/* This source file is part of GIMPACT Library. For the latest info, see http://gimpact.sourceforge.net/ Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371. email: projectileman@yahoo.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* Author: Francisco Len Nßjera Concave-Concave Collision */ #include "BulletCollision/CollisionDispatch/btManifoldResult.h" #include "LinearMath/btIDebugDraw.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "BulletCollision/CollisionShapes/btBoxShape.h" #include "btGImpactCollisionAlgorithm.h" #include "btContactProcessing.h" #include "LinearMath/btQuickprof.h" //! Class for accessing the plane equation class btPlaneShape : public btStaticPlaneShape { public: btPlaneShape(const btVector3& v, float f) : btStaticPlaneShape(v, f) { } void get_plane_equation(btVector4& equation) { equation[0] = m_planeNormal[0]; equation[1] = m_planeNormal[1]; equation[2] = m_planeNormal[2]; equation[3] = m_planeConstant; } void get_plane_equation_transformed(const btTransform& trans, btVector4& equation) const { const btVector3 normal = trans.getBasis() * m_planeNormal; equation[0] = normal[0]; equation[1] = normal[1]; equation[2] = normal[2]; equation[3] = normal.dot(trans * (m_planeConstant * m_planeNormal)); } }; ////////////////////////////////////////////////////////////////////////////////////////////// #ifdef TRI_COLLISION_PROFILING btClock g_triangle_clock; float g_accum_triangle_collision_time = 0; int g_count_triangle_collision = 0; void bt_begin_gim02_tri_time() { g_triangle_clock.reset(); } void bt_end_gim02_tri_time() { g_accum_triangle_collision_time += g_triangle_clock.getTimeMicroseconds(); g_count_triangle_collision++; } #endif //TRI_COLLISION_PROFILING //! Retrieving shapes shapes /*! Declared here due of insuficent space on Pool allocators */ //!@{ class GIM_ShapeRetriever { public: const btGImpactShapeInterface* m_gim_shape; btTriangleShapeEx m_trishape; btTetrahedronShapeEx m_tetrashape; public: class ChildShapeRetriever { public: GIM_ShapeRetriever* m_parent; virtual const btCollisionShape* getChildShape(int index) { return m_parent->m_gim_shape->getChildShape(index); } virtual ~ChildShapeRetriever() {} }; class TriangleShapeRetriever : public ChildShapeRetriever { public: virtual btCollisionShape* getChildShape(int index) { m_parent->m_gim_shape->getBulletTriangle(index, m_parent->m_trishape); return &m_parent->m_trishape; } virtual ~TriangleShapeRetriever() {} }; class TetraShapeRetriever : public ChildShapeRetriever { public: virtual btCollisionShape* getChildShape(int index) { m_parent->m_gim_shape->getBulletTetrahedron(index, m_parent->m_tetrashape); return &m_parent->m_tetrashape; } }; public: ChildShapeRetriever m_child_retriever; TriangleShapeRetriever m_tri_retriever; TetraShapeRetriever m_tetra_retriever; ChildShapeRetriever* m_current_retriever; GIM_ShapeRetriever(const btGImpactShapeInterface* gim_shape) { m_gim_shape = gim_shape; //select retriever if (m_gim_shape->needsRetrieveTriangles()) { m_current_retriever = &m_tri_retriever; } else if (m_gim_shape->needsRetrieveTetrahedrons()) { m_current_retriever = &m_tetra_retriever; } else { m_current_retriever = &m_child_retriever; } m_current_retriever->m_parent = this; } const btCollisionShape* getChildShape(int index) { return m_current_retriever->getChildShape(index); } }; //!@} #ifdef TRI_COLLISION_PROFILING //! Gets the average time in miliseconds of tree collisions float btGImpactCollisionAlgorithm::getAverageTreeCollisionTime() { return btGImpactBoxSet::getAverageTreeCollisionTime(); } //! Gets the average time in miliseconds of triangle collisions float btGImpactCollisionAlgorithm::getAverageTriangleCollisionTime() { if (g_count_triangle_collision == 0) return 0; float avgtime = g_accum_triangle_collision_time; avgtime /= (float)g_count_triangle_collision; g_accum_triangle_collision_time = 0; g_count_triangle_collision = 0; return avgtime; } #endif //TRI_COLLISION_PROFILING btGImpactCollisionAlgorithm::btGImpactCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap) : btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap) { m_manifoldPtr = NULL; m_convex_algorithm = NULL; } btGImpactCollisionAlgorithm::~btGImpactCollisionAlgorithm() { clearCache(); } void btGImpactCollisionAlgorithm::addContactPoint(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btVector3& point, const btVector3& normal, btScalar distance) { m_resultOut->setShapeIdentifiersA(m_part0, m_triface0); m_resultOut->setShapeIdentifiersB(m_part1, m_triface1); checkManifold(body0Wrap, body1Wrap); m_resultOut->addContactPoint(normal, point, distance); } void btGImpactCollisionAlgorithm::shape_vs_shape_collision( const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btCollisionShape* shape0, const btCollisionShape* shape1) { { btCollisionAlgorithm* algor = newAlgorithm(body0Wrap, body1Wrap); // post : checkManifold is called m_resultOut->setShapeIdentifiersA(m_part0, m_triface0); m_resultOut->setShapeIdentifiersB(m_part1, m_triface1); algor->processCollision(body0Wrap, body1Wrap, *m_dispatchInfo, m_resultOut); algor->~btCollisionAlgorithm(); m_dispatcher->freeCollisionAlgorithm(algor); } } void btGImpactCollisionAlgorithm::convex_vs_convex_collision( const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btCollisionShape* shape0, const btCollisionShape* shape1) { m_resultOut->setShapeIdentifiersA(m_part0, m_triface0); m_resultOut->setShapeIdentifiersB(m_part1, m_triface1); btCollisionObjectWrapper ob0(body0Wrap, shape0, body0Wrap->getCollisionObject(), body0Wrap->getWorldTransform(), m_part0, m_triface0); btCollisionObjectWrapper ob1(body1Wrap, shape1, body1Wrap->getCollisionObject(), body1Wrap->getWorldTransform(), m_part1, m_triface1); checkConvexAlgorithm(&ob0, &ob1); m_convex_algorithm->processCollision(&ob0, &ob1, *m_dispatchInfo, m_resultOut); } void btGImpactCollisionAlgorithm::gimpact_vs_gimpact_find_pairs( const btTransform& trans0, const btTransform& trans1, const btGImpactShapeInterface* shape0, const btGImpactShapeInterface* shape1, btPairSet& pairset) { if (shape0->hasBoxSet() && shape1->hasBoxSet()) { btGImpactBoxSet::find_collision(shape0->getBoxSet(), trans0, shape1->getBoxSet(), trans1, pairset); } else { btAABB boxshape0; btAABB boxshape1; int i = shape0->getNumChildShapes(); while (i--) { shape0->getChildAabb(i, trans0, boxshape0.m_min, boxshape0.m_max); int j = shape1->getNumChildShapes(); while (j--) { shape1->getChildAabb(i, trans1, boxshape1.m_min, boxshape1.m_max); if (boxshape1.has_collision(boxshape0)) { pairset.push_pair(i, j); } } } } } void btGImpactCollisionAlgorithm::gimpact_vs_shape_find_pairs( const btTransform& trans0, const btTransform& trans1, const btGImpactShapeInterface* shape0, const btCollisionShape* shape1, btAlignedObjectArray& collided_primitives) { btAABB boxshape; if (shape0->hasBoxSet()) { btTransform trans1to0 = trans0.inverse(); trans1to0 *= trans1; shape1->getAabb(trans1to0, boxshape.m_min, boxshape.m_max); shape0->getBoxSet()->boxQuery(boxshape, collided_primitives); } else { shape1->getAabb(trans1, boxshape.m_min, boxshape.m_max); btAABB boxshape0; int i = shape0->getNumChildShapes(); while (i--) { shape0->getChildAabb(i, trans0, boxshape0.m_min, boxshape0.m_max); if (boxshape.has_collision(boxshape0)) { collided_primitives.push_back(i); } } } } void btGImpactCollisionAlgorithm::collide_gjk_triangles(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactMeshShapePart* shape0, const btGImpactMeshShapePart* shape1, const int* pairs, int pair_count) { btTriangleShapeEx tri0; btTriangleShapeEx tri1; shape0->lockChildShapes(); shape1->lockChildShapes(); const int* pair_pointer = pairs; while (pair_count--) { m_triface0 = *(pair_pointer); m_triface1 = *(pair_pointer + 1); pair_pointer += 2; shape0->getBulletTriangle(m_triface0, tri0); shape1->getBulletTriangle(m_triface1, tri1); //collide two convex shapes if (tri0.overlap_test_conservative(tri1)) { convex_vs_convex_collision(body0Wrap, body1Wrap, &tri0, &tri1); } } shape0->unlockChildShapes(); shape1->unlockChildShapes(); } void btGImpactCollisionAlgorithm::collide_sat_triangles(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactMeshShapePart* shape0, const btGImpactMeshShapePart* shape1, const int* pairs, int pair_count) { btTransform orgtrans0 = body0Wrap->getWorldTransform(); btTransform orgtrans1 = body1Wrap->getWorldTransform(); btPrimitiveTriangle ptri0; btPrimitiveTriangle ptri1; GIM_TRIANGLE_CONTACT contact_data; shape0->lockChildShapes(); shape1->lockChildShapes(); const int* pair_pointer = pairs; while (pair_count--) { m_triface0 = *(pair_pointer); m_triface1 = *(pair_pointer + 1); pair_pointer += 2; shape0->getPrimitiveTriangle(m_triface0, ptri0); shape1->getPrimitiveTriangle(m_triface1, ptri1); #ifdef TRI_COLLISION_PROFILING bt_begin_gim02_tri_time(); #endif ptri0.applyTransform(orgtrans0); ptri1.applyTransform(orgtrans1); //build planes ptri0.buildTriPlane(); ptri1.buildTriPlane(); // test conservative if (ptri0.overlap_test_conservative(ptri1)) { if (ptri0.find_triangle_collision_clip_method(ptri1, contact_data)) { int j = contact_data.m_point_count; while (j--) { addContactPoint(body0Wrap, body1Wrap, contact_data.m_points[j], contact_data.m_separating_normal, -contact_data.m_penetration_depth); } } } #ifdef TRI_COLLISION_PROFILING bt_end_gim02_tri_time(); #endif } shape0->unlockChildShapes(); shape1->unlockChildShapes(); } void btGImpactCollisionAlgorithm::gimpact_vs_gimpact( const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactShapeInterface* shape0, const btGImpactShapeInterface* shape1) { if (shape0->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE) { const btGImpactMeshShape* meshshape0 = static_cast(shape0); m_part0 = meshshape0->getMeshPartCount(); while (m_part0--) { gimpact_vs_gimpact(body0Wrap, body1Wrap, meshshape0->getMeshPart(m_part0), shape1); } return; } if (shape1->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE) { const btGImpactMeshShape* meshshape1 = static_cast(shape1); m_part1 = meshshape1->getMeshPartCount(); while (m_part1--) { gimpact_vs_gimpact(body0Wrap, body1Wrap, shape0, meshshape1->getMeshPart(m_part1)); } return; } btTransform orgtrans0 = body0Wrap->getWorldTransform(); btTransform orgtrans1 = body1Wrap->getWorldTransform(); btPairSet pairset; gimpact_vs_gimpact_find_pairs(orgtrans0, orgtrans1, shape0, shape1, pairset); if (pairset.size() == 0) return; if (shape0->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE_PART && shape1->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE_PART) { const btGImpactMeshShapePart* shapepart0 = static_cast(shape0); const btGImpactMeshShapePart* shapepart1 = static_cast(shape1); //specialized function #ifdef BULLET_TRIANGLE_COLLISION collide_gjk_triangles(body0Wrap, body1Wrap, shapepart0, shapepart1, &pairset[0].m_index1, pairset.size()); #else collide_sat_triangles(body0Wrap, body1Wrap, shapepart0, shapepart1, &pairset[0].m_index1, pairset.size()); #endif return; } //general function shape0->lockChildShapes(); shape1->lockChildShapes(); GIM_ShapeRetriever retriever0(shape0); GIM_ShapeRetriever retriever1(shape1); bool child_has_transform0 = shape0->childrenHasTransform(); bool child_has_transform1 = shape1->childrenHasTransform(); int i = pairset.size(); while (i--) { GIM_PAIR* pair = &pairset[i]; m_triface0 = pair->m_index1; m_triface1 = pair->m_index2; const btCollisionShape* colshape0 = retriever0.getChildShape(m_triface0); const btCollisionShape* colshape1 = retriever1.getChildShape(m_triface1); btTransform tr0 = body0Wrap->getWorldTransform(); btTransform tr1 = body1Wrap->getWorldTransform(); if (child_has_transform0) { tr0 = orgtrans0 * shape0->getChildTransform(m_triface0); } if (child_has_transform1) { tr1 = orgtrans1 * shape1->getChildTransform(m_triface1); } btCollisionObjectWrapper ob0(body0Wrap, colshape0, body0Wrap->getCollisionObject(), tr0, m_part0, m_triface0); btCollisionObjectWrapper ob1(body1Wrap, colshape1, body1Wrap->getCollisionObject(), tr1, m_part1, m_triface1); //collide two convex shapes convex_vs_convex_collision(&ob0, &ob1, colshape0, colshape1); } shape0->unlockChildShapes(); shape1->unlockChildShapes(); } void btGImpactCollisionAlgorithm::gimpact_vs_shape(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactShapeInterface* shape0, const btCollisionShape* shape1, bool swapped) { if (shape0->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE) { const btGImpactMeshShape* meshshape0 = static_cast(shape0); int& part = swapped ? m_part1 : m_part0; part = meshshape0->getMeshPartCount(); while (part--) { gimpact_vs_shape(body0Wrap, body1Wrap, meshshape0->getMeshPart(part), shape1, swapped); } return; } #ifdef GIMPACT_VS_PLANE_COLLISION if (shape0->getGImpactShapeType() == CONST_GIMPACT_TRIMESH_SHAPE_PART && shape1->getShapeType() == STATIC_PLANE_PROXYTYPE) { const btGImpactMeshShapePart* shapepart = static_cast(shape0); const btStaticPlaneShape* planeshape = static_cast(shape1); gimpacttrimeshpart_vs_plane_collision(body0Wrap, body1Wrap, shapepart, planeshape, swapped); return; } #endif if (shape1->isCompound()) { const btCompoundShape* compoundshape = static_cast(shape1); gimpact_vs_compoundshape(body0Wrap, body1Wrap, shape0, compoundshape, swapped); return; } else if (shape1->isConcave()) { const btConcaveShape* concaveshape = static_cast(shape1); gimpact_vs_concave(body0Wrap, body1Wrap, shape0, concaveshape, swapped); return; } btTransform orgtrans0 = body0Wrap->getWorldTransform(); btTransform orgtrans1 = body1Wrap->getWorldTransform(); btAlignedObjectArray collided_results; gimpact_vs_shape_find_pairs(orgtrans0, orgtrans1, shape0, shape1, collided_results); if (collided_results.size() == 0) return; shape0->lockChildShapes(); GIM_ShapeRetriever retriever0(shape0); bool child_has_transform0 = shape0->childrenHasTransform(); int i = collided_results.size(); while (i--) { int child_index = collided_results[i]; if (swapped) m_triface1 = child_index; else m_triface0 = child_index; const btCollisionShape* colshape0 = retriever0.getChildShape(child_index); btTransform tr0 = body0Wrap->getWorldTransform(); if (child_has_transform0) { tr0 = orgtrans0 * shape0->getChildTransform(child_index); } btCollisionObjectWrapper ob0(body0Wrap, colshape0, body0Wrap->getCollisionObject(), body0Wrap->getWorldTransform(), m_part0, m_triface0); const btCollisionObjectWrapper* prevObj0 = m_resultOut->getBody0Wrap(); if (m_resultOut->getBody0Wrap()->getCollisionObject() == ob0.getCollisionObject()) { m_resultOut->setBody0Wrap(&ob0); } else { m_resultOut->setBody1Wrap(&ob0); } //collide two shapes if (swapped) { shape_vs_shape_collision(body1Wrap, &ob0, shape1, colshape0); } else { shape_vs_shape_collision(&ob0, body1Wrap, colshape0, shape1); } m_resultOut->setBody0Wrap(prevObj0); } shape0->unlockChildShapes(); } void btGImpactCollisionAlgorithm::gimpact_vs_compoundshape(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactShapeInterface* shape0, const btCompoundShape* shape1, bool swapped) { btTransform orgtrans1 = body1Wrap->getWorldTransform(); int i = shape1->getNumChildShapes(); while (i--) { const btCollisionShape* colshape1 = shape1->getChildShape(i); btTransform childtrans1 = orgtrans1 * shape1->getChildTransform(i); btCollisionObjectWrapper ob1(body1Wrap, colshape1, body1Wrap->getCollisionObject(), childtrans1, -1, i); const btCollisionObjectWrapper* tmp = 0; if (m_resultOut->getBody0Wrap()->getCollisionObject() == ob1.getCollisionObject()) { tmp = m_resultOut->getBody0Wrap(); m_resultOut->setBody0Wrap(&ob1); } else { tmp = m_resultOut->getBody1Wrap(); m_resultOut->setBody1Wrap(&ob1); } //collide child shape gimpact_vs_shape(body0Wrap, &ob1, shape0, colshape1, swapped); if (m_resultOut->getBody0Wrap()->getCollisionObject() == ob1.getCollisionObject()) { m_resultOut->setBody0Wrap(tmp); } else { m_resultOut->setBody1Wrap(tmp); } } } void btGImpactCollisionAlgorithm::gimpacttrimeshpart_vs_plane_collision( const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactMeshShapePart* shape0, const btStaticPlaneShape* shape1, bool swapped) { btTransform orgtrans0 = body0Wrap->getWorldTransform(); btTransform orgtrans1 = body1Wrap->getWorldTransform(); const btPlaneShape* planeshape = static_cast(shape1); btVector4 plane; planeshape->get_plane_equation_transformed(orgtrans1, plane); //test box against plane btAABB tribox; shape0->getAabb(orgtrans0, tribox.m_min, tribox.m_max); tribox.increment_margin(planeshape->getMargin()); if (tribox.plane_classify(plane) != BT_CONST_COLLIDE_PLANE) return; shape0->lockChildShapes(); btScalar margin = shape0->getMargin() + planeshape->getMargin(); btVector3 vertex; int vi = shape0->getVertexCount(); while (vi--) { shape0->getVertex(vi, vertex); vertex = orgtrans0(vertex); btScalar distance = vertex.dot(plane) - plane[3] - margin; if (distance < 0.0) //add contact { if (swapped) { addContactPoint(body1Wrap, body0Wrap, vertex, -plane, distance); } else { addContactPoint(body0Wrap, body1Wrap, vertex, plane, distance); } } } shape0->unlockChildShapes(); } class btGImpactTriangleCallback : public btTriangleCallback { public: btGImpactCollisionAlgorithm* algorithm; const btCollisionObjectWrapper* body0Wrap; const btCollisionObjectWrapper* body1Wrap; const btGImpactShapeInterface* gimpactshape0; bool swapped; btScalar margin; virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex) { btTriangleShapeEx tri1(triangle[0], triangle[1], triangle[2]); tri1.setMargin(margin); if (swapped) { algorithm->setPart0(partId); algorithm->setFace0(triangleIndex); } else { algorithm->setPart1(partId); algorithm->setFace1(triangleIndex); } btCollisionObjectWrapper ob1Wrap(body1Wrap, &tri1, body1Wrap->getCollisionObject(), body1Wrap->getWorldTransform(), partId, triangleIndex); const btCollisionObjectWrapper* tmp = 0; if (algorithm->internalGetResultOut()->getBody0Wrap()->getCollisionObject() == ob1Wrap.getCollisionObject()) { tmp = algorithm->internalGetResultOut()->getBody0Wrap(); algorithm->internalGetResultOut()->setBody0Wrap(&ob1Wrap); } else { tmp = algorithm->internalGetResultOut()->getBody1Wrap(); algorithm->internalGetResultOut()->setBody1Wrap(&ob1Wrap); } algorithm->gimpact_vs_shape( body0Wrap, &ob1Wrap, gimpactshape0, &tri1, swapped); if (algorithm->internalGetResultOut()->getBody0Wrap()->getCollisionObject() == ob1Wrap.getCollisionObject()) { algorithm->internalGetResultOut()->setBody0Wrap(tmp); } else { algorithm->internalGetResultOut()->setBody1Wrap(tmp); } } }; void btGImpactCollisionAlgorithm::gimpact_vs_concave( const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btGImpactShapeInterface* shape0, const btConcaveShape* shape1, bool swapped) { //create the callback btGImpactTriangleCallback tricallback; tricallback.algorithm = this; tricallback.body0Wrap = body0Wrap; tricallback.body1Wrap = body1Wrap; tricallback.gimpactshape0 = shape0; tricallback.swapped = swapped; tricallback.margin = shape1->getMargin(); //getting the trimesh AABB btTransform gimpactInConcaveSpace; gimpactInConcaveSpace = body1Wrap->getWorldTransform().inverse() * body0Wrap->getWorldTransform(); btVector3 minAABB, maxAABB; shape0->getAabb(gimpactInConcaveSpace, minAABB, maxAABB); shape1->processAllTriangles(&tricallback, minAABB, maxAABB); } void btGImpactCollisionAlgorithm::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut) { clearCache(); m_resultOut = resultOut; m_dispatchInfo = &dispatchInfo; const btGImpactShapeInterface* gimpactshape0; const btGImpactShapeInterface* gimpactshape1; if (body0Wrap->getCollisionShape()->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) { gimpactshape0 = static_cast(body0Wrap->getCollisionShape()); if (body1Wrap->getCollisionShape()->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) { gimpactshape1 = static_cast(body1Wrap->getCollisionShape()); gimpact_vs_gimpact(body0Wrap, body1Wrap, gimpactshape0, gimpactshape1); } else { gimpact_vs_shape(body0Wrap, body1Wrap, gimpactshape0, body1Wrap->getCollisionShape(), false); } } else if (body1Wrap->getCollisionShape()->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) { gimpactshape1 = static_cast(body1Wrap->getCollisionShape()); gimpact_vs_shape(body1Wrap, body0Wrap, gimpactshape1, body0Wrap->getCollisionShape(), true); } // Ensure that gContactProcessedCallback is called for concave shapes. if (getLastManifold()) { m_resultOut->refreshContactPoints(); } } btScalar btGImpactCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0, btCollisionObject* body1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut) { return 1.f; } ///////////////////////////////////// REGISTERING ALGORITHM ////////////////////////////////////////////// //! Use this function for register the algorithm externally void btGImpactCollisionAlgorithm::registerAlgorithm(btCollisionDispatcher* dispatcher) { static btGImpactCollisionAlgorithm::CreateFunc s_gimpact_cf; int i; for (i = 0; i < MAX_BROADPHASE_COLLISION_TYPES; i++) { dispatcher->registerCollisionCreateFunc(GIMPACT_SHAPE_PROXYTYPE, i, &s_gimpact_cf); } for (i = 0; i < MAX_BROADPHASE_COLLISION_TYPES; i++) { dispatcher->registerCollisionCreateFunc(i, GIMPACT_SHAPE_PROXYTYPE, &s_gimpact_cf); } }