/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ ///b3DynamicBvhBroadphase implementation by Nathanael Presson #include "b3DynamicBvhBroadphase.h" #include "b3OverlappingPair.h" // // Profiling // #if B3_DBVT_BP_PROFILE || B3_DBVT_BP_ENABLE_BENCHMARK #include #endif #if B3_DBVT_BP_PROFILE struct b3ProfileScope { __forceinline b3ProfileScope(b3Clock& clock, unsigned long& value) : m_clock(&clock), m_value(&value), m_base(clock.getTimeMicroseconds()) { } __forceinline ~b3ProfileScope() { (*m_value) += m_clock->getTimeMicroseconds() - m_base; } b3Clock* m_clock; unsigned long* m_value; unsigned long m_base; }; #define b3SPC(_value_) b3ProfileScope spc_scope(m_clock, _value_) #else #define b3SPC(_value_) #endif // // Helpers // // template static inline void b3ListAppend(T* item, T*& list) { item->links[0] = 0; item->links[1] = list; if (list) list->links[0] = item; list = item; } // template static inline void b3ListRemove(T* item, T*& list) { if (item->links[0]) item->links[0]->links[1] = item->links[1]; else list = item->links[1]; if (item->links[1]) item->links[1]->links[0] = item->links[0]; } // template static inline int b3ListCount(T* root) { int n = 0; while (root) { ++n; root = root->links[1]; } return (n); } // template static inline void b3Clear(T& value) { static const struct ZeroDummy : T { } zerodummy; value = zerodummy; } // // Colliders // /* Tree collider */ struct b3DbvtTreeCollider : b3DynamicBvh::ICollide { b3DynamicBvhBroadphase* pbp; b3DbvtProxy* proxy; b3DbvtTreeCollider(b3DynamicBvhBroadphase* p) : pbp(p) {} void Process(const b3DbvtNode* na, const b3DbvtNode* nb) { if (na != nb) { b3DbvtProxy* pa = (b3DbvtProxy*)na->data; b3DbvtProxy* pb = (b3DbvtProxy*)nb->data; #if B3_DBVT_BP_SORTPAIRS if (pa->m_uniqueId > pb->m_uniqueId) b3Swap(pa, pb); #endif pbp->m_paircache->addOverlappingPair(pa->getUid(), pb->getUid()); ++pbp->m_newpairs; } } void Process(const b3DbvtNode* n) { Process(n, proxy->leaf); } }; // // b3DynamicBvhBroadphase // // b3DynamicBvhBroadphase::b3DynamicBvhBroadphase(int proxyCapacity, b3OverlappingPairCache* paircache) { m_deferedcollide = false; m_needcleanup = true; m_releasepaircache = (paircache != 0) ? false : true; m_prediction = 0; m_stageCurrent = 0; m_fixedleft = 0; m_fupdates = 1; m_dupdates = 0; m_cupdates = 10; m_newpairs = 1; m_updates_call = 0; m_updates_done = 0; m_updates_ratio = 0; m_paircache = paircache ? paircache : new (b3AlignedAlloc(sizeof(b3HashedOverlappingPairCache), 16)) b3HashedOverlappingPairCache(); m_pid = 0; m_cid = 0; for (int i = 0; i <= STAGECOUNT; ++i) { m_stageRoots[i] = 0; } #if B3_DBVT_BP_PROFILE b3Clear(m_profiling); #endif m_proxies.resize(proxyCapacity); } // b3DynamicBvhBroadphase::~b3DynamicBvhBroadphase() { if (m_releasepaircache) { m_paircache->~b3OverlappingPairCache(); b3AlignedFree(m_paircache); } } // b3BroadphaseProxy* b3DynamicBvhBroadphase::createProxy(const b3Vector3& aabbMin, const b3Vector3& aabbMax, int objectId, void* userPtr, int collisionFilterGroup, int collisionFilterMask) { b3DbvtProxy* mem = &m_proxies[objectId]; b3DbvtProxy* proxy = new (mem) b3DbvtProxy(aabbMin, aabbMax, userPtr, collisionFilterGroup, collisionFilterMask); b3DbvtAabbMm aabb = b3DbvtVolume::FromMM(aabbMin, aabbMax); //bproxy->aabb = b3DbvtVolume::FromMM(aabbMin,aabbMax); proxy->stage = m_stageCurrent; proxy->m_uniqueId = objectId; proxy->leaf = m_sets[0].insert(aabb, proxy); b3ListAppend(proxy, m_stageRoots[m_stageCurrent]); if (!m_deferedcollide) { b3DbvtTreeCollider collider(this); collider.proxy = proxy; m_sets[0].collideTV(m_sets[0].m_root, aabb, collider); m_sets[1].collideTV(m_sets[1].m_root, aabb, collider); } return (proxy); } // void b3DynamicBvhBroadphase::destroyProxy(b3BroadphaseProxy* absproxy, b3Dispatcher* dispatcher) { b3DbvtProxy* proxy = (b3DbvtProxy*)absproxy; if (proxy->stage == STAGECOUNT) m_sets[1].remove(proxy->leaf); else m_sets[0].remove(proxy->leaf); b3ListRemove(proxy, m_stageRoots[proxy->stage]); m_paircache->removeOverlappingPairsContainingProxy(proxy->getUid(), dispatcher); m_needcleanup = true; } void b3DynamicBvhBroadphase::getAabb(int objectId, b3Vector3& aabbMin, b3Vector3& aabbMax) const { const b3DbvtProxy* proxy = &m_proxies[objectId]; aabbMin = proxy->m_aabbMin; aabbMax = proxy->m_aabbMax; } /* void b3DynamicBvhBroadphase::getAabb(b3BroadphaseProxy* absproxy,b3Vector3& aabbMin, b3Vector3& aabbMax ) const { b3DbvtProxy* proxy=(b3DbvtProxy*)absproxy; aabbMin = proxy->m_aabbMin; aabbMax = proxy->m_aabbMax; } */ struct BroadphaseRayTester : b3DynamicBvh::ICollide { b3BroadphaseRayCallback& m_rayCallback; BroadphaseRayTester(b3BroadphaseRayCallback& orgCallback) : m_rayCallback(orgCallback) { } void Process(const b3DbvtNode* leaf) { b3DbvtProxy* proxy = (b3DbvtProxy*)leaf->data; m_rayCallback.process(proxy); } }; void b3DynamicBvhBroadphase::rayTest(const b3Vector3& rayFrom, const b3Vector3& rayTo, b3BroadphaseRayCallback& rayCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) { BroadphaseRayTester callback(rayCallback); m_sets[0].rayTestInternal(m_sets[0].m_root, rayFrom, rayTo, rayCallback.m_rayDirectionInverse, rayCallback.m_signs, rayCallback.m_lambda_max, aabbMin, aabbMax, callback); m_sets[1].rayTestInternal(m_sets[1].m_root, rayFrom, rayTo, rayCallback.m_rayDirectionInverse, rayCallback.m_signs, rayCallback.m_lambda_max, aabbMin, aabbMax, callback); } struct BroadphaseAabbTester : b3DynamicBvh::ICollide { b3BroadphaseAabbCallback& m_aabbCallback; BroadphaseAabbTester(b3BroadphaseAabbCallback& orgCallback) : m_aabbCallback(orgCallback) { } void Process(const b3DbvtNode* leaf) { b3DbvtProxy* proxy = (b3DbvtProxy*)leaf->data; m_aabbCallback.process(proxy); } }; void b3DynamicBvhBroadphase::aabbTest(const b3Vector3& aabbMin, const b3Vector3& aabbMax, b3BroadphaseAabbCallback& aabbCallback) { BroadphaseAabbTester callback(aabbCallback); const B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume) bounds = b3DbvtVolume::FromMM(aabbMin, aabbMax); //process all children, that overlap with the given AABB bounds m_sets[0].collideTV(m_sets[0].m_root, bounds, callback); m_sets[1].collideTV(m_sets[1].m_root, bounds, callback); } // void b3DynamicBvhBroadphase::setAabb(int objectId, const b3Vector3& aabbMin, const b3Vector3& aabbMax, b3Dispatcher* /*dispatcher*/) { b3DbvtProxy* proxy = &m_proxies[objectId]; // b3DbvtProxy* proxy=(b3DbvtProxy*)absproxy; B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume) aabb = b3DbvtVolume::FromMM(aabbMin, aabbMax); #if B3_DBVT_BP_PREVENTFALSEUPDATE if (b3NotEqual(aabb, proxy->leaf->volume)) #endif { bool docollide = false; if (proxy->stage == STAGECOUNT) { /* fixed -> dynamic set */ m_sets[1].remove(proxy->leaf); proxy->leaf = m_sets[0].insert(aabb, proxy); docollide = true; } else { /* dynamic set */ ++m_updates_call; if (b3Intersect(proxy->leaf->volume, aabb)) { /* Moving */ const b3Vector3 delta = aabbMin - proxy->m_aabbMin; b3Vector3 velocity(((proxy->m_aabbMax - proxy->m_aabbMin) / 2) * m_prediction); if (delta[0] < 0) velocity[0] = -velocity[0]; if (delta[1] < 0) velocity[1] = -velocity[1]; if (delta[2] < 0) velocity[2] = -velocity[2]; if ( #ifdef B3_DBVT_BP_MARGIN m_sets[0].update(proxy->leaf, aabb, velocity, B3_DBVT_BP_MARGIN) #else m_sets[0].update(proxy->leaf, aabb, velocity) #endif ) { ++m_updates_done; docollide = true; } } else { /* Teleporting */ m_sets[0].update(proxy->leaf, aabb); ++m_updates_done; docollide = true; } } b3ListRemove(proxy, m_stageRoots[proxy->stage]); proxy->m_aabbMin = aabbMin; proxy->m_aabbMax = aabbMax; proxy->stage = m_stageCurrent; b3ListAppend(proxy, m_stageRoots[m_stageCurrent]); if (docollide) { m_needcleanup = true; if (!m_deferedcollide) { b3DbvtTreeCollider collider(this); m_sets[1].collideTTpersistentStack(m_sets[1].m_root, proxy->leaf, collider); m_sets[0].collideTTpersistentStack(m_sets[0].m_root, proxy->leaf, collider); } } } } // void b3DynamicBvhBroadphase::setAabbForceUpdate(b3BroadphaseProxy* absproxy, const b3Vector3& aabbMin, const b3Vector3& aabbMax, b3Dispatcher* /*dispatcher*/) { b3DbvtProxy* proxy = (b3DbvtProxy*)absproxy; B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume) aabb = b3DbvtVolume::FromMM(aabbMin, aabbMax); bool docollide = false; if (proxy->stage == STAGECOUNT) { /* fixed -> dynamic set */ m_sets[1].remove(proxy->leaf); proxy->leaf = m_sets[0].insert(aabb, proxy); docollide = true; } else { /* dynamic set */ ++m_updates_call; /* Teleporting */ m_sets[0].update(proxy->leaf, aabb); ++m_updates_done; docollide = true; } b3ListRemove(proxy, m_stageRoots[proxy->stage]); proxy->m_aabbMin = aabbMin; proxy->m_aabbMax = aabbMax; proxy->stage = m_stageCurrent; b3ListAppend(proxy, m_stageRoots[m_stageCurrent]); if (docollide) { m_needcleanup = true; if (!m_deferedcollide) { b3DbvtTreeCollider collider(this); m_sets[1].collideTTpersistentStack(m_sets[1].m_root, proxy->leaf, collider); m_sets[0].collideTTpersistentStack(m_sets[0].m_root, proxy->leaf, collider); } } } // void b3DynamicBvhBroadphase::calculateOverlappingPairs(b3Dispatcher* dispatcher) { collide(dispatcher); #if B3_DBVT_BP_PROFILE if (0 == (m_pid % B3_DBVT_BP_PROFILING_RATE)) { printf("fixed(%u) dynamics(%u) pairs(%u)\r\n", m_sets[1].m_leaves, m_sets[0].m_leaves, m_paircache->getNumOverlappingPairs()); unsigned int total = m_profiling.m_total; if (total <= 0) total = 1; printf("ddcollide: %u%% (%uus)\r\n", (50 + m_profiling.m_ddcollide * 100) / total, m_profiling.m_ddcollide / B3_DBVT_BP_PROFILING_RATE); printf("fdcollide: %u%% (%uus)\r\n", (50 + m_profiling.m_fdcollide * 100) / total, m_profiling.m_fdcollide / B3_DBVT_BP_PROFILING_RATE); printf("cleanup: %u%% (%uus)\r\n", (50 + m_profiling.m_cleanup * 100) / total, m_profiling.m_cleanup / B3_DBVT_BP_PROFILING_RATE); printf("total: %uus\r\n", total / B3_DBVT_BP_PROFILING_RATE); const unsigned long sum = m_profiling.m_ddcollide + m_profiling.m_fdcollide + m_profiling.m_cleanup; printf("leaked: %u%% (%uus)\r\n", 100 - ((50 + sum * 100) / total), (total - sum) / B3_DBVT_BP_PROFILING_RATE); printf("job counts: %u%%\r\n", (m_profiling.m_jobcount * 100) / ((m_sets[0].m_leaves + m_sets[1].m_leaves) * B3_DBVT_BP_PROFILING_RATE)); b3Clear(m_profiling); m_clock.reset(); } #endif performDeferredRemoval(dispatcher); } void b3DynamicBvhBroadphase::performDeferredRemoval(b3Dispatcher* dispatcher) { if (m_paircache->hasDeferredRemoval()) { b3BroadphasePairArray& overlappingPairArray = m_paircache->getOverlappingPairArray(); //perform a sort, to find duplicates and to sort 'invalid' pairs to the end overlappingPairArray.quickSort(b3BroadphasePairSortPredicate()); int invalidPair = 0; int i; b3BroadphasePair previousPair = b3MakeBroadphasePair(-1, -1); for (i = 0; i < overlappingPairArray.size(); i++) { b3BroadphasePair& pair = overlappingPairArray[i]; bool isDuplicate = (pair == previousPair); previousPair = pair; bool needsRemoval = false; if (!isDuplicate) { //important to perform AABB check that is consistent with the broadphase b3DbvtProxy* pa = &m_proxies[pair.x]; b3DbvtProxy* pb = &m_proxies[pair.y]; bool hasOverlap = b3Intersect(pa->leaf->volume, pb->leaf->volume); if (hasOverlap) { needsRemoval = false; } else { needsRemoval = true; } } else { //remove duplicate needsRemoval = true; //should have no algorithm } if (needsRemoval) { m_paircache->cleanOverlappingPair(pair, dispatcher); pair.x = -1; pair.y = -1; invalidPair++; } } //perform a sort, to sort 'invalid' pairs to the end overlappingPairArray.quickSort(b3BroadphasePairSortPredicate()); overlappingPairArray.resize(overlappingPairArray.size() - invalidPair); } } // void b3DynamicBvhBroadphase::collide(b3Dispatcher* dispatcher) { /*printf("---------------------------------------------------------\n"); printf("m_sets[0].m_leaves=%d\n",m_sets[0].m_leaves); printf("m_sets[1].m_leaves=%d\n",m_sets[1].m_leaves); printf("numPairs = %d\n",getOverlappingPairCache()->getNumOverlappingPairs()); { int i; for (i=0;igetNumOverlappingPairs();i++) { printf("pair[%d]=(%d,%d),",i,getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy0->getUid(), getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy1->getUid()); } printf("\n"); } */ b3SPC(m_profiling.m_total); /* optimize */ m_sets[0].optimizeIncremental(1 + (m_sets[0].m_leaves * m_dupdates) / 100); if (m_fixedleft) { const int count = 1 + (m_sets[1].m_leaves * m_fupdates) / 100; m_sets[1].optimizeIncremental(1 + (m_sets[1].m_leaves * m_fupdates) / 100); m_fixedleft = b3Max(0, m_fixedleft - count); } /* dynamic -> fixed set */ m_stageCurrent = (m_stageCurrent + 1) % STAGECOUNT; b3DbvtProxy* current = m_stageRoots[m_stageCurrent]; if (current) { b3DbvtTreeCollider collider(this); do { b3DbvtProxy* next = current->links[1]; b3ListRemove(current, m_stageRoots[current->stage]); b3ListAppend(current, m_stageRoots[STAGECOUNT]); #if B3_DBVT_BP_ACCURATESLEEPING m_paircache->removeOverlappingPairsContainingProxy(current, dispatcher); collider.proxy = current; b3DynamicBvh::collideTV(m_sets[0].m_root, current->aabb, collider); b3DynamicBvh::collideTV(m_sets[1].m_root, current->aabb, collider); #endif m_sets[0].remove(current->leaf); B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume) curAabb = b3DbvtVolume::FromMM(current->m_aabbMin, current->m_aabbMax); current->leaf = m_sets[1].insert(curAabb, current); current->stage = STAGECOUNT; current = next; } while (current); m_fixedleft = m_sets[1].m_leaves; m_needcleanup = true; } /* collide dynamics */ { b3DbvtTreeCollider collider(this); if (m_deferedcollide) { b3SPC(m_profiling.m_fdcollide); m_sets[0].collideTTpersistentStack(m_sets[0].m_root, m_sets[1].m_root, collider); } if (m_deferedcollide) { b3SPC(m_profiling.m_ddcollide); m_sets[0].collideTTpersistentStack(m_sets[0].m_root, m_sets[0].m_root, collider); } } /* clean up */ if (m_needcleanup) { b3SPC(m_profiling.m_cleanup); b3BroadphasePairArray& pairs = m_paircache->getOverlappingPairArray(); if (pairs.size() > 0) { int ni = b3Min(pairs.size(), b3Max(m_newpairs, (pairs.size() * m_cupdates) / 100)); for (int i = 0; i < ni; ++i) { b3BroadphasePair& p = pairs[(m_cid + i) % pairs.size()]; b3DbvtProxy* pa = &m_proxies[p.x]; b3DbvtProxy* pb = &m_proxies[p.y]; if (!b3Intersect(pa->leaf->volume, pb->leaf->volume)) { #if B3_DBVT_BP_SORTPAIRS if (pa->m_uniqueId > pb->m_uniqueId) b3Swap(pa, pb); #endif m_paircache->removeOverlappingPair(pa->getUid(), pb->getUid(), dispatcher); --ni; --i; } } if (pairs.size() > 0) m_cid = (m_cid + ni) % pairs.size(); else m_cid = 0; } } ++m_pid; m_newpairs = 1; m_needcleanup = false; if (m_updates_call > 0) { m_updates_ratio = m_updates_done / (b3Scalar)m_updates_call; } else { m_updates_ratio = 0; } m_updates_done /= 2; m_updates_call /= 2; } // void b3DynamicBvhBroadphase::optimize() { m_sets[0].optimizeTopDown(); m_sets[1].optimizeTopDown(); } // b3OverlappingPairCache* b3DynamicBvhBroadphase::getOverlappingPairCache() { return (m_paircache); } // const b3OverlappingPairCache* b3DynamicBvhBroadphase::getOverlappingPairCache() const { return (m_paircache); } // void b3DynamicBvhBroadphase::getBroadphaseAabb(b3Vector3& aabbMin, b3Vector3& aabbMax) const { B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume) bounds; if (!m_sets[0].empty()) if (!m_sets[1].empty()) b3Merge(m_sets[0].m_root->volume, m_sets[1].m_root->volume, bounds); else bounds = m_sets[0].m_root->volume; else if (!m_sets[1].empty()) bounds = m_sets[1].m_root->volume; else bounds = b3DbvtVolume::FromCR(b3MakeVector3(0, 0, 0), 0); aabbMin = bounds.Mins(); aabbMax = bounds.Maxs(); } void b3DynamicBvhBroadphase::resetPool(b3Dispatcher* dispatcher) { int totalObjects = m_sets[0].m_leaves + m_sets[1].m_leaves; if (!totalObjects) { //reset internal dynamic tree data structures m_sets[0].clear(); m_sets[1].clear(); m_deferedcollide = false; m_needcleanup = true; m_stageCurrent = 0; m_fixedleft = 0; m_fupdates = 1; m_dupdates = 0; m_cupdates = 10; m_newpairs = 1; m_updates_call = 0; m_updates_done = 0; m_updates_ratio = 0; m_pid = 0; m_cid = 0; for (int i = 0; i <= STAGECOUNT; ++i) { m_stageRoots[i] = 0; } } } // void b3DynamicBvhBroadphase::printStats() { } // #if B3_DBVT_BP_ENABLE_BENCHMARK struct b3BroadphaseBenchmark { struct Experiment { const char* name; int object_count; int update_count; int spawn_count; int iterations; b3Scalar speed; b3Scalar amplitude; }; struct Object { b3Vector3 center; b3Vector3 extents; b3BroadphaseProxy* proxy; b3Scalar time; void update(b3Scalar speed, b3Scalar amplitude, b3BroadphaseInterface* pbi) { time += speed; center[0] = b3Cos(time * (b3Scalar)2.17) * amplitude + b3Sin(time) * amplitude / 2; center[1] = b3Cos(time * (b3Scalar)1.38) * amplitude + b3Sin(time) * amplitude; center[2] = b3Sin(time * (b3Scalar)0.777) * amplitude; pbi->setAabb(proxy, center - extents, center + extents, 0); } }; static int UnsignedRand(int range = RAND_MAX - 1) { return (rand() % (range + 1)); } static b3Scalar UnitRand() { return (UnsignedRand(16384) / (b3Scalar)16384); } static void OutputTime(const char* name, b3Clock& c, unsigned count = 0) { const unsigned long us = c.getTimeMicroseconds(); const unsigned long ms = (us + 500) / 1000; const b3Scalar sec = us / (b3Scalar)(1000 * 1000); if (count > 0) printf("%s : %u us (%u ms), %.2f/s\r\n", name, us, ms, count / sec); else printf("%s : %u us (%u ms)\r\n", name, us, ms); } }; void b3DynamicBvhBroadphase::benchmark(b3BroadphaseInterface* pbi) { static const b3BroadphaseBenchmark::Experiment experiments[] = { {"1024o.10%", 1024, 10, 0, 8192, (b3Scalar)0.005, (b3Scalar)100}, /*{"4096o.10%",4096,10,0,8192,(b3Scalar)0.005,(b3Scalar)100}, {"8192o.10%",8192,10,0,8192,(b3Scalar)0.005,(b3Scalar)100},*/ }; static const int nexperiments = sizeof(experiments) / sizeof(experiments[0]); b3AlignedObjectArray objects; b3Clock wallclock; /* Begin */ for (int iexp = 0; iexp < nexperiments; ++iexp) { const b3BroadphaseBenchmark::Experiment& experiment = experiments[iexp]; const int object_count = experiment.object_count; const int update_count = (object_count * experiment.update_count) / 100; const int spawn_count = (object_count * experiment.spawn_count) / 100; const b3Scalar speed = experiment.speed; const b3Scalar amplitude = experiment.amplitude; printf("Experiment #%u '%s':\r\n", iexp, experiment.name); printf("\tObjects: %u\r\n", object_count); printf("\tUpdate: %u\r\n", update_count); printf("\tSpawn: %u\r\n", spawn_count); printf("\tSpeed: %f\r\n", speed); printf("\tAmplitude: %f\r\n", amplitude); srand(180673); /* Create objects */ wallclock.reset(); objects.reserve(object_count); for (int i = 0; i < object_count; ++i) { b3BroadphaseBenchmark::Object* po = new b3BroadphaseBenchmark::Object(); po->center[0] = b3BroadphaseBenchmark::UnitRand() * 50; po->center[1] = b3BroadphaseBenchmark::UnitRand() * 50; po->center[2] = b3BroadphaseBenchmark::UnitRand() * 50; po->extents[0] = b3BroadphaseBenchmark::UnitRand() * 2 + 2; po->extents[1] = b3BroadphaseBenchmark::UnitRand() * 2 + 2; po->extents[2] = b3BroadphaseBenchmark::UnitRand() * 2 + 2; po->time = b3BroadphaseBenchmark::UnitRand() * 2000; po->proxy = pbi->createProxy(po->center - po->extents, po->center + po->extents, 0, po, 1, 1, 0, 0); objects.push_back(po); } b3BroadphaseBenchmark::OutputTime("\tInitialization", wallclock); /* First update */ wallclock.reset(); for (int i = 0; i < objects.size(); ++i) { objects[i]->update(speed, amplitude, pbi); } b3BroadphaseBenchmark::OutputTime("\tFirst update", wallclock); /* Updates */ wallclock.reset(); for (int i = 0; i < experiment.iterations; ++i) { for (int j = 0; j < update_count; ++j) { objects[j]->update(speed, amplitude, pbi); } pbi->calculateOverlappingPairs(0); } b3BroadphaseBenchmark::OutputTime("\tUpdate", wallclock, experiment.iterations); /* Clean up */ wallclock.reset(); for (int i = 0; i < objects.size(); ++i) { pbi->destroyProxy(objects[i]->proxy, 0); delete objects[i]; } objects.resize(0); b3BroadphaseBenchmark::OutputTime("\tRelease", wallclock); } } #else /*void b3DynamicBvhBroadphase::benchmark(b3BroadphaseInterface*) {} */ #endif #if B3_DBVT_BP_PROFILE #undef b3SPC #endif