateResult : public btDiscreteCollisionDetectorInterface::Result { btIntermediateResult() : m_hasResult(false) { } btVector3 m_normalOnBInWorld; btVector3 m_pointInWorld; btScalar m_depth; bool m_hasResult; virtual void setShapeIdentifiersA(int partId0, int index0) { (void)partId0; (void)index0; } virtual void setShapeIdentifiersB(int partId1, int index1) { (void)partId1; (void)index1; } void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth) { m_normalOnBInWorld = normalOnBInWorld; m_pointInWorld = pointInWorld; m_depth = depth; m_hasResult = true; } }; //just take fixed number of orientation, and sample the penetration depth in that direction btScalar minProj = btScalar(BT_LARGE_FLOAT); btVector3 minNorm(btScalar(0.), btScalar(0.), btScalar(0.)); btVector3 minA, minB; btVector3 seperatingAxisInA, seperatingAxisInB; btVector3 pInA, qInB, pWorld, qWorld, w; #ifndef __SPU__ #define USE_BATCHED_SUPPORT 1 #endif #ifdef USE_BATCHED_SUPPORT btVector3 supportVerticesABatch[NUM_UNITSPHERE_POINTS + MAX_PREFERRED_PENETRATION_DIRECTIONS * 2]; btVector3 supportVerticesBBatch[NUM_UNITSPHERE_POINTS + MAX_PREFERRED_PENETRATION_DIRECTIONS * 2]; btVector3 seperatingAxisInABatch[NUM_UNITSPHERE_POINTS + MAX_PREFERRED_PENETRATION_DIRECTIONS * 2]; btVector3 seperatingAxisInBBatch[NUM_UNITSPHERE_POINTS + MAX_PREFERRED_PENETRATION_DIRECTIONS * 2]; int i; int numSampleDirections = NUM_UNITSPHERE_POINTS; for (i = 0; i < numSampleDirections; i++) { btVector3 norm = getPenetrationDirections()[i]; seperatingAxisInABatch[i] = (-norm) * transA.getBasis(); seperatingAxisInBBatch[i] = norm * transB.getBasis(); } { int numPDA = convexA->getNumPreferredPenetrationDirections(); if (numPDA) { for (int i = 0; i < numPDA; i++) { btVector3 norm; convexA->getPreferredPenetrationDirection(i, norm); norm = transA.getBasis() * norm; getPenetrationDirections()[numSampleDirections] = norm; seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis(); seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis(); numSampleDirections++; } } } { int numPDB = convexB->getNumPreferredPenetrationDirections(); if (numPDB) { for (int i = 0; i < numPDB; i++) { btVector3 norm; convexB->getPreferredPenetrationDirection(i, norm); norm = transB.getBasis() * norm; getPenetrationDirections()[numSampleDirections] = norm; seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis(); seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis(); numSampleDirections++; } } } convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch, supportVerticesABatch, numSampleDirections); convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch, supportVerticesBBatch, numSampleDirections); for (i = 0; i < numSampleDirections; i++) { btVector3 norm = getPenetrationDirections()[i]; if (check2d) { norm[2] = 0.f; } if (norm.length2() > 0.01) { seperatingAxisInA = seperatingAxisInABatch[i]; seperatingAxisInB = seperatingAxisInBBatch[i]; pInA = supportVerticesABatch[i]; qInB = supportVerticesBBatch[i]; pWorld = transA(pInA); qWorld = transB(qInB); if (check2d) { pWorld[2] = 0.f; qWorld[2] = 0.f; } w = qWorld - pWorld; btScalar delta = norm.dot(w); //find smallest delta if (delta < minProj) { minProj = delta; minNorm = norm; minA = pWorld; minB = qWorld; } } } #else int numSampleDirections = NUM_UNITSPHERE_POINTS; #ifndef __SPU__ { int numPDA = convexA->getNumPreferredPenetrationDirections(); if (numPDA) { for (int i = 0; i < numPDA; i++) { btVector3 norm; convexA->getPreferredPenetrationDirection(i, norm); norm = transA.getBasis() * norm; getPenetrationDirections()[numSampleDirections] = norm; numSampleDirections++; } } } { int numPDB = convexB->getNumPreferredPenetrationDirections(); if (numPDB) { for (int i = 0; i < numPDB; i++) { btVector3 norm; convexB->getPreferredPenetrationDirection(i, norm); norm = transB.getBasis() * norm; getPenetrationDirections()[numSampleDirections] = norm; numSampleDirections++; } } } #endif // __SPU__ for (int i = 0; i < numSampleDirections; i++) { const btVector3& norm = getPenetrationDirections()[i]; seperatingAxisInA = (-norm) * transA.getBasis(); seperatingAxisInB = norm * transB.getBasis(); pInA = convexA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA); qInB = convexB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB); pWorld = transA(pInA); qWorld = transB(qInB); w = qWorld - pWorld; btScalar delta = norm.dot(w); //find smallest delta if (delta < minProj) { minProj = delta; minNorm = norm; minA = pWorld; minB = qWorld; } } #endif //USE_BATCHED_SUPPORT //add the margins minA += minNorm * convexA->getMarginNonVirtual(); minB -= minNorm * convexB->getMarginNonVirtual(); //no penetration if (minProj < btScalar(0.)) return false; btScalar extraSeparation = 0.5f; ///scale dependent minProj += extraSeparation + (convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual()); //#define DEBUG_DRAW 1 #ifdef DEBUG_DRAW if (debugDraw) { btVector3 color(0, 1, 0); debugDraw->drawLine(minA, minB, color); color = btVector3(1, 1, 1); btVector3 vec = minB - minA; btScalar prj2 = minNorm.dot(vec); debugDraw->drawLine(minA, minA + (minNorm * minProj), color); } #endif //DEBUG_DRAW btGjkPairDetector gjkdet(convexA, convexB, &simplexSolver, 0); btScalar offsetDist = minProj; btVector3 offset = minNorm * offsetDist; btGjkPairDetector::ClosestPointInput input; btVector3 newOrg = transA.getOrigin() + offset; btTransform displacedTrans = transA; displacedTrans.setOrigin(newOrg); input.m_transformA = displacedTrans; input.m_transformB = transB; input.m_maximumDistanceSquared = btScalar(BT_LARGE_FLOAT); //minProj; btIntermediateResult res; gjkdet.setCachedSeperatingAxis(-minNorm); gjkdet.getClosestPoints(input, res, debugDraw); btScalar correctedMinNorm = minProj - res.m_depth; //the penetration depth is over-estimated, relax it btScalar penetration_relaxation = btScalar(1.); minNorm *= penetration_relaxation; if (res.m_hasResult) { pa = res.m_pointInWorld - minNorm * correctedMinNorm; pb = res.m_pointInWorld; v = minNorm; #ifdef DEBUG_DRAW if (debugDraw) { btVector3 color(1, 0, 0); debugDraw->drawLine(pa, pb, color); } #endif //DEBUG_DRAW } return res.m_hasResult; } btVector3* btMinkowskiPenetrationDepthSolver::getPenetrationDirections() { static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS + MAX_PREFERRED_PENETRATION_DIRECTIONS * 2] = { btVector3(btScalar(0.000000), btScalar(-0.000000), btScalar(-1.000000)), btVector3(btScalar(0.723608), btScalar(-0.525725), btScalar(-0.447219)), btVector3(btScalar(-0.276388), btScalar(-0.850649), btScalar(-0.447219)), btVector3(btScalar(-0.894426), btScalar(-0.000000), btScalar(-0.447216)), btVector3(btScalar(-0.276388), btScalar(0.850649), btScalar(-0.447220)), btVector3(btScalar(0.723608), btScalar(0.525725), btScalar(-0.447219)), btVector3(btScalar(0.276388), btScalar(-0.850649), btScalar(0.447220)), btVector3(btScalar(-0.723608), btScalar(-0.525725), btScalar(0.447219)), btVector3(btScalar(-0.723608), btScalar(0.525725), btScalar(0.447219)), btVector3(btScalar(0.276388), btScalar(0.850649), btScalar(0.447219)), btVector3(btScalar(0.894426), btScalar(0.000000), btScalar(0.447216)), btVector3(btScalar(-0.000000), btScalar(0.000000), btScalar(1.000000)), btVector3(btScalar(0.425323), btScalar(-0.309011), btScalar(-0.850654)), btVector3(btScalar(-0.162456), btScalar(-0.499995), btScalar(-0.850654)), btVector3(btScalar(0.262869), btScalar(-0.809012), btScalar(-0.525738)), btVector3(btScalar(0.425323), btScalar(0.309011), btScalar(-0.850654)), btVector3(btScalar(0.850648), btScalar(-0.000000), btScalar(-0.525736)), btVector3(btScalar(-0.525730), btScalar(-0.000000), btScalar(-0.850652)), btVector3(btScalar(-0.688190), btScalar(-0.499997), btScalar(-0.525736)), btVector3(btScalar(-0.162456), btScalar(0.499995), btScalar(-0.850654)), btVector3(btScalar(-0.688190), btScalar(0.499997), btScalar(-0.525736)), btVector3(btScalar(0.262869), btScalar(0.809012), btScalar(-0.525738)), btVector3(btScalar(0.951058), btScalar(0.309013), btScalar(0.000000)), btVector3(btScalar(0.951058), btScalar(-0.309013), btScalar(0.000000)), btVector3(btScalar(0.587786), btScalar(-0.809017), btScalar(0.000000)), btVector3(btScalar(0.000000), btScalar(-1.000000), btScalar(0.000000)), btVector3(btScalar(-0.587786), btScalar(-0.809017), btScalar(0.000000)), btVector3(btScalar(-0.951058), btScalar(-0.309013), btScalar(-0.000000)), btVector3(btScalar(-0.951058), btScalar(0.309013), btScalar(-0.000000)), btVector3(btScalar(-0.587786), btScalar(0.809017), btScalar(-0.000000)), btVector3(btScalar(-0.000000), btScalar(1.000000), btScalar(-0.000000)), btVector3(btScalar(0.587786), btScalar(0.809017), btScalar(-0.000000)), btVector3(btScalar(0.688190), btScalar(-0.499997), btScalar(0.525736)), btVector3(btScalar(-0.262869), btScalar(-0.809012), btScalar(0.525738)), btVector3(btScalar(-0.850648), btScalar(0.000000), btScalar(0.525736)), btVector3(btScalar(-0.262869), btScalar(0.809012), btScalar(0.525738)), btVector3(btScalar(0.688190), btScalar(0.499997), btScalar(0.525736)), btVector3(btScalar(0.525730), btScalar(0.000000), btScalar(0.850652)), btVector3(btScalar(0.162456), btScalar(-0.499995), btScalar(0.850654)), btVector3(btScalar(-0.425323), btScalar(-0.309011), btScalar(0.850654)), btVector3(btScalar(-0.425323), btScalar(0.309011), btScalar(0.850654)), btVector3(btScalar(0.162456), btScalar(0.499995), btScalar(0.850654))}; return sPenetrationDirections; }