#include "b3GpuNarrowPhase.h" #include "Bullet3OpenCL/ParallelPrimitives/b3OpenCLArray.h" #include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" #include "Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h" #include "Bullet3OpenCL/BroadphaseCollision/b3SapAabb.h" #include #include "Bullet3Collision/NarrowPhaseCollision/b3Config.h" #include "Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h" #include "Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h" #include "Bullet3Geometry/b3AabbUtil.h" #include "Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h" #include "b3GpuNarrowPhaseInternalData.h" #include "Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h" #include "Bullet3Collision/NarrowPhaseCollision/b3ConvexUtility.h" b3GpuNarrowPhase::b3GpuNarrowPhase(cl_context ctx, cl_device_id device, cl_command_queue queue, const b3Config& config) : m_data(0), m_planeBodyIndex(-1), m_static0Index(-1), m_context(ctx), m_device(device), m_queue(queue) { m_data = new b3GpuNarrowPhaseInternalData(); m_data->m_currentContactBuffer = 0; memset(m_data, 0, sizeof(b3GpuNarrowPhaseInternalData)); m_data->m_config = config; m_data->m_gpuSatCollision = new GpuSatCollision(ctx, device, queue); m_data->m_triangleConvexPairs = new b3OpenCLArray(m_context, m_queue, config.m_maxTriConvexPairCapacity); //m_data->m_convexPairsOutGPU = new b3OpenCLArray(ctx,queue,config.m_maxBroadphasePairs,false); //m_data->m_planePairs = new b3OpenCLArray(ctx,queue,config.m_maxBroadphasePairs,false); m_data->m_pBufContactOutCPU = new b3AlignedObjectArray(); m_data->m_pBufContactOutCPU->resize(config.m_maxBroadphasePairs); m_data->m_bodyBufferCPU = new b3AlignedObjectArray(); m_data->m_bodyBufferCPU->resize(config.m_maxConvexBodies); m_data->m_inertiaBufferCPU = new b3AlignedObjectArray(); m_data->m_inertiaBufferCPU->resize(config.m_maxConvexBodies); m_data->m_pBufContactBuffersGPU[0] = new b3OpenCLArray(ctx, queue, config.m_maxContactCapacity, true); m_data->m_pBufContactBuffersGPU[1] = new b3OpenCLArray(ctx, queue, config.m_maxContactCapacity, true); m_data->m_inertiaBufferGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies, false); m_data->m_collidablesGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexShapes); m_data->m_collidablesCPU.reserve(config.m_maxConvexShapes); m_data->m_localShapeAABBCPU = new b3AlignedObjectArray; m_data->m_localShapeAABBGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexShapes); //m_data->m_solverDataGPU = adl::Solver::allocate(ctx,queue, config.m_maxBroadphasePairs,false); m_data->m_bodyBufferGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies, false); m_data->m_convexFacesGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexShapes * config.m_maxFacesPerShape, false); m_data->m_convexFaces.reserve(config.m_maxConvexShapes * config.m_maxFacesPerShape); m_data->m_gpuChildShapes = new b3OpenCLArray(ctx, queue, config.m_maxCompoundChildShapes, false); m_data->m_convexPolyhedraGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexShapes, false); m_data->m_convexPolyhedra.reserve(config.m_maxConvexShapes); m_data->m_uniqueEdgesGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexUniqueEdges, true); m_data->m_uniqueEdges.reserve(config.m_maxConvexUniqueEdges); m_data->m_convexVerticesGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexVertices, true); m_data->m_convexVertices.reserve(config.m_maxConvexVertices); m_data->m_convexIndicesGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexIndices, true); m_data->m_convexIndices.reserve(config.m_maxConvexIndices); m_data->m_worldVertsB1GPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies * config.m_maxVerticesPerFace); m_data->m_clippingFacesOutGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies); m_data->m_worldNormalsAGPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies); m_data->m_worldVertsA1GPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies * config.m_maxVerticesPerFace); m_data->m_worldVertsB2GPU = new b3OpenCLArray(ctx, queue, config.m_maxConvexBodies * config.m_maxVerticesPerFace); m_data->m_convexData = new b3AlignedObjectArray(); m_data->m_convexData->resize(config.m_maxConvexShapes); m_data->m_convexPolyhedra.resize(config.m_maxConvexShapes); m_data->m_numAcceleratedShapes = 0; m_data->m_numAcceleratedRigidBodies = 0; m_data->m_subTreesGPU = new b3OpenCLArray(this->m_context, this->m_queue); m_data->m_treeNodesGPU = new b3OpenCLArray(this->m_context, this->m_queue); m_data->m_bvhInfoGPU = new b3OpenCLArray(this->m_context, this->m_queue); //m_data->m_contactCGPU = new b3OpenCLArray(ctx,queue,config.m_maxBroadphasePairs,false); //m_data->m_frictionCGPU = new b3OpenCLArray::allocateFrictionConstraint( m_data->m_deviceCL, config.m_maxBroadphasePairs); } b3GpuNarrowPhase::~b3GpuNarrowPhase() { delete m_data->m_gpuSatCollision; delete m_data->m_triangleConvexPairs; //delete m_data->m_convexPairsOutGPU; //delete m_data->m_planePairs; delete m_data->m_pBufContactOutCPU; delete m_data->m_bodyBufferCPU; delete m_data->m_inertiaBufferCPU; delete m_data->m_pBufContactBuffersGPU[0]; delete m_data->m_pBufContactBuffersGPU[1]; delete m_data->m_inertiaBufferGPU; delete m_data->m_collidablesGPU; delete m_data->m_localShapeAABBCPU; delete m_data->m_localShapeAABBGPU; delete m_data->m_bodyBufferGPU; delete m_data->m_convexFacesGPU; delete m_data->m_gpuChildShapes; delete m_data->m_convexPolyhedraGPU; delete m_data->m_uniqueEdgesGPU; delete m_data->m_convexVerticesGPU; delete m_data->m_convexIndicesGPU; delete m_data->m_worldVertsB1GPU; delete m_data->m_clippingFacesOutGPU; delete m_data->m_worldNormalsAGPU; delete m_data->m_worldVertsA1GPU; delete m_data->m_worldVertsB2GPU; delete m_data->m_bvhInfoGPU; for (int i = 0; i < m_data->m_bvhData.size(); i++) { delete m_data->m_bvhData[i]; } for (int i = 0; i < m_data->m_meshInterfaces.size(); i++) { delete m_data->m_meshInterfaces[i]; } m_data->m_meshInterfaces.clear(); m_data->m_bvhData.clear(); delete m_data->m_treeNodesGPU; delete m_data->m_subTreesGPU; delete m_data->m_convexData; delete m_data; } int b3GpuNarrowPhase::allocateCollidable() { int curSize = m_data->m_collidablesCPU.size(); if (curSize < m_data->m_config.m_maxConvexShapes) { m_data->m_collidablesCPU.expand(); return curSize; } else { b3Error("allocateCollidable out-of-range %d\n", m_data->m_config.m_maxConvexShapes); } return -1; } int b3GpuNarrowPhase::registerSphereShape(float radius) { int collidableIndex = allocateCollidable(); if (collidableIndex < 0) return collidableIndex; b3Collidable& col = getCollidableCpu(collidableIndex); col.m_shapeType = SHAPE_SPHERE; col.m_shapeIndex = 0; col.m_radius = radius; if (col.m_shapeIndex >= 0) { b3SapAabb aabb; b3Vector3 myAabbMin = b3MakeVector3(-radius, -radius, -radius); b3Vector3 myAabbMax = b3MakeVector3(radius, radius, radius); aabb.m_min[0] = myAabbMin[0]; //s_convexHeightField->m_aabb.m_min.x; aabb.m_min[1] = myAabbMin[1]; //s_convexHeightField->m_aabb.m_min.y; aabb.m_min[2] = myAabbMin[2]; //s_convexHeightField->m_aabb.m_min.z; aabb.m_minIndices[3] = 0; aabb.m_max[0] = myAabbMax[0]; //s_convexHeightField->m_aabb.m_max.x; aabb.m_max[1] = myAabbMax[1]; //s_convexHeightField->m_aabb.m_max.y; aabb.m_max[2] = myAabbMax[2]; //s_convexHeightField->m_aabb.m_max.z; aabb.m_signedMaxIndices[3] = 0; m_data->m_localShapeAABBCPU->push_back(aabb); // m_data->m_localShapeAABBGPU->push_back(aabb); clFinish(m_queue); } return collidableIndex; } int b3GpuNarrowPhase::registerFace(const b3Vector3& faceNormal, float faceConstant) { int faceOffset = m_data->m_convexFaces.size(); b3GpuFace& face = m_data->m_convexFaces.expand(); face.m_plane = b3MakeVector3(faceNormal.x, faceNormal.y, faceNormal.z, faceConstant); return faceOffset; } int b3GpuNarrowPhase::registerPlaneShape(const b3Vector3& planeNormal, float planeConstant) { int collidableIndex = allocateCollidable(); if (collidableIndex < 0) return collidableIndex; b3Collidable& col = getCollidableCpu(collidableIndex); col.m_shapeType = SHAPE_PLANE; col.m_shapeIndex = registerFace(planeNormal, planeConstant); col.m_radius = planeConstant; if (col.m_shapeIndex >= 0) { b3SapAabb aabb; aabb.m_min[0] = -1e30f; aabb.m_min[1] = -1e30f; aabb.m_min[2] = -1e30f; aabb.m_minIndices[3] = 0; aabb.m_max[0] = 1e30f; aabb.m_max[1] = 1e30f; aabb.m_max[2] = 1e30f; aabb.m_signedMaxIndices[3] = 0; m_data->m_localShapeAABBCPU->push_back(aabb); // m_data->m_localShapeAABBGPU->push_back(aabb); clFinish(m_queue); } return collidableIndex; } int b3GpuNarrowPhase::registerConvexHullShapeInternal(b3ConvexUtility* convexPtr, b3Collidable& col) { m_data->m_convexData->resize(m_data->m_numAcceleratedShapes + 1); m_data->m_convexPolyhedra.resize(m_data->m_numAcceleratedShapes + 1); b3ConvexPolyhedronData& convex = m_data->m_convexPolyhedra.at(m_data->m_convexPolyhedra.size() - 1); convex.mC = convexPtr->mC; convex.mE = convexPtr->mE; convex.m_extents = convexPtr->m_extents; convex.m_localCenter = convexPtr->m_localCenter; convex.m_radius = convexPtr->m_radius; convex.m_numUniqueEdges = convexPtr->m_uniqueEdges.size(); int edgeOffset = m_data->m_uniqueEdges.size(); convex.m_uniqueEdgesOffset = edgeOffset; m_data->m_uniqueEdges.resize(edgeOffset + convex.m_numUniqueEdges); //convex data here int i; for (i = 0; i < convexPtr->m_uniqueEdges.size(); i++) { m_data->m_uniqueEdges[edgeOffset + i] = convexPtr->m_uniqueEdges[i]; } int faceOffset = m_data->m_convexFaces.size(); convex.m_faceOffset = faceOffset; convex.m_numFaces = convexPtr->m_faces.size(); m_data->m_convexFaces.resize(faceOffset + convex.m_numFaces); for (i = 0; i < convexPtr->m_faces.size(); i++) { m_data->m_convexFaces[convex.m_faceOffset + i].m_plane = b3MakeVector3(convexPtr->m_faces[i].m_plane[0], convexPtr->m_faces[i].m_plane[1], convexPtr->m_faces[i].m_plane[2], convexPtr->m_faces[i].m_plane[3]); int indexOffset = m_data->m_convexIndices.size(); int numIndices = convexPtr->m_faces[i].m_indices.size(); m_data->m_convexFaces[convex.m_faceOffset + i].m_numIndices = numIndices; m_data->m_convexFaces[convex.m_faceOffset + i].m_indexOffset = indexOffset; m_data->m_convexIndices.resize(indexOffset + numIndices); for (int p = 0; p < numIndices; p++) { m_data->m_convexIndices[indexOffset + p] = convexPtr->m_faces[i].m_indices[p]; } } convex.m_numVertices = convexPtr->m_vertices.size(); int vertexOffset = m_data->m_convexVertices.size(); convex.m_vertexOffset = vertexOffset; m_data->m_convexVertices.resize(vertexOffset + convex.m_numVertices); for (int i = 0; i < convexPtr->m_vertices.size(); i++) { m_data->m_convexVertices[vertexOffset + i] = convexPtr->m_vertices[i]; } (*m_data->m_convexData)[m_data->m_numAcceleratedShapes] = convexPtr; return m_data->m_numAcceleratedShapes++; } int b3GpuNarrowPhase::registerConvexHullShape(const float* vertices, int strideInBytes, int numVertices, const float* scaling) { b3AlignedObjectArray verts; unsigned char* vts = (unsigned char*)vertices; for (int i = 0; i < numVertices; i++) { float* vertex = (float*)&vts[i * strideInBytes]; verts.push_back(b3MakeVector3(vertex[0] * scaling[0], vertex[1] * scaling[1], vertex[2] * scaling[2])); } b3ConvexUtility* utilPtr = new b3ConvexUtility(); bool merge = true; if (numVertices) { utilPtr->initializePolyhedralFeatures(&verts[0], verts.size(), merge); } int collidableIndex = registerConvexHullShape(utilPtr); delete utilPtr; return collidableIndex; } int b3GpuNarrowPhase::registerConvexHullShape(b3ConvexUtility* utilPtr) { int collidableIndex = allocateCollidable(); if (collidableIndex < 0) return collidableIndex; b3Collidable& col = getCollidableCpu(collidableIndex); col.m_shapeType = SHAPE_CONVEX_HULL; col.m_shapeIndex = -1; { b3Vector3 localCenter = b3MakeVector3(0, 0, 0); for (int i = 0; i < utilPtr->m_vertices.size(); i++) localCenter += utilPtr->m_vertices[i]; localCenter *= (1.f / utilPtr->m_vertices.size()); utilPtr->m_localCenter = localCenter; col.m_shapeIndex = registerConvexHullShapeInternal(utilPtr, col); } if (col.m_shapeIndex >= 0) { b3SapAabb aabb; b3Vector3 myAabbMin = b3MakeVector3(1e30f, 1e30f, 1e30f); b3Vector3 myAabbMax = b3MakeVector3(-1e30f, -1e30f, -1e30f); for (int i = 0; i < utilPtr->m_vertices.size(); i++) { myAabbMin.setMin(utilPtr->m_vertices[i]); myAabbMax.setMax(utilPtr->m_vertices[i]); } aabb.m_min[0] = myAabbMin[0]; aabb.m_min[1] = myAabbMin[1]; aabb.m_min[2] = myAabbMin[2]; aabb.m_minIndices[3] = 0; aabb.m_max[0] = myAabbMax[0]; aabb.m_max[1] = myAabbMax[1]; aabb.m_max[2] = myAabbMax[2]; aabb.m_signedMaxIndices[3] = 0; m_data->m_localShapeAABBCPU->push_back(aabb); // m_data->m_localShapeAABBGPU->push_back(aabb); } return collidableIndex; } int b3GpuNarrowPhase::registerCompoundShape(b3AlignedObjectArray* childShapes) { int collidableIndex = allocateCollidable(); if (collidableIndex < 0) return collidableIndex; b3Collidable& col = getCollidableCpu(collidableIndex); col.m_shapeType = SHAPE_COMPOUND_OF_CONVEX_HULLS; col.m_shapeIndex = m_data->m_cpuChildShapes.size(); col.m_compoundBvhIndex = m_data->m_bvhInfoCPU.size(); { b3Assert(col.m_shapeIndex + childShapes->size() < m_data->m_config.m_maxCompoundChildShapes); for (int i = 0; i < childShapes->size(); i++) { m_data->m_cpuChildShapes.push_back(childShapes->at(i)); } } col.m_numChildShapes = childShapes->size(); b3SapAabb aabbLocalSpace; b3Vector3 myAabbMin = b3MakeVector3(1e30f, 1e30f, 1e30f); b3Vector3 myAabbMax = b3MakeVector3(-1e30f, -1e30f, -1e30f); b3AlignedObjectArray childLocalAabbs; childLocalAabbs.resize(childShapes->size()); //compute local AABB of the compound of all children for (int i = 0; i < childShapes->size(); i++) { int childColIndex = childShapes->at(i).m_shapeIndex; //b3Collidable& childCol = getCollidableCpu(childColIndex); b3SapAabb aabbLoc = m_data->m_localShapeAABBCPU->at(childColIndex); b3Vector3 childLocalAabbMin = b3MakeVector3(aabbLoc.m_min[0], aabbLoc.m_min[1], aabbLoc.m_min[2]); b3Vector3 childLocalAabbMax = b3MakeVector3(aabbLoc.m_max[0], aabbLoc.m_max[1], aabbLoc.m_max[2]); b3Vector3 aMin, aMax; b3Scalar margin(0.f); b3Transform childTr; childTr.setIdentity(); childTr.setOrigin(childShapes->at(i).m_childPosition); childTr.setRotation(b3Quaternion(childShapes->at(i).m_childOrientation)); b3TransformAabb(childLocalAabbMin, childLocalAabbMax, margin, childTr, aMin, aMax); myAabbMin.setMin(aMin); myAabbMax.setMax(aMax); childLocalAabbs[i].m_min[0] = aMin[0]; childLocalAabbs[i].m_min[1] = aMin[1]; childLocalAabbs[i].m_min[2] = aMin[2]; childLocalAabbs[i].m_min[3] = 0; childLocalAabbs[i].m_max[0] = aMax[0]; childLocalAabbs[i].m_max[1] = aMax[1]; childLocalAabbs[i].m_max[2] = aMax[2]; childLocalAabbs[i].m_max[3] = 0; } aabbLocalSpace.m_min[0] = myAabbMin[0]; //s_convexHeightField->m_aabb.m_min.x; aabbLocalSpace.m_min[1] = myAabbMin[1]; //s_convexHeightField->m_aabb.m_min.y; aabbLocalSpace.m_min[2] = myAabbMin[2]; //s_convexHeightField->m_aabb.m_min.z; aabbLocalSpace.m_minIndices[3] = 0; aabbLocalSpace.m_max[0] = myAabbMax[0]; //s_convexHeightField->m_aabb.m_max.x; aabbLocalSpace.m_max[1] = myAabbMax[1]; //s_convexHeightField->m_aabb.m_max.y; aabbLocalSpace.m_max[2] = myAabbMax[2]; //s_convexHeightField->m_aabb.m_max.z; aabbLocalSpace.m_signedMaxIndices[3] = 0; m_data->m_localShapeAABBCPU->push_back(aabbLocalSpace); b3QuantizedBvh* bvh = new b3QuantizedBvh; bvh->setQuantizationValues(myAabbMin, myAabbMax); QuantizedNodeArray& nodes = bvh->getLeafNodeArray(); int numNodes = childShapes->size(); for (int i = 0; i < numNodes; i++) { b3QuantizedBvhNode node; b3Vector3 aabbMin, aabbMax; aabbMin = (b3Vector3&)childLocalAabbs[i].m_min; aabbMax = (b3Vector3&)childLocalAabbs[i].m_max; bvh->quantize(&node.m_quantizedAabbMin[0], aabbMin, 0); bvh->quantize(&node.m_quantizedAabbMax[0], aabbMax, 1); int partId = 0; node.m_escapeIndexOrTriangleIndex = (partId << (31 - MAX_NUM_PARTS_IN_BITS)) | i; nodes.push_back(node); } bvh->buildInternal(); int numSubTrees = bvh->getSubtreeInfoArray().size(); //void setQuantizationValues(const b3Vector3& bvhAabbMin,const b3Vector3& bvhAabbMax,b3Scalar quantizationMargin=b3Scalar(1.0)); //QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; } ///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized //void buildInternal(); b3BvhInfo bvhInfo; bvhInfo.m_aabbMin = bvh->m_bvhAabbMin; bvhInfo.m_aabbMax = bvh->m_bvhAabbMax; bvhInfo.m_quantization = bvh->m_bvhQuantization; bvhInfo.m_numNodes = numNodes; bvhInfo.m_numSubTrees = numSubTrees; bvhInfo.m_nodeOffset = m_data->m_treeNodesCPU.size(); bvhInfo.m_subTreeOffset = m_data->m_subTreesCPU.size(); int numNewNodes = bvh->getQuantizedNodeArray().size(); for (int i = 0; i < numNewNodes - 1; i++) { if (bvh->getQuantizedNodeArray()[i].isLeafNode()) { int orgIndex = bvh->getQuantizedNodeArray()[i].getTriangleIndex(); b3Vector3 nodeMinVec = bvh->unQuantize(bvh->getQuantizedNodeArray()[i].m_quantizedAabbMin); b3Vector3 nodeMaxVec = bvh->unQuantize(bvh->getQuantizedNodeArray()[i].m_quantizedAabbMax); for (int c = 0; c < 3; c++) { if (childLocalAabbs[orgIndex].m_min[c] < nodeMinVec[c]) { printf("min org (%f) and new (%f) ? at i:%d,c:%d\n", childLocalAabbs[i].m_min[c], nodeMinVec[c], i, c); } if (childLocalAabbs[orgIndex].m_max[c] > nodeMaxVec[c]) { printf("max org (%f) and new (%f) ? at i:%d,c:%d\n", childLocalAabbs[i].m_max[c], nodeMaxVec[c], i, c); } } } } m_data->m_bvhInfoCPU.push_back(bvhInfo); int numNewSubtrees = bvh->getSubtreeInfoArray().size(); m_data->m_subTreesCPU.reserve(m_data->m_subTreesCPU.size() + numNewSubtrees); for (int i = 0; i < numNewSubtrees; i++) { m_data->m_subTreesCPU.push_back(bvh->getSubtreeInfoArray()[i]); } int numNewTreeNodes = bvh->getQuantizedNodeArray().size(); for (int i = 0; i < numNewTreeNodes; i++) { m_data->m_treeNodesCPU.push_back(bvh->getQuantizedNodeArray()[i]); } // m_data->m_localShapeAABBGPU->push_back(aabbWS); clFinish(m_queue); return collidableIndex; } int b3GpuNarrowPhase::registerConcaveMesh(b3AlignedObjectArray* vertices, b3AlignedObjectArray* indices, const float* scaling1) { b3Vector3 scaling = b3MakeVector3(scaling1[0], scaling1[1], scaling1[2]); int collidableIndex = allocateCollidable(); if (collidableIndex < 0) return collidableIndex; b3Collidable& col = getCollidableCpu(collidableIndex); col.m_shapeType = SHAPE_CONCAVE_TRIMESH; col.m_shapeIndex = registerConcaveMeshShape(vertices, indices, col, scaling); col.m_bvhIndex = m_data->m_bvhInfoCPU.size(); b3SapAabb aabb; b3Vector3 myAabbMin = b3MakeVector3(1e30f, 1e30f, 1e30f); b3Vector3 myAabbMax = b3MakeVector3(-1e30f, -1e30f, -1e30f); for (int i = 0; i < vertices->size(); i++) { b3Vector3 vtx(vertices->at(i) * scaling); myAabbMin.setMin(vtx); myAabbMax.setMax(vtx); } aabb.m_min[0] = myAabbMin[0]; aabb.m_min[1] = myAabbMin[1]; aabb.m_min[2] = myAabbMin[2]; aabb.m_minIndices[3] = 0; aabb.m_max[0] = myAabbMax[0]; aabb.m_max[1] = myAabbMax[1]; aabb.m_max[2] = myAabbMax[2]; aabb.m_signedMaxIndices[3] = 0; m_data->m_localShapeAABBCPU->push_back(aabb); // m_data->m_localShapeAABBGPU->push_back(aabb); b3OptimizedBvh* bvh = new b3OptimizedBvh(); //void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax) bool useQuantizedAabbCompression = true; b3TriangleIndexVertexArray* meshInterface = new b3TriangleIndexVertexArray(); m_data->m_meshInterfaces.push_back(meshInterface); b3IndexedMesh mesh; mesh.m_numTriangles = indices->size() / 3; mesh.m_numVertices = vertices->size(); mesh.m_vertexBase = (const unsigned char*)&vertices->at(0).x; mesh.m_vertexStride = sizeof(b3Vector3); mesh.m_triangleIndexStride = 3 * sizeof(int); // or sizeof(int) mesh.m_triangleIndexBase = (const unsigned char*)&indices->at(0); meshInterface->addIndexedMesh(mesh); bvh->build(meshInterface, useQuantizedAabbCompression, (b3Vector3&)aabb.m_min, (b3Vector3&)aabb.m_max); m_data->m_bvhData.push_back(bvh); int numNodes = bvh->getQuantizedNodeArray().size(); //b3OpenCLArray* treeNodesGPU = new b3OpenCLArray(this->m_context,this->m_queue,numNodes); int numSubTrees = bvh->getSubtreeInfoArray().size(); b3BvhInfo bvhInfo; bvhInfo.m_aabbMin = bvh->m_bvhAabbMin; bvhInfo.m_aabbMax = bvh->m_bvhAabbMax; bvhInfo.m_quantization = bvh->m_bvhQuantization; bvhInfo.m_numNodes = numNodes; bvhInfo.m_numSubTrees = numSubTrees; bvhInfo.m_nodeOffset = m_data->m_treeNodesCPU.size(); bvhInfo.m_subTreeOffset = m_data->m_subTreesCPU.size(); m_data->m_bvhInfoCPU.push_back(bvhInfo); int numNewSubtrees = bvh->getSubtreeInfoArray().size(); m_data->m_subTreesCPU.reserve(m_data->m_subTreesCPU.size() + numNewSubtrees); for (int i = 0; i < numNewSubtrees; i++) { m_data->m_subTreesCPU.push_back(bvh->getSubtreeInfoArray()[i]); } int numNewTreeNodes = bvh->getQuantizedNodeArray().size(); for (int i = 0; i < numNewTreeNodes; i++) { m_data->m_treeNodesCPU.push_back(bvh->getQuantizedNodeArray()[i]); } return collidableIndex; } int b3GpuNarrowPhase::registerConcaveMeshShape(b3AlignedObjectArray* vertices, b3AlignedObjectArray* indices, b3Collidable& col, const float* scaling1) { b3Vector3 scaling = b3MakeVector3(scaling1[0], scaling1[1], scaling1[2]); m_data->m_convexData->resize(m_data->m_numAcceleratedShapes + 1); m_data->m_convexPolyhedra.resize(m_data->m_numAcceleratedShapes + 1); b3ConvexPolyhedronData& convex = m_data->m_convexPolyhedra.at(m_data->m_convexPolyhedra.size() - 1); convex.mC = b3MakeVector3(0, 0, 0); convex.mE = b3MakeVector3(0, 0, 0); convex.m_extents = b3MakeVector3(0, 0, 0); convex.m_localCenter = b3MakeVector3(0, 0, 0); convex.m_radius = 0.f; convex.m_numUniqueEdges = 0; int edgeOffset = m_data->m_uniqueEdges.size(); convex.m_uniqueEdgesOffset = edgeOffset; int faceOffset = m_data->m_convexFaces.size(); convex.m_faceOffset = faceOffset; convex.m_numFaces = indices->size() / 3; m_data->m_convexFaces.resize(faceOffset + convex.m_numFaces); m_data->m_convexIndices.reserve(convex.m_numFaces * 3); for (int i = 0; i < convex.m_numFaces; i++) { if (i % 256 == 0) { //printf("i=%d out of %d", i,convex.m_numFaces); } b3Vector3 vert0(vertices->at(indices->at(i * 3)) * scaling); b3Vector3 vert1(vertices->at(indices->at(i * 3 + 1)) * scaling); b3Vector3 vert2(vertices->at(indices->at(i * 3 + 2)) * scaling); b3Vector3 normal = ((vert1 - vert0).cross(vert2 - vert0)).normalize(); b3Scalar c = -(normal.dot(vert0)); m_data->m_convexFaces[convex.m_faceOffset + i].m_plane = b3MakeVector4(normal.x, normal.y, normal.z, c); int indexOffset = m_data->m_convexIndices.size(); int numIndices = 3; m_data->m_convexFaces[convex.m_faceOffset + i].m_numIndices = numIndices; m_data->m_convexFaces[convex.m_faceOffset + i].m_indexOffset = indexOffset; m_data->m_convexIndices.resize(indexOffset + numIndices); for (int p = 0; p < numIndices; p++) { int vi = indices->at(i * 3 + p); m_data->m_convexIndices[indexOffset + p] = vi; //convexPtr->m_faces[i].m_indices[p]; } } convex.m_numVertices = vertices->size(); int vertexOffset = m_data->m_convexVertices.size(); convex.m_vertexOffset = vertexOffset; m_data->m_convexVertices.resize(vertexOffset + convex.m_numVertices); for (int i = 0; i < vertices->size(); i++) { m_data->m_convexVertices[vertexOffset + i] = vertices->at(i) * scaling; } (*m_data->m_convexData)[m_data->m_numAcceleratedShapes] = 0; return m_data->m_numAcceleratedShapes++; } cl_mem b3GpuNarrowPhase::getBodiesGpu() { return (cl_mem)m_data->m_bodyBufferGPU->getBufferCL(); } const struct b3RigidBodyData* b3GpuNarrowPhase::getBodiesCpu() const { return &m_data->m_bodyBufferCPU->at(0); }; int b3GpuNarrowPhase::getNumBodiesGpu() const { return m_data->m_bodyBufferGPU->size(); } cl_mem b3GpuNarrowPhase::getBodyInertiasGpu() { return (cl_mem)m_data->m_inertiaBufferGPU->getBufferCL(); } int b3GpuNarrowPhase::getNumBodyInertiasGpu() const { return m_data->m_inertiaBufferGPU->size(); } b3Collidable& b3GpuNarrowPhase::getCollidableCpu(int collidableIndex) { return m_data->m_collidablesCPU[collidableIndex]; } const b3Collidable& b3GpuNarrowPhase::getCollidableCpu(int collidableIndex) const { return m_data->m_collidablesCPU[collidableIndex]; } cl_mem b3GpuNarrowPhase::getCollidablesGpu() { return m_data->m_collidablesGPU->getBufferCL(); } const struct b3Collidable* b3GpuNarrowPhase::getCollidablesCpu() const { if (m_data->m_collidablesCPU.size()) return &m_data->m_collidablesCPU[0]; return 0; } const struct b3SapAabb* b3GpuNarrowPhase::getLocalSpaceAabbsCpu() const { if (m_data->m_localShapeAABBCPU->size()) { return &m_data->m_localShapeAABBCPU->at(0); } return 0; } cl_mem b3GpuNarrowPhase::getAabbLocalSpaceBufferGpu() { return m_data->m_localShapeAABBGPU->getBufferCL(); } int b3GpuNarrowPhase::getNumCollidablesGpu() const { return m_data->m_collidablesGPU->size(); } int b3GpuNarrowPhase::getNumContactsGpu() const { return m_data->m_pBufContactBuffersGPU[m_data->m_currentContactBuffer]->size(); } cl_mem b3GpuNarrowPhase::getContactsGpu() { return m_data->m_pBufContactBuffersGPU[m_data->m_currentContactBuffer]->getBufferCL(); } const b3Contact4* b3GpuNarrowPhase::getContactsCPU() const { m_data->m_pBufContactBuffersGPU[m_data->m_currentContactBuffer]->copyToHost(*m_data->m_pBufContactOutCPU); return &m_data->m_pBufContactOutCPU->at(0); } void b3GpuNarrowPhase::computeContacts(cl_mem broadphasePairs, int numBroadphasePairs, cl_mem aabbsWorldSpace, int numObjects) { cl_mem aabbsLocalSpace = m_data->m_localShapeAABBGPU->getBufferCL(); int nContactOut = 0; //swap buffer m_data->m_currentContactBuffer = 1 - m_data->m_currentContactBuffer; //int curSize = m_data->m_pBufContactBuffersGPU[m_data->m_currentContactBuffer]->size(); int maxTriConvexPairCapacity = m_data->m_config.m_maxTriConvexPairCapacity; int numTriConvexPairsOut = 0; b3OpenCLArray broadphasePairsGPU(m_context, m_queue); broadphasePairsGPU.setFromOpenCLBuffer(broadphasePairs, numBroadphasePairs); b3OpenCLArray clAabbArrayWorldSpace(this->m_context, this->m_queue); clAabbArrayWorldSpace.setFromOpenCLBuffer(aabbsWorldSpace, numObjects); b3OpenCLArray clAabbArrayLocalSpace(this->m_context, this->m_queue); clAabbArrayLocalSpace.setFromOpenCLBuffer(aabbsLocalSpace, numObjects); m_data->m_gpuSatCollision->computeConvexConvexContactsGPUSAT( &broadphasePairsGPU, numBroadphasePairs, m_data->m_bodyBufferGPU, m_data->m_pBufContactBuffersGPU[m_data->m_currentContactBuffer], nContactOut, m_data->m_pBufContactBuffersGPU[1 - m_data->m_currentContactBuffer], m_data->m_config.m_maxContactCapacity, m_data->m_config.m_compoundPairCapacity, *m_data->m_convexPolyhedraGPU, *m_data->m_convexVerticesGPU, *m_data->m_uniqueEdgesGPU, *m_data->m_convexFacesGPU, *m_data->m_convexIndicesGPU, *m_data->m_collidablesGPU, *m_data->m_gpuChildShapes, clAabbArrayWorldSpace, clAabbArrayLocalSpace, *m_data->m_worldVertsB1GPU, *m_data->m_clippingFacesOutGPU, *m_data->m_worldNormalsAGPU, *m_data->m_worldVertsA1GPU, *m_data->m_worldVertsB2GPU, m_data->m_bvhData, m_data->m_treeNodesGPU, m_data->m_subTreesGPU, m_data->m_bvhInfoGPU, numObjects, maxTriConvexPairCapacity, *m_data->m_triangleConvexPairs, numTriConvexPairsOut); /*b3AlignedObjectArray broadphasePairsCPU; broadphasePairsGPU.copyToHost(broadphasePairsCPU); printf("checking pairs\n"); */ } const b3SapAabb& b3GpuNarrowPhase::getLocalSpaceAabb(int collidableIndex) const { return m_data->m_localShapeAABBCPU->at(collidableIndex); } int b3GpuNarrowPhase::registerRigidBody(int collidableIndex, float mass, const float* position, const float* orientation, const float* aabbMinPtr, const float* aabbMaxPtr, bool writeToGpu) { b3Vector3 aabbMin = b3MakeVector3(aabbMinPtr[0], aabbMinPtr[1], aabbMinPtr[2]); b3Vector3 aabbMax = b3MakeVector3(aabbMaxPtr[0], aabbMaxPtr[1], aabbMaxPtr[2]); if (m_data->m_numAcceleratedRigidBodies >= (m_data->m_config.m_maxConvexBodies)) { b3Error("registerRigidBody: exceeding the number of rigid bodies, %d > %d \n", m_data->m_numAcceleratedRigidBodies, m_data->m_config.m_maxConvexBodies); return -1; } m_data->m_bodyBufferCPU->resize(m_data->m_numAcceleratedRigidBodies + 1); b3RigidBodyData& body = m_data->m_bodyBufferCPU->at(m_data->m_numAcceleratedRigidBodies); float friction = 1.f; float restitution = 0.f; body.m_frictionCoeff = friction; body.m_restituitionCoeff = restitution; body.m_angVel = b3MakeVector3(0, 0, 0); body.m_linVel = b3MakeVector3(0, 0, 0); //.setZero(); body.m_pos = b3MakeVector3(position[0], position[1], position[2]); body.m_quat.setValue(orientation[0], orientation[1], orientation[2], orientation[3]); body.m_collidableIdx = collidableIndex; if (collidableIndex >= 0) { // body.m_shapeType = m_data->m_collidablesCPU.at(collidableIndex).m_shapeType; } else { // body.m_shapeType = CollisionShape::SHAPE_PLANE; m_planeBodyIndex = m_data->m_numAcceleratedRigidBodies; } //body.m_shapeType = shapeType; body.m_invMass = mass ? 1.f / mass : 0.f; if (writeToGpu) { m_data->m_bodyBufferGPU->copyFromHostPointer(&body, 1, m_data->m_numAcceleratedRigidBodies); } b3InertiaData& shapeInfo = m_data->m_inertiaBufferCPU->at(m_data->m_numAcceleratedRigidBodies); if (mass == 0.f) { if (m_data->m_numAcceleratedRigidBodies == 0) m_static0Index = 0; shapeInfo.m_initInvInertia.setValue(0, 0, 0, 0, 0, 0, 0, 0, 0); shapeInfo.m_invInertiaWorld.setValue(0, 0, 0, 0, 0, 0, 0, 0, 0); } else { b3Assert(body.m_collidableIdx >= 0); //approximate using the aabb of the shape //Aabb aabb = (*m_data->m_shapePointers)[shapeIndex]->m_aabb; b3Vector3 halfExtents = (aabbMax - aabbMin); //*0.5f;//fake larger inertia makes demos more stable ;-) b3Vector3 localInertia; float lx = 2.f * halfExtents[0]; float ly = 2.f * halfExtents[1]; float lz = 2.f * halfExtents[2]; localInertia.setValue((mass / 12.0f) * (ly * ly + lz * lz), (mass / 12.0f) * (lx * lx + lz * lz), (mass / 12.0f) * (lx * lx + ly * ly)); b3Vector3 invLocalInertia; invLocalInertia[0] = 1.f / localInertia[0]; invLocalInertia[1] = 1.f / localInertia[1]; invLocalInertia[2] = 1.f / localInertia[2]; invLocalInertia[3] = 0.f; shapeInfo.m_initInvInertia.setValue( invLocalInertia[0], 0, 0, 0, invLocalInertia[1], 0, 0, 0, invLocalInertia[2]); b3Matrix3x3 m(body.m_quat); shapeInfo.m_invInertiaWorld = m.scaled(invLocalInertia) * m.transpose(); } if (writeToGpu) m_data->m_inertiaBufferGPU->copyFromHostPointer(&shapeInfo, 1, m_data->m_numAcceleratedRigidBodies); return m_data->m_numAcceleratedRigidBodies++; } int b3GpuNarrowPhase::getNumRigidBodies() const { return m_data->m_numAcceleratedRigidBodies; } void b3GpuNarrowPhase::writeAllBodiesToGpu() { if (m_data->m_localShapeAABBCPU->size()) { m_data->m_localShapeAABBGPU->copyFromHost(*m_data->m_localShapeAABBCPU); } m_data->m_gpuChildShapes->copyFromHost(m_data->m_cpuChildShapes); m_data->m_convexFacesGPU->copyFromHost(m_data->m_convexFaces); m_data->m_convexPolyhedraGPU->copyFromHost(m_data->m_convexPolyhedra); m_data->m_uniqueEdgesGPU->copyFromHost(m_data->m_uniqueEdges); m_data->m_convexVerticesGPU->copyFromHost(m_data->m_convexVertices); m_data->m_convexIndicesGPU->copyFromHost(m_data->m_convexIndices); m_data->m_bvhInfoGPU->copyFromHost(m_data->m_bvhInfoCPU); m_data->m_treeNodesGPU->copyFromHost(m_data->m_treeNodesCPU); m_data->m_subTreesGPU->copyFromHost(m_data->m_subTreesCPU); m_data->m_bodyBufferGPU->resize(m_data->m_numAcceleratedRigidBodies); m_data->m_inertiaBufferGPU->resize(m_data->m_numAcceleratedRigidBodies); if (m_data->m_numAcceleratedRigidBodies) { m_data->m_bodyBufferGPU->copyFromHostPointer(&m_data->m_bodyBufferCPU->at(0), m_data->m_numAcceleratedRigidBodies); m_data->m_inertiaBufferGPU->copyFromHostPointer(&m_data->m_inertiaBufferCPU->at(0), m_data->m_numAcceleratedRigidBodies); } if (m_data->m_collidablesCPU.size()) { m_data->m_collidablesGPU->copyFromHost(m_data->m_collidablesCPU); } } void b3GpuNarrowPhase::reset() { m_data->m_numAcceleratedShapes = 0; m_data->m_numAcceleratedRigidBodies = 0; this->m_static0Index = -1; m_data->m_uniqueEdges.resize(0); m_data->m_convexVertices.resize(0); m_data->m_convexPolyhedra.resize(0); m_data->m_convexIndices.resize(0); m_data->m_cpuChildShapes.resize(0); m_data->m_convexFaces.resize(0); m_data->m_collidablesCPU.resize(0); m_data->m_localShapeAABBCPU->resize(0); m_data->m_bvhData.resize(0); m_data->m_treeNodesCPU.resize(0); m_data->m_subTreesCPU.resize(0); m_data->m_bvhInfoCPU.resize(0); } void b3GpuNarrowPhase::readbackAllBodiesToCpu() { m_data->m_bodyBufferGPU->copyToHostPointer(&m_data->m_bodyBufferCPU->at(0), m_data->m_numAcceleratedRigidBodies); } void b3GpuNarrowPhase::setObjectTransformCpu(float* position, float* orientation, int bodyIndex) { if (bodyIndex >= 0 && bodyIndex < m_data->m_bodyBufferCPU->size()) { m_data->m_bodyBufferCPU->at(bodyIndex).m_pos = b3MakeVector3(position[0], position[1], position[2]); m_data->m_bodyBufferCPU->at(bodyIndex).m_quat.setValue(orientation[0], orientation[1], orientation[2], orientation[3]); } else { b3Warning("setObjectVelocityCpu out of range.\n"); } } void b3GpuNarrowPhase::setObjectVelocityCpu(float* linVel, float* angVel, int bodyIndex) { if (bodyIndex >= 0 && bodyIndex < m_data->m_bodyBufferCPU->size()) { m_data->m_bodyBufferCPU->at(bodyIndex).m_linVel = b3MakeVector3(linVel[0], linVel[1], linVel[2]); m_data->m_bodyBufferCPU->at(bodyIndex).m_angVel = b3MakeVector3(angVel[0], angVel[1], angVel[2]); } else { b3Warning("setObjectVelocityCpu out of range.\n"); } } bool b3GpuNarrowPhase::getObjectTransformFromCpu(float* position, float* orientation, int bodyIndex) const { if (bodyIndex >= 0 && bodyIndex < m_data->m_bodyBufferCPU->size()) { position[0] = m_data->m_bodyBufferCPU->at(bodyIndex).m_pos.x; position[1] = m_data->m_bodyBufferCPU->at(bodyIndex).m_pos.y; position[2] = m_data->m_bodyBufferCPU->at(bodyIndex).m_pos.z; position[3] = 1.f; //or 1 orientation[0] = m_data->m_bodyBufferCPU->at(bodyIndex).m_quat.x; orientation[1] = m_data->m_bodyBufferCPU->at(bodyIndex).m_quat.y; orientation[2] = m_data->m_bodyBufferCPU->at(bodyIndex).m_quat.z; orientation[3] = m_data->m_bodyBufferCPU->at(bodyIndex).m_quat.w; return true; } b3Warning("getObjectTransformFromCpu out of range.\n"); return false; }