/*** * --------------------------------- * Copyright (c)2012 Daniel Fiser * * This file was ported from mpr.c file, part of libccd. * The Minkoski Portal Refinement implementation was ported * to OpenCL by Erwin Coumans for the Bullet 3 Physics library. * at http://github.com/erwincoumans/bullet3 * * Distributed under the OSI-approved BSD License (the "License"); * see . * This software is distributed WITHOUT ANY WARRANTY; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the License for more information. */ #ifndef B3_MPR_PENETRATION_H #define B3_MPR_PENETRATION_H #include "Bullet3Common/shared/b3PlatformDefinitions.h" #include "Bullet3Common/shared/b3Float4.h" #include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" #include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" #include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" #ifdef __cplusplus #define B3_MPR_SQRT sqrtf #else #define B3_MPR_SQRT sqrt #endif #define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y)) #define B3_MPR_FABS fabs #define B3_MPR_TOLERANCE 1E-6f #define B3_MPR_MAX_ITERATIONS 1000 struct _b3MprSupport_t { b3Float4 v; //!< Support point in minkowski sum b3Float4 v1; //!< Support point in obj1 b3Float4 v2; //!< Support point in obj2 }; typedef struct _b3MprSupport_t b3MprSupport_t; struct _b3MprSimplex_t { b3MprSupport_t ps[4]; int last; //!< index of last added point }; typedef struct _b3MprSimplex_t b3MprSimplex_t; inline b3MprSupport_t *b3MprSimplexPointW(b3MprSimplex_t *s, int idx) { return &s->ps[idx]; } inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size) { s->last = size - 1; } inline int b3MprSimplexSize(const b3MprSimplex_t *s) { return s->last + 1; } inline const b3MprSupport_t *b3MprSimplexPoint(const b3MprSimplex_t *s, int idx) { // here is no check on boundaries return &s->ps[idx]; } inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s) { *d = *s; } inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a) { b3MprSupportCopy(s->ps + pos, a); } inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2) { b3MprSupport_t supp; b3MprSupportCopy(&supp, &s->ps[pos1]); b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]); b3MprSupportCopy(&s->ps[pos2], &supp); } inline int b3MprIsZero(float val) { return B3_MPR_FABS(val) < FLT_EPSILON; } inline int b3MprEq(float _a, float _b) { float ab; float a, b; ab = B3_MPR_FABS(_a - _b); if (B3_MPR_FABS(ab) < FLT_EPSILON) return 1; a = B3_MPR_FABS(_a); b = B3_MPR_FABS(_b); if (b > a) { return ab < FLT_EPSILON * b; } else { return ab < FLT_EPSILON * a; } } inline int b3MprVec3Eq(const b3Float4 *a, const b3Float4 *b) { return b3MprEq((*a).x, (*b).x) && b3MprEq((*a).y, (*b).y) && b3MprEq((*a).z, (*b).z); } inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec, __global const b3ConvexPolyhedronData_t *hull, b3ConstArray(b3Float4) verticesA) { b3Float4 supVec = b3MakeFloat4(0, 0, 0, 0); float maxDot = -B3_LARGE_FLOAT; if (0 < hull->m_numVertices) { const b3Float4 scaled = supportVec; int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot); return verticesA[hull->m_vertexOffset + index]; } return supVec; } B3_STATIC void b3MprConvexSupport(int pairIndex, int bodyIndex, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, const b3Float4 *_dir, b3Float4 *outp, int logme) { //dir is in worldspace, move to local space b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos; b3Quat orn = cpuBodyBuf[bodyIndex].m_quat; b3Float4 dir = b3MakeFloat4((*_dir).x, (*_dir).y, (*_dir).z, 0.f); const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn), dir); //find local support vertex int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx; b3Assert(cpuCollidables[colIndex].m_shapeType == SHAPE_CONVEX_HULL); __global const b3ConvexPolyhedronData_t *hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex]; b3Float4 pInA; if (logme) { // b3Float4 supVec = b3MakeFloat4(0,0,0,0); float maxDot = -B3_LARGE_FLOAT; if (0 < hull->m_numVertices) { const b3Float4 scaled = localDir; int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot); pInA = cpuVertices[hull->m_vertexOffset + index]; } } else { pInA = b3LocalGetSupportVertex(localDir, hull, cpuVertices); } //move vertex to world space *outp = b3TransformPoint(pInA, pos, orn); } inline void b3MprSupport(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, const b3Float4 *_dir, b3MprSupport_t *supp) { b3Float4 dir; dir = *_dir; b3MprConvexSupport(pairIndex, bodyIndexA, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &supp->v1, 0); dir = *_dir * -1.f; b3MprConvexSupport(pairIndex, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &supp->v2, 0); supp->v = supp->v1 - supp->v2; } inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center) { center->v1 = cpuBodyBuf[bodyIndexA].m_pos; center->v2 = cpuBodyBuf[bodyIndexB].m_pos; center->v = center->v1 - center->v2; } inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z) { (*v).x = x; (*v).y = y; (*v).z = z; (*v).w = 0.f; } inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w) { (*v).x += (*w).x; (*v).y += (*w).y; (*v).z += (*w).z; } inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w) { *v = *w; } inline void b3MprVec3Scale(b3Float4 *d, float k) { *d *= k; } inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b) { float dot; dot = b3Dot3F4(*a, *b); return dot; } inline float b3MprVec3Len2(const b3Float4 *v) { return b3MprVec3Dot(v, v); } inline void b3MprVec3Normalize(b3Float4 *d) { float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d)); b3MprVec3Scale(d, k); } inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b) { *d = b3Cross3(*a, *b); } inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w) { *d = *v - *w; } inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir) { b3Float4 v2v1, v3v1; b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 1)->v); b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v, &b3MprSimplexPoint(portal, 1)->v); b3MprVec3Cross(dir, &v2v1, &v3v1); b3MprVec3Normalize(dir); } inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal, const b3Float4 *dir) { float dot; dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v); return b3MprIsZero(dot) || dot > 0.f; } inline int portalReachTolerance(const b3MprSimplex_t *portal, const b3MprSupport_t *v4, const b3Float4 *dir) { float dv1, dv2, dv3, dv4; float dot1, dot2, dot3; // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4} dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir); dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir); dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir); dv4 = b3MprVec3Dot(&v4->v, dir); dot1 = dv4 - dv1; dot2 = dv4 - dv2; dot3 = dv4 - dv3; dot1 = B3_MPR_FMIN(dot1, dot2); dot1 = B3_MPR_FMIN(dot1, dot3); return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE; } inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal, const b3MprSupport_t *v4, const b3Float4 *dir) { float dot; dot = b3MprVec3Dot(&v4->v, dir); return b3MprIsZero(dot) || dot > 0.f; } inline void b3ExpandPortal(b3MprSimplex_t *portal, const b3MprSupport_t *v4) { float dot; b3Float4 v4v0; b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v); dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0); if (dot > 0.f) { dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0); if (dot > 0.f) { b3MprSimplexSet(portal, 1, v4); } else { b3MprSimplexSet(portal, 3, v4); } } else { dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0); if (dot > 0.f) { b3MprSimplexSet(portal, 2, v4); } else { b3MprSimplexSet(portal, 1, v4); } } } B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, __global int *hasSepAxis, b3MprSimplex_t *portal) { b3Float4 dir, va, vb; float dot; int cont; // vertex 0 is center of portal b3FindOrigin(bodyIndexA, bodyIndexB, cpuBodyBuf, b3MprSimplexPointW(portal, 0)); // vertex 0 is center of portal b3MprSimplexSetSize(portal, 1); b3Float4 zero = b3MakeFloat4(0, 0, 0, 0); b3Float4 *b3mpr_vec3_origin = &zero; if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin)) { // Portal's center lies on origin (0,0,0) => we know that objects // intersect but we would need to know penetration info. // So move center little bit... b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f); b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va); } // vertex 1 = support in direction of origin b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Scale(&dir, -1.f); b3MprVec3Normalize(&dir); b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 1)); b3MprSimplexSetSize(portal, 2); // test if origin isn't outside of v1 dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir); if (b3MprIsZero(dot) || dot < 0.f) return -1; // vertex 2 b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v, &b3MprSimplexPoint(portal, 1)->v); if (b3MprIsZero(b3MprVec3Len2(&dir))) { if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin)) { // origin lies on v1 return 1; } else { // origin lies on v0-v1 segment return 2; } } b3MprVec3Normalize(&dir); b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 2)); dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir); if (b3MprIsZero(dot) || dot < 0.f) return -1; b3MprSimplexSetSize(portal, 3); // vertex 3 direction b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Cross(&dir, &va, &vb); b3MprVec3Normalize(&dir); // it is better to form portal faces to be oriented "outside" origin dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v); if (dot > 0.f) { b3MprSimplexSwap(portal, 1, 2); b3MprVec3Scale(&dir, -1.f); } while (b3MprSimplexSize(portal) < 4) { b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 3)); dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir); if (b3MprIsZero(dot) || dot < 0.f) return -1; cont = 0; // test if origin is outside (v1, v0, v3) - set v2 as v3 and // continue b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 3)->v); dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v); if (dot < 0.f && !b3MprIsZero(dot)) { b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3)); cont = 1; } if (!cont) { // test if origin is outside (v3, v0, v2) - set v1 as v3 and // continue b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v, &b3MprSimplexPoint(portal, 2)->v); dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v); if (dot < 0.f && !b3MprIsZero(dot)) { b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3)); cont = 1; } } if (cont) { b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Cross(&dir, &va, &vb); b3MprVec3Normalize(&dir); } else { b3MprSimplexSetSize(portal, 4); } } return 0; } B3_STATIC int b3RefinePortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, b3MprSimplex_t *portal) { b3Float4 dir; b3MprSupport_t v4; for (int i = 0; i < B3_MPR_MAX_ITERATIONS; i++) //while (1) { // compute direction outside the portal (from v0 throught v1,v2,v3 // face) b3PortalDir(portal, &dir); // test if origin is inside the portal if (portalEncapsulesOrigin(portal, &dir)) return 0; // get next support point b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &v4); // test if v4 can expand portal to contain origin and if portal // expanding doesn't reach given tolerance if (!portalCanEncapsuleOrigin(portal, &v4, &dir) || portalReachTolerance(portal, &v4, &dir)) { return -1; } // v1-v2-v3 triangle must be rearranged to face outside Minkowski // difference (direction from v0). b3ExpandPortal(portal, &v4); } return -1; } B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos) { b3Float4 zero = b3MakeFloat4(0, 0, 0, 0); b3Float4 *b3mpr_vec3_origin = &zero; b3Float4 dir; size_t i; float b[4], sum, inv; b3Float4 vec, p1, p2; b3PortalDir(portal, &dir); // use barycentric coordinates of tetrahedron to find origin b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 2)->v); b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v); b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v, &b3MprSimplexPoint(portal, 2)->v); b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v); b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v, &b3MprSimplexPoint(portal, 1)->v); b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v); b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 1)->v); b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v); sum = b[0] + b[1] + b[2] + b[3]; if (b3MprIsZero(sum) || sum < 0.f) { b[0] = 0.f; b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 3)->v); b[1] = b3MprVec3Dot(&vec, &dir); b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v, &b3MprSimplexPoint(portal, 1)->v); b[2] = b3MprVec3Dot(&vec, &dir); b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 2)->v); b[3] = b3MprVec3Dot(&vec, &dir); sum = b[1] + b[2] + b[3]; } inv = 1.f / sum; b3MprVec3Copy(&p1, b3mpr_vec3_origin); b3MprVec3Copy(&p2, b3mpr_vec3_origin); for (i = 0; i < 4; i++) { b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1); b3MprVec3Scale(&vec, b[i]); b3MprVec3Add(&p1, &vec); b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2); b3MprVec3Scale(&vec, b[i]); b3MprVec3Add(&p2, &vec); } b3MprVec3Scale(&p1, inv); b3MprVec3Scale(&p2, inv); b3MprVec3Copy(pos, &p1); b3MprVec3Add(pos, &p2); b3MprVec3Scale(pos, 0.5); } inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b) { b3Float4 ab; b3MprVec3Sub2(&ab, a, b); return b3MprVec3Len2(&ab); } inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P, const b3Float4 *x0, const b3Float4 *b, b3Float4 *witness) { // The computation comes from solving equation of segment: // S(t) = x0 + t.d // where - x0 is initial point of segment // - d is direction of segment from x0 (|d| > 0) // - t belongs to <0, 1> interval // // Than, distance from a segment to some point P can be expressed: // D(t) = |x0 + t.d - P|^2 // which is distance from any point on segment. Minimization // of this function brings distance from P to segment. // Minimization of D(t) leads to simple quadratic equation that's // solving is straightforward. // // Bonus of this method is witness point for free. float dist, t; b3Float4 d, a; // direction of segment b3MprVec3Sub2(&d, b, x0); // precompute vector from P to x0 b3MprVec3Sub2(&a, x0, P); t = -1.f * b3MprVec3Dot(&a, &d); t /= b3MprVec3Len2(&d); if (t < 0.f || b3MprIsZero(t)) { dist = b3MprVec3Dist2(x0, P); if (witness) b3MprVec3Copy(witness, x0); } else if (t > 1.f || b3MprEq(t, 1.f)) { dist = b3MprVec3Dist2(b, P); if (witness) b3MprVec3Copy(witness, b); } else { if (witness) { b3MprVec3Copy(witness, &d); b3MprVec3Scale(witness, t); b3MprVec3Add(witness, x0); dist = b3MprVec3Dist2(witness, P); } else { // recycling variables b3MprVec3Scale(&d, t); b3MprVec3Add(&d, &a); dist = b3MprVec3Len2(&d); } } return dist; } inline float b3MprVec3PointTriDist2(const b3Float4 *P, const b3Float4 *x0, const b3Float4 *B, const b3Float4 *C, b3Float4 *witness) { // Computation comes from analytic expression for triangle (x0, B, C) // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and // Then equation for distance is: // D(s, t) = | T(s, t) - P |^2 // This leads to minimization of quadratic function of two variables. // The solution from is taken only if s is between 0 and 1, t is // between 0 and 1 and t + s < 1, otherwise distance from segment is // computed. b3Float4 d1, d2, a; float u, v, w, p, q, r; float s, t, dist, dist2; b3Float4 witness2; b3MprVec3Sub2(&d1, B, x0); b3MprVec3Sub2(&d2, C, x0); b3MprVec3Sub2(&a, x0, P); u = b3MprVec3Dot(&a, &a); v = b3MprVec3Dot(&d1, &d1); w = b3MprVec3Dot(&d2, &d2); p = b3MprVec3Dot(&a, &d1); q = b3MprVec3Dot(&a, &d2); r = b3MprVec3Dot(&d1, &d2); s = (q * r - w * p) / (w * v - r * r); t = (-s * r - q) / w; if ((b3MprIsZero(s) || s > 0.f) && (b3MprEq(s, 1.f) || s < 1.f) && (b3MprIsZero(t) || t > 0.f) && (b3MprEq(t, 1.f) || t < 1.f) && (b3MprEq(t + s, 1.f) || t + s < 1.f)) { if (witness) { b3MprVec3Scale(&d1, s); b3MprVec3Scale(&d2, t); b3MprVec3Copy(witness, x0); b3MprVec3Add(witness, &d1); b3MprVec3Add(witness, &d2); dist = b3MprVec3Dist2(witness, P); } else { dist = s * s * v; dist += t * t * w; dist += 2.f * s * t * r; dist += 2.f * s * p; dist += 2.f * t * q; dist += u; } } else { dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness); dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2); if (dist2 < dist) { dist = dist2; if (witness) b3MprVec3Copy(witness, &witness2); } dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2); if (dist2 < dist) { dist = dist2; if (witness) b3MprVec3Copy(witness, &witness2); } } return dist; } B3_STATIC void b3FindPenetr(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, b3MprSimplex_t *portal, float *depth, b3Float4 *pdir, b3Float4 *pos) { b3Float4 dir; b3MprSupport_t v4; unsigned long iterations; b3Float4 zero = b3MakeFloat4(0, 0, 0, 0); b3Float4 *b3mpr_vec3_origin = &zero; iterations = 1UL; for (int i = 0; i < B3_MPR_MAX_ITERATIONS; i++) //while (1) { // compute portal direction and obtain next support point b3PortalDir(portal, &dir); b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &v4); // reached tolerance -> find penetration info if (portalReachTolerance(portal, &v4, &dir) || iterations == B3_MPR_MAX_ITERATIONS) { *depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 3)->v, pdir); *depth = B3_MPR_SQRT(*depth); if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z)) { *pdir = dir; } b3MprVec3Normalize(pdir); // barycentric coordinates: b3FindPos(portal, pos); return; } b3ExpandPortal(portal, &v4); iterations++; } } B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal, float *depth, b3Float4 *dir, b3Float4 *pos) { // Touching contact on portal's v1 - so depth is zero and direction // is unimportant and pos can be guessed *depth = 0.f; b3Float4 zero = b3MakeFloat4(0, 0, 0, 0); b3Float4 *b3mpr_vec3_origin = &zero; b3MprVec3Copy(dir, b3mpr_vec3_origin); b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1); b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2); b3MprVec3Scale(pos, 0.5); } B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal, float *depth, b3Float4 *dir, b3Float4 *pos) { // Origin lies on v0-v1 segment. // Depth is distance to v1, direction also and position must be // computed b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1); b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2); b3MprVec3Scale(pos, 0.5f); b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v); *depth = B3_MPR_SQRT(b3MprVec3Len2(dir)); b3MprVec3Normalize(dir); } inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, b3ConstArray(b3Collidable_t) cpuCollidables, b3ConstArray(b3Float4) cpuVertices, __global b3Float4 *sepAxis, __global int *hasSepAxis, float *depthOut, b3Float4 *dirOut, b3Float4 *posOut) { b3MprSimplex_t portal; // if (!hasSepAxis[pairIndex]) // return -1; hasSepAxis[pairIndex] = 0; int res; // Phase 1: Portal discovery res = b3DiscoverPortal(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, hasSepAxis, &portal); //sepAxis[pairIndex] = *pdir;//or -dir? switch (res) { case 0: { // Phase 2: Portal refinement res = b3RefinePortal(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &portal); if (res < 0) return -1; // Phase 3. Penetration info b3FindPenetr(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &portal, depthOut, dirOut, posOut); hasSepAxis[pairIndex] = 1; sepAxis[pairIndex] = -*dirOut; break; } case 1: { // Touching contact on portal's v1. b3FindPenetrTouch(&portal, depthOut, dirOut, posOut); break; } case 2: { b3FindPenetrSegment(&portal, depthOut, dirOut, posOut); break; } default: { hasSepAxis[pairIndex] = 0; //if (res < 0) //{ // Origin isn't inside portal - no collision. return -1; //} } }; return 0; }; #endif //B3_MPR_PENETRATION_H