// basisu.h // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. // Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef _MSC_VER #pragma warning (disable : 4201) #pragma warning (disable : 4127) // warning C4127: conditional expression is constant #pragma warning (disable : 4530) // C++ exception handler used, but unwind semantics are not enabled. #ifndef BASISU_NO_ITERATOR_DEBUG_LEVEL //#define _HAS_ITERATOR_DEBUGGING 0 #if defined(_DEBUG) || defined(DEBUG) // This is madness, but we need to disable iterator debugging in debug builds or the encoder is unsable because MSVC's iterator debugging implementation is totally broken. #ifndef _ITERATOR_DEBUG_LEVEL #define _ITERATOR_DEBUG_LEVEL 1 #endif #ifndef _SECURE_SCL #define _SECURE_SCL 1 #endif #else // defined(_DEBUG) || defined(DEBUG) #ifndef _SECURE_SCL #define _SECURE_SCL 0 #endif #ifndef _ITERATOR_DEBUG_LEVEL #define _ITERATOR_DEBUG_LEVEL 0 #endif #endif // defined(_DEBUG) || defined(DEBUG) #endif // BASISU_NO_ITERATOR_DEBUG_LEVEL #endif // _MSC_VER #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "basisu_containers.h" #ifdef max #undef max #endif #ifdef min #undef min #endif #ifdef _WIN32 #define strcasecmp _stricmp #endif // Set to one to enable debug printf()'s when any errors occur, for development/debugging. Especially useful for WebGL development. #ifndef BASISU_FORCE_DEVEL_MESSAGES #define BASISU_FORCE_DEVEL_MESSAGES 0 #endif #define BASISU_NOTE_UNUSED(x) (void)(x) #define BASISU_ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #define BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(x) x(const x &) = delete; x& operator= (const x &) = delete; #define BASISU_ASSUME(x) static_assert(x, #x); #define BASISU_OFFSETOF(s, m) offsetof(s, m) #define BASISU_STRINGIZE(x) #x #define BASISU_STRINGIZE2(x) BASISU_STRINGIZE(x) #if BASISU_FORCE_DEVEL_MESSAGES #define BASISU_DEVEL_ERROR(...) do { basisu::debug_printf(__VA_ARGS__); } while(0) #else #define BASISU_DEVEL_ERROR(...) #endif namespace basisu { // Types/utilities #ifdef _WIN32 const char BASISU_PATH_SEPERATOR_CHAR = '\\'; #else const char BASISU_PATH_SEPERATOR_CHAR = '/'; #endif typedef basisu::vector uint8_vec; typedef basisu::vector int16_vec; typedef basisu::vector uint16_vec; typedef basisu::vector uint_vec; typedef basisu::vector uint64_vec; typedef basisu::vector int_vec; typedef basisu::vector bool_vec; void enable_debug_printf(bool enabled); void debug_printf(const char *pFmt, ...); template inline void clear_obj(T& obj) { memset(&obj, 0, sizeof(obj)); } template inline T0 lerp(T0 a, T0 b, T1 c) { return a + (b - a) * c; } template inline S maximum(S a, S b) { return (a > b) ? a : b; } template inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); } template inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); } template inline S minimum(S a, S b) { return (a < b) ? a : b; } template inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); } template inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); } inline float clampf(float value, float low, float high) { if (value < low) value = low; else if (value > high) value = high; return value; } inline float saturate(float value) { return clampf(value, 0, 1.0f); } inline uint8_t minimumub(uint8_t a, uint8_t b) { return (a < b) ? a : b; } inline uint32_t minimumu(uint32_t a, uint32_t b) { return (a < b) ? a : b; } inline int32_t minimumi(int32_t a, int32_t b) { return (a < b) ? a : b; } inline float minimumf(float a, float b) { return (a < b) ? a : b; } inline uint8_t maximumub(uint8_t a, uint8_t b) { return (a > b) ? a : b; } inline uint32_t maximumu(uint32_t a, uint32_t b) { return (a > b) ? a : b; } inline int32_t maximumi(int32_t a, int32_t b) { return (a > b) ? a : b; } inline float maximumf(float a, float b) { return (a > b) ? a : b; } inline int squarei(int i) { return i * i; } inline float squaref(float i) { return i * i; } template inline T square(T a) { return a * a; } template inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); } inline uint32_t iabs(int32_t i) { return (i < 0) ? static_cast(-i) : static_cast(i); } inline uint64_t iabs64(int64_t i) { return (i < 0) ? static_cast(-i) : static_cast(i); } template inline void clear_vector(T &vec) { vec.erase(vec.begin(), vec.end()); } template inline typename T::value_type *enlarge_vector(T &vec, size_t n) { size_t cs = vec.size(); vec.resize(cs + n); return &vec[cs]; } inline bool is_pow2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } inline bool is_pow2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } template inline T open_range_check(T v, T minv, T maxv) { assert(v >= minv && v < maxv); BASISU_NOTE_UNUSED(minv); BASISU_NOTE_UNUSED(maxv); return v; } template inline T open_range_check(T v, T maxv) { assert(v < maxv); BASISU_NOTE_UNUSED(maxv); return v; } inline uint32_t total_bits(uint32_t v) { uint32_t l = 0; for ( ; v > 0U; ++l) v >>= 1; return l; } template inline T saturate(T val) { return clamp(val, 0.0f, 1.0f); } template inline void append_vector(T &vec, const R *pObjs, size_t n) { if (n) { const size_t cur_s = vec.size(); vec.resize(cur_s + n); memcpy(&vec[cur_s], pObjs, sizeof(R) * n); } } template inline void append_vector(T &vec, const T &other_vec) { if (other_vec.size()) append_vector(vec, &other_vec[0], other_vec.size()); } template inline void vector_ensure_element_is_valid(T &vec, size_t idx) { if (idx >= vec.size()) vec.resize(idx + 1); } template inline void vector_sort(T &vec) { if (vec.size()) std::sort(vec.begin(), vec.end()); } template inline bool unordered_set_contains(T& set, const U&obj) { return set.find(obj) != set.end(); } template int vector_find(const T &vec, const typename T::value_type &obj) { assert(vec.size() <= INT_MAX); for (size_t i = 0; i < vec.size(); i++) if (vec[i] == obj) return static_cast(i); return -1; } template void vector_set_all(T &vec, const typename T::value_type &obj) { for (size_t i = 0; i < vec.size(); i++) vec[i] = obj; } inline uint64_t read_be64(const void *p) { uint64_t val = 0; for (uint32_t i = 0; i < 8; i++) val |= (static_cast(static_cast(p)[7 - i]) << (i * 8)); return val; } inline void write_be64(void *p, uint64_t x) { for (uint32_t i = 0; i < 8; i++) static_cast(p)[7 - i] = static_cast(x >> (i * 8)); } static inline uint16_t byteswap16(uint16_t x) { return static_cast((x << 8) | (x >> 8)); } static inline uint32_t byteswap32(uint32_t x) { return ((x << 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x >> 24)); } inline uint32_t floor_log2i(uint32_t v) { uint32_t b = 0; for (; v > 1U; ++b) v >>= 1; return b; } inline uint32_t ceil_log2i(uint32_t v) { uint32_t b = floor_log2i(v); if ((b != 32) && (v > (1U << b))) ++b; return b; } inline int posmod(int x, int y) { if (x >= 0) return (x < y) ? x : (x % y); int m = (-x) % y; return (m != 0) ? (y - m) : m; } inline bool do_excl_ranges_overlap(int la, int ha, int lb, int hb) { assert(la < ha && lb < hb); if ((ha <= lb) || (la >= hb)) return false; return true; } static inline uint32_t read_le_dword(const uint8_t *pBytes) { return (pBytes[3] << 24U) | (pBytes[2] << 16U) | (pBytes[1] << 8U) | (pBytes[0]); } static inline void write_le_dword(uint8_t* pBytes, uint32_t val) { pBytes[0] = (uint8_t)val; pBytes[1] = (uint8_t)(val >> 8U); pBytes[2] = (uint8_t)(val >> 16U); pBytes[3] = (uint8_t)(val >> 24U); } // Always little endian 1-8 byte unsigned int template struct packed_uint { uint8_t m_bytes[NumBytes]; inline packed_uint() { static_assert(NumBytes <= sizeof(uint64_t), "Invalid NumBytes"); } inline packed_uint(uint64_t v) { *this = v; } inline packed_uint(const packed_uint& other) { *this = other; } inline packed_uint& operator= (uint64_t v) { for (uint32_t i = 0; i < NumBytes; i++) m_bytes[i] = static_cast(v >> (i * 8)); return *this; } inline packed_uint& operator= (const packed_uint& rhs) { memcpy(m_bytes, rhs.m_bytes, sizeof(m_bytes)); return *this; } inline operator uint32_t() const { switch (NumBytes) { case 1: { return m_bytes[0]; } case 2: { return (m_bytes[1] << 8U) | m_bytes[0]; } case 3: { return (m_bytes[2] << 16U) | (m_bytes[1] << 8U) | m_bytes[0]; } case 4: { return read_le_dword(m_bytes); } case 5: { uint32_t l = read_le_dword(m_bytes); uint32_t h = m_bytes[4]; return static_cast(l) | (static_cast(h) << 32U); } case 6: { uint32_t l = read_le_dword(m_bytes); uint32_t h = (m_bytes[5] << 8U) | m_bytes[4]; return static_cast(l) | (static_cast(h) << 32U); } case 7: { uint32_t l = read_le_dword(m_bytes); uint32_t h = (m_bytes[6] << 16U) | (m_bytes[5] << 8U) | m_bytes[4]; return static_cast(l) | (static_cast(h) << 32U); } case 8: { uint32_t l = read_le_dword(m_bytes); uint32_t h = read_le_dword(m_bytes + 4); return static_cast(l) | (static_cast(h) << 32U); } default: { assert(0); return 0; } } } }; enum eZero { cZero }; enum eNoClamp { cNoClamp }; // Rice/Huffman entropy coding // This is basically Deflate-style canonical Huffman, except we allow for a lot more symbols. enum { cHuffmanMaxSupportedCodeSize = 16, cHuffmanMaxSupportedInternalCodeSize = 31, cHuffmanFastLookupBits = 10, cHuffmanMaxSymsLog2 = 14, cHuffmanMaxSyms = 1 << cHuffmanMaxSymsLog2, // Small zero runs cHuffmanSmallZeroRunSizeMin = 3, cHuffmanSmallZeroRunSizeMax = 10, cHuffmanSmallZeroRunExtraBits = 3, // Big zero run cHuffmanBigZeroRunSizeMin = 11, cHuffmanBigZeroRunSizeMax = 138, cHuffmanBigZeroRunExtraBits = 7, // Small non-zero run cHuffmanSmallRepeatSizeMin = 3, cHuffmanSmallRepeatSizeMax = 6, cHuffmanSmallRepeatExtraBits = 2, // Big non-zero run cHuffmanBigRepeatSizeMin = 7, cHuffmanBigRepeatSizeMax = 134, cHuffmanBigRepeatExtraBits = 7, cHuffmanTotalCodelengthCodes = 21, cHuffmanSmallZeroRunCode = 17, cHuffmanBigZeroRunCode = 18, cHuffmanSmallRepeatCode = 19, cHuffmanBigRepeatCode = 20 }; static const uint8_t g_huffman_sorted_codelength_codes[] = { cHuffmanSmallZeroRunCode, cHuffmanBigZeroRunCode, cHuffmanSmallRepeatCode, cHuffmanBigRepeatCode, 0, 8, 7, 9, 6, 0xA, 5, 0xB, 4, 0xC, 3, 0xD, 2, 0xE, 1, 0xF, 0x10 }; const uint32_t cHuffmanTotalSortedCodelengthCodes = sizeof(g_huffman_sorted_codelength_codes) / sizeof(g_huffman_sorted_codelength_codes[0]); // GPU texture formats enum class texture_format { cInvalidTextureFormat = -1, // Block-based formats cETC1, // ETC1 cETC1S, // ETC1 (subset: diff colors only, no subblocks) cETC2_RGB, // ETC2 color block (basisu doesn't support ETC2 planar/T/H modes - just basic ETC1) cETC2_RGBA, // ETC2 EAC alpha block followed by ETC2 color block cETC2_ALPHA, // ETC2 EAC alpha block cBC1, // DXT1 cBC3, // DXT5 (BC4/DXT5A block followed by a BC1/DXT1 block) cBC4, // DXT5A cBC5, // 3DC/DXN (two BC4/DXT5A blocks) cBC7, cASTC4x4, // LDR only cPVRTC1_4_RGB, cPVRTC1_4_RGBA, cATC_RGB, cATC_RGBA_INTERPOLATED_ALPHA, cFXT1_RGB, cPVRTC2_4_RGBA, cETC2_R11_EAC, cETC2_RG11_EAC, cUASTC4x4, cBC1_NV, cBC1_AMD, // Uncompressed/raw pixels cRGBA32, cRGB565, cBGR565, cRGBA4444, cABGR4444 }; inline uint32_t get_bytes_per_block(texture_format fmt) { switch (fmt) { case texture_format::cETC1: case texture_format::cETC1S: case texture_format::cETC2_RGB: case texture_format::cETC2_ALPHA: case texture_format::cBC1: case texture_format::cBC1_NV: case texture_format::cBC1_AMD: case texture_format::cBC4: case texture_format::cPVRTC1_4_RGB: case texture_format::cPVRTC1_4_RGBA: case texture_format::cATC_RGB: case texture_format::cPVRTC2_4_RGBA: case texture_format::cETC2_R11_EAC: return 8; case texture_format::cRGBA32: return sizeof(uint32_t) * 16; default: break; } return 16; } inline uint32_t get_qwords_per_block(texture_format fmt) { return get_bytes_per_block(fmt) >> 3; } inline uint32_t get_block_width(texture_format fmt) { BASISU_NOTE_UNUSED(fmt); switch (fmt) { case texture_format::cFXT1_RGB: return 8; default: break; } return 4; } inline uint32_t get_block_height(texture_format fmt) { BASISU_NOTE_UNUSED(fmt); return 4; } } // namespace basisu