#include "b3CpuNarrowPhase.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3ConvexUtility.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Config.h"

#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ContactConvexConvexSAT.h"

struct b3CpuNarrowPhaseInternalData
{
	b3AlignedObjectArray<b3Aabb> m_localShapeAABBCPU;
	b3AlignedObjectArray<b3Collidable> m_collidablesCPU;
	b3AlignedObjectArray<b3ConvexUtility*> m_convexData;
	b3Config m_config;

	b3AlignedObjectArray<b3ConvexPolyhedronData> m_convexPolyhedra;
	b3AlignedObjectArray<b3Vector3> m_uniqueEdges;
	b3AlignedObjectArray<b3Vector3> m_convexVertices;
	b3AlignedObjectArray<int> m_convexIndices;
	b3AlignedObjectArray<b3GpuFace> m_convexFaces;

	b3AlignedObjectArray<b3Contact4Data> m_contacts;

	int m_numAcceleratedShapes;
};

const b3AlignedObjectArray<b3Contact4Data>& b3CpuNarrowPhase::getContacts() const
{
	return m_data->m_contacts;
}

b3Collidable& b3CpuNarrowPhase::getCollidableCpu(int collidableIndex)
{
	return m_data->m_collidablesCPU[collidableIndex];
}

const b3Collidable& b3CpuNarrowPhase::getCollidableCpu(int collidableIndex) const
{
	return m_data->m_collidablesCPU[collidableIndex];
}

b3CpuNarrowPhase::b3CpuNarrowPhase(const struct b3Config& config)
{
	m_data = new b3CpuNarrowPhaseInternalData;
	m_data->m_config = config;
	m_data->m_numAcceleratedShapes = 0;
}

b3CpuNarrowPhase::~b3CpuNarrowPhase()
{
	delete m_data;
}

void b3CpuNarrowPhase::computeContacts(b3AlignedObjectArray<b3Int4>& pairs, b3AlignedObjectArray<b3Aabb>& aabbsWorldSpace, b3AlignedObjectArray<b3RigidBodyData>& bodies)
{
	int nPairs = pairs.size();
	int numContacts = 0;
	int maxContactCapacity = m_data->m_config.m_maxContactCapacity;
	m_data->m_contacts.resize(maxContactCapacity);

	for (int i = 0; i < nPairs; i++)
	{
		int bodyIndexA = pairs[i].x;
		int bodyIndexB = pairs[i].y;
		int collidableIndexA = bodies[bodyIndexA].m_collidableIdx;
		int collidableIndexB = bodies[bodyIndexB].m_collidableIdx;

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_SPHERE &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)
		{
			//			computeContactSphereConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&bodies[0],
			//				&m_data->m_collidablesCPU[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_SPHERE)
		{
			//			computeContactSphereConvex(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&bodies[0],
			//				&m_data->m_collidablesCPU[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
			//printf("convex-sphere\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_PLANE)
		{
			//			computeContactPlaneConvex(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&bodies[0],
			//			&m_data->m_collidablesCPU[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
			//			printf("convex-plane\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_PLANE &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)
		{
			//			computeContactPlaneConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&bodies[0],
			//			&m_data->m_collidablesCPU[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
			//			printf("plane-convex\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS)
		{
			//			computeContactCompoundCompound(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&bodies[0],
			//			&m_data->m_collidablesCPU[0],&hostConvexData[0],&cpuChildShapes[0], hostAabbsWorldSpace,hostAabbsLocalSpace,hostVertices,hostUniqueEdges,hostIndices,hostFaces,&hostContacts[0],
			//			nContacts,maxContactCapacity,treeNodesCPU,subTreesCPU,bvhInfoCPU);
			//			printf("convex-plane\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_PLANE)
		{
			//			computeContactPlaneCompound(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&bodies[0],
			//			&m_data->m_collidablesCPU[0],&hostConvexData[0],&cpuChildShapes[0], &hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
			//			printf("convex-plane\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_PLANE &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS)
		{
			//			computeContactPlaneCompound(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&bodies[0],
			//			&m_data->m_collidablesCPU[0],&hostConvexData[0],&cpuChildShapes[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity);
			//			printf("plane-convex\n");
		}

		if (m_data->m_collidablesCPU[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&
			m_data->m_collidablesCPU[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)
		{
			//printf("pairs[i].z=%d\n",pairs[i].z);
			//int contactIndex = computeContactConvexConvex2(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,bodies,
			//		m_data->m_collidablesCPU,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts);
			int contactIndex = b3ContactConvexConvexSAT(i, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, bodies,
														m_data->m_collidablesCPU, m_data->m_convexPolyhedra, m_data->m_convexVertices, m_data->m_uniqueEdges, m_data->m_convexIndices, m_data->m_convexFaces, m_data->m_contacts, numContacts, maxContactCapacity);

			if (contactIndex >= 0)
			{
				pairs[i].z = contactIndex;
			}
			//			printf("plane-convex\n");
		}
	}

	m_data->m_contacts.resize(numContacts);
}

int b3CpuNarrowPhase::registerConvexHullShape(b3ConvexUtility* utilPtr)
{
	int collidableIndex = allocateCollidable();
	if (collidableIndex < 0)
		return collidableIndex;

	b3Collidable& col = m_data->m_collidablesCPU[collidableIndex];
	col.m_shapeType = SHAPE_CONVEX_HULL;
	col.m_shapeIndex = -1;

	{
		b3Vector3 localCenter = b3MakeVector3(0, 0, 0);
		for (int i = 0; i < utilPtr->m_vertices.size(); i++)
			localCenter += utilPtr->m_vertices[i];
		localCenter *= (1.f / utilPtr->m_vertices.size());
		utilPtr->m_localCenter = localCenter;

		col.m_shapeIndex = registerConvexHullShapeInternal(utilPtr, col);
	}

	if (col.m_shapeIndex >= 0)
	{
		b3Aabb aabb;

		b3Vector3 myAabbMin = b3MakeVector3(1e30f, 1e30f, 1e30f);
		b3Vector3 myAabbMax = b3MakeVector3(-1e30f, -1e30f, -1e30f);

		for (int i = 0; i < utilPtr->m_vertices.size(); i++)
		{
			myAabbMin.setMin(utilPtr->m_vertices[i]);
			myAabbMax.setMax(utilPtr->m_vertices[i]);
		}
		aabb.m_min[0] = myAabbMin[0];
		aabb.m_min[1] = myAabbMin[1];
		aabb.m_min[2] = myAabbMin[2];
		aabb.m_minIndices[3] = 0;

		aabb.m_max[0] = myAabbMax[0];
		aabb.m_max[1] = myAabbMax[1];
		aabb.m_max[2] = myAabbMax[2];
		aabb.m_signedMaxIndices[3] = 0;

		m_data->m_localShapeAABBCPU.push_back(aabb);
	}

	return collidableIndex;
}

int b3CpuNarrowPhase::allocateCollidable()
{
	int curSize = m_data->m_collidablesCPU.size();
	if (curSize < m_data->m_config.m_maxConvexShapes)
	{
		m_data->m_collidablesCPU.expand();
		return curSize;
	}
	else
	{
		b3Error("allocateCollidable out-of-range %d\n", m_data->m_config.m_maxConvexShapes);
	}
	return -1;
}

int b3CpuNarrowPhase::registerConvexHullShape(const float* vertices, int strideInBytes, int numVertices, const float* scaling)
{
	b3AlignedObjectArray<b3Vector3> verts;

	unsigned char* vts = (unsigned char*)vertices;
	for (int i = 0; i < numVertices; i++)
	{
		float* vertex = (float*)&vts[i * strideInBytes];
		verts.push_back(b3MakeVector3(vertex[0] * scaling[0], vertex[1] * scaling[1], vertex[2] * scaling[2]));
	}

	b3ConvexUtility* utilPtr = new b3ConvexUtility();
	bool merge = true;
	if (numVertices)
	{
		utilPtr->initializePolyhedralFeatures(&verts[0], verts.size(), merge);
	}

	int collidableIndex = registerConvexHullShape(utilPtr);

	delete utilPtr;
	return collidableIndex;
}

int b3CpuNarrowPhase::registerConvexHullShapeInternal(b3ConvexUtility* convexPtr, b3Collidable& col)
{
	m_data->m_convexData.resize(m_data->m_numAcceleratedShapes + 1);
	m_data->m_convexPolyhedra.resize(m_data->m_numAcceleratedShapes + 1);

	b3ConvexPolyhedronData& convex = m_data->m_convexPolyhedra.at(m_data->m_convexPolyhedra.size() - 1);
	convex.mC = convexPtr->mC;
	convex.mE = convexPtr->mE;
	convex.m_extents = convexPtr->m_extents;
	convex.m_localCenter = convexPtr->m_localCenter;
	convex.m_radius = convexPtr->m_radius;

	convex.m_numUniqueEdges = convexPtr->m_uniqueEdges.size();
	int edgeOffset = m_data->m_uniqueEdges.size();
	convex.m_uniqueEdgesOffset = edgeOffset;

	m_data->m_uniqueEdges.resize(edgeOffset + convex.m_numUniqueEdges);

	//convex data here
	int i;
	for (i = 0; i < convexPtr->m_uniqueEdges.size(); i++)
	{
		m_data->m_uniqueEdges[edgeOffset + i] = convexPtr->m_uniqueEdges[i];
	}

	int faceOffset = m_data->m_convexFaces.size();
	convex.m_faceOffset = faceOffset;
	convex.m_numFaces = convexPtr->m_faces.size();

	m_data->m_convexFaces.resize(faceOffset + convex.m_numFaces);

	for (i = 0; i < convexPtr->m_faces.size(); i++)
	{
		m_data->m_convexFaces[convex.m_faceOffset + i].m_plane = b3MakeVector3(convexPtr->m_faces[i].m_plane[0],
																			   convexPtr->m_faces[i].m_plane[1],
																			   convexPtr->m_faces[i].m_plane[2],
																			   convexPtr->m_faces[i].m_plane[3]);

		int indexOffset = m_data->m_convexIndices.size();
		int numIndices = convexPtr->m_faces[i].m_indices.size();
		m_data->m_convexFaces[convex.m_faceOffset + i].m_numIndices = numIndices;
		m_data->m_convexFaces[convex.m_faceOffset + i].m_indexOffset = indexOffset;
		m_data->m_convexIndices.resize(indexOffset + numIndices);
		for (int p = 0; p < numIndices; p++)
		{
			m_data->m_convexIndices[indexOffset + p] = convexPtr->m_faces[i].m_indices[p];
		}
	}

	convex.m_numVertices = convexPtr->m_vertices.size();
	int vertexOffset = m_data->m_convexVertices.size();
	convex.m_vertexOffset = vertexOffset;

	m_data->m_convexVertices.resize(vertexOffset + convex.m_numVertices);
	for (int i = 0; i < convexPtr->m_vertices.size(); i++)
	{
		m_data->m_convexVertices[vertexOffset + i] = convexPtr->m_vertices[i];
	}

	(m_data->m_convexData)[m_data->m_numAcceleratedShapes] = convexPtr;

	return m_data->m_numAcceleratedShapes++;
}

const b3Aabb& b3CpuNarrowPhase::getLocalSpaceAabb(int collidableIndex) const
{
	return m_data->m_localShapeAABBCPU[collidableIndex];
}