// basisu_comp.cpp // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_comp.h" #include "basisu_enc.h" #include #include // basisu_transcoder.cpp is where basisu_miniz lives now, we just need the declarations here. #define MINIZ_NO_ZLIB_COMPATIBLE_NAMES #include "basisu_miniz.h" #include "basisu_opencl.h" #if !BASISD_SUPPORT_KTX2 #error BASISD_SUPPORT_KTX2 must be enabled (set to 1). #endif #if BASISD_SUPPORT_KTX2_ZSTD #include "../zstd/zstd.h" #endif // Set to 1 to disable the mipPadding alignment workaround (which only seems to be needed when no key-values are written at all) #define BASISU_DISABLE_KTX2_ALIGNMENT_WORKAROUND (0) // Set to 1 to disable writing all KTX2 key values, triggering the validator bug. #define BASISU_DISABLE_KTX2_KEY_VALUES (0) using namespace buminiz; #define BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN 0 #define DEBUG_CROP_TEXTURE_TO_64x64 (0) #define DEBUG_RESIZE_TEXTURE (0) #define DEBUG_EXTRACT_SINGLE_BLOCK (0) namespace basisu { basis_compressor::basis_compressor() : m_pOpenCL_context(nullptr), m_basis_file_size(0), m_basis_bits_per_texel(0.0f), m_total_blocks(0), m_any_source_image_has_alpha(false), m_opencl_failed(false) { debug_printf("basis_compressor::basis_compressor\n"); assert(g_library_initialized); } basis_compressor::~basis_compressor() { if (m_pOpenCL_context) { opencl_destroy_context(m_pOpenCL_context); m_pOpenCL_context = nullptr; } } bool basis_compressor::init(const basis_compressor_params ¶ms) { debug_printf("basis_compressor::init\n"); if (!g_library_initialized) { error_printf("basis_compressor::init: basisu_encoder_init() MUST be called before using any encoder functionality!\n"); return false; } if (!params.m_pJob_pool) { error_printf("basis_compressor::init: A non-null job_pool pointer must be specified\n"); return false; } m_params = params; if (m_params.m_debug) { debug_printf("basis_compressor::init:\n"); #define PRINT_BOOL_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_INT_VALUE(v) debug_printf("%s: %i %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_UINT_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_FLOAT_VALUE(v) debug_printf("%s: %f %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); debug_printf("Source images: %u, source filenames: %u, source alpha filenames: %i, Source mipmap images: %u\n", m_params.m_source_images.size(), m_params.m_source_filenames.size(), m_params.m_source_alpha_filenames.size(), m_params.m_source_mipmap_images.size()); if (m_params.m_source_mipmap_images.size()) { debug_printf("m_source_mipmap_images array sizes:\n"); for (uint32_t i = 0; i < m_params.m_source_mipmap_images.size(); i++) debug_printf("%u ", m_params.m_source_mipmap_images[i].size()); debug_printf("\n"); } PRINT_BOOL_VALUE(m_uastc); PRINT_BOOL_VALUE(m_use_opencl); PRINT_BOOL_VALUE(m_y_flip); PRINT_BOOL_VALUE(m_debug); PRINT_BOOL_VALUE(m_validate_etc1s); PRINT_BOOL_VALUE(m_debug_images); PRINT_INT_VALUE(m_compression_level); PRINT_BOOL_VALUE(m_perceptual); PRINT_BOOL_VALUE(m_no_endpoint_rdo); PRINT_BOOL_VALUE(m_no_selector_rdo); PRINT_BOOL_VALUE(m_read_source_images); PRINT_BOOL_VALUE(m_write_output_basis_files); PRINT_BOOL_VALUE(m_compute_stats); PRINT_BOOL_VALUE(m_check_for_alpha); PRINT_BOOL_VALUE(m_force_alpha); debug_printf("swizzle: %d,%d,%d,%d\n", m_params.m_swizzle[0], m_params.m_swizzle[1], m_params.m_swizzle[2], m_params.m_swizzle[3]); PRINT_BOOL_VALUE(m_renormalize); PRINT_BOOL_VALUE(m_multithreading); PRINT_BOOL_VALUE(m_disable_hierarchical_endpoint_codebooks); PRINT_FLOAT_VALUE(m_endpoint_rdo_thresh); PRINT_FLOAT_VALUE(m_selector_rdo_thresh); PRINT_BOOL_VALUE(m_mip_gen); PRINT_BOOL_VALUE(m_mip_renormalize); PRINT_BOOL_VALUE(m_mip_wrapping); PRINT_BOOL_VALUE(m_mip_fast); PRINT_BOOL_VALUE(m_mip_srgb); PRINT_FLOAT_VALUE(m_mip_premultiplied); PRINT_FLOAT_VALUE(m_mip_scale); PRINT_INT_VALUE(m_mip_smallest_dimension); debug_printf("m_mip_filter: %s\n", m_params.m_mip_filter.c_str()); debug_printf("m_max_endpoint_clusters: %u\n", m_params.m_max_endpoint_clusters); debug_printf("m_max_selector_clusters: %u\n", m_params.m_max_selector_clusters); debug_printf("m_quality_level: %i\n", m_params.m_quality_level); debug_printf("m_tex_type: %u\n", m_params.m_tex_type); debug_printf("m_userdata0: 0x%X, m_userdata1: 0x%X\n", m_params.m_userdata0, m_params.m_userdata1); debug_printf("m_us_per_frame: %i (%f fps)\n", m_params.m_us_per_frame, m_params.m_us_per_frame ? 1.0f / (m_params.m_us_per_frame / 1000000.0f) : 0); debug_printf("m_pack_uastc_flags: 0x%X\n", m_params.m_pack_uastc_flags); PRINT_BOOL_VALUE(m_rdo_uastc); PRINT_FLOAT_VALUE(m_rdo_uastc_quality_scalar); PRINT_INT_VALUE(m_rdo_uastc_dict_size); PRINT_FLOAT_VALUE(m_rdo_uastc_max_allowed_rms_increase_ratio); PRINT_FLOAT_VALUE(m_rdo_uastc_skip_block_rms_thresh); PRINT_FLOAT_VALUE(m_rdo_uastc_max_smooth_block_error_scale); PRINT_FLOAT_VALUE(m_rdo_uastc_smooth_block_max_std_dev); PRINT_BOOL_VALUE(m_rdo_uastc_favor_simpler_modes_in_rdo_mode) PRINT_BOOL_VALUE(m_rdo_uastc_multithreading); PRINT_INT_VALUE(m_resample_width); PRINT_INT_VALUE(m_resample_height); PRINT_FLOAT_VALUE(m_resample_factor); debug_printf("Has global codebooks: %u\n", m_params.m_pGlobal_codebooks ? 1 : 0); if (m_params.m_pGlobal_codebooks) { debug_printf("Global codebook endpoints: %u selectors: %u\n", m_params.m_pGlobal_codebooks->get_endpoints().size(), m_params.m_pGlobal_codebooks->get_selectors().size()); } PRINT_BOOL_VALUE(m_create_ktx2_file); debug_printf("KTX2 UASTC supercompression: %u\n", m_params.m_ktx2_uastc_supercompression); debug_printf("KTX2 Zstd supercompression level: %i\n", (int)m_params.m_ktx2_zstd_supercompression_level); debug_printf("KTX2 sRGB transfer func: %u\n", (int)m_params.m_ktx2_srgb_transfer_func); debug_printf("Total KTX2 key values: %u\n", m_params.m_ktx2_key_values.size()); for (uint32_t i = 0; i < m_params.m_ktx2_key_values.size(); i++) { debug_printf("Key: \"%s\"\n", m_params.m_ktx2_key_values[i].m_key.data()); debug_printf("Value size: %u\n", m_params.m_ktx2_key_values[i].m_value.size()); } PRINT_BOOL_VALUE(m_validate_output_data); #undef PRINT_BOOL_VALUE #undef PRINT_INT_VALUE #undef PRINT_UINT_VALUE #undef PRINT_FLOAT_VALUE } if ((m_params.m_read_source_images) && (!m_params.m_source_filenames.size())) { assert(0); return false; } if ((m_params.m_compute_stats) && (!m_params.m_validate_output_data)) { m_params.m_validate_output_data = true; debug_printf("Note: m_compute_stats is true, so forcing m_validate_output_data to true as well\n"); } if ((m_params.m_use_opencl) && opencl_is_available() && !m_pOpenCL_context && !m_opencl_failed) { m_pOpenCL_context = opencl_create_context(); if (!m_pOpenCL_context) m_opencl_failed = true; } return true; } basis_compressor::error_code basis_compressor::process() { debug_printf("basis_compressor::process\n"); if (!read_source_images()) return cECFailedReadingSourceImages; if (!validate_texture_type_constraints()) return cECFailedValidating; if (m_params.m_create_ktx2_file) { if (!validate_ktx2_constraints()) return cECFailedValidating; } if (!extract_source_blocks()) return cECFailedFrontEnd; if (m_params.m_uastc) { error_code ec = encode_slices_to_uastc(); if (ec != cECSuccess) return ec; } else { if (!process_frontend()) return cECFailedFrontEnd; if (!extract_frontend_texture_data()) return cECFailedFontendExtract; if (!process_backend()) return cECFailedBackend; } if (!create_basis_file_and_transcode()) return cECFailedCreateBasisFile; if (m_params.m_create_ktx2_file) { if (!create_ktx2_file()) return cECFailedCreateKTX2File; } if (!write_output_files_and_compute_stats()) return cECFailedWritingOutput; return cECSuccess; } basis_compressor::error_code basis_compressor::encode_slices_to_uastc() { debug_printf("basis_compressor::encode_slices_to_uastc\n"); m_uastc_slice_textures.resize(m_slice_descs.size()); for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) m_uastc_slice_textures[slice_index].init(texture_format::cUASTC4x4, m_slice_descs[slice_index].m_orig_width, m_slice_descs[slice_index].m_orig_height); m_uastc_backend_output.m_tex_format = basist::basis_tex_format::cUASTC4x4; m_uastc_backend_output.m_etc1s = false; m_uastc_backend_output.m_slice_desc = m_slice_descs; m_uastc_backend_output.m_slice_image_data.resize(m_slice_descs.size()); m_uastc_backend_output.m_slice_image_crcs.resize(m_slice_descs.size()); for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { gpu_image& tex = m_uastc_slice_textures[slice_index]; basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; (void)slice_desc; const uint32_t num_blocks_x = tex.get_blocks_x(); const uint32_t num_blocks_y = tex.get_blocks_y(); const uint32_t total_blocks = tex.get_total_blocks(); const image& source_image = m_slice_images[slice_index]; std::atomic total_blocks_processed; total_blocks_processed = 0; const uint32_t N = 256; for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N) { const uint32_t first_index = block_index_iter; const uint32_t last_index = minimum(total_blocks, block_index_iter + N); // FIXME: This sucks, but we're having a stack size related problem with std::function with emscripten. #ifndef __EMSCRIPTEN__ m_params.m_pJob_pool->add_job([this, first_index, last_index, num_blocks_x, num_blocks_y, total_blocks, &source_image, &tex, &total_blocks_processed] { #endif BASISU_NOTE_UNUSED(num_blocks_y); uint32_t uastc_flags = m_params.m_pack_uastc_flags; if ((m_params.m_rdo_uastc) && (m_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode)) uastc_flags |= cPackUASTCFavorSimplerModes; for (uint32_t block_index = first_index; block_index < last_index; block_index++) { const uint32_t block_x = block_index % num_blocks_x; const uint32_t block_y = block_index / num_blocks_x; color_rgba block_pixels[4][4]; source_image.extract_block_clamped((color_rgba*)block_pixels, block_x * 4, block_y * 4, 4, 4); basist::uastc_block& dest_block = *(basist::uastc_block*)tex.get_block_ptr(block_x, block_y); encode_uastc(&block_pixels[0][0].r, dest_block, uastc_flags); total_blocks_processed++; uint32_t val = total_blocks_processed; if ((val & 16383) == 16383) { debug_printf("basis_compressor::encode_slices_to_uastc: %3.1f%% done\n", static_cast(val) * 100.0f / total_blocks); } } #ifndef __EMSCRIPTEN__ }); #endif } // block_index_iter #ifndef __EMSCRIPTEN__ m_params.m_pJob_pool->wait_for_all(); #endif if (m_params.m_rdo_uastc) { uastc_rdo_params rdo_params; rdo_params.m_lambda = m_params.m_rdo_uastc_quality_scalar; rdo_params.m_max_allowed_rms_increase_ratio = m_params.m_rdo_uastc_max_allowed_rms_increase_ratio; rdo_params.m_skip_block_rms_thresh = m_params.m_rdo_uastc_skip_block_rms_thresh; rdo_params.m_lz_dict_size = m_params.m_rdo_uastc_dict_size; rdo_params.m_smooth_block_max_error_scale = m_params.m_rdo_uastc_max_smooth_block_error_scale; rdo_params.m_max_smooth_block_std_dev = m_params.m_rdo_uastc_smooth_block_max_std_dev; bool status = uastc_rdo(tex.get_total_blocks(), (basist::uastc_block*)tex.get_ptr(), (const color_rgba *)m_source_blocks[slice_desc.m_first_block_index].m_pixels, rdo_params, m_params.m_pack_uastc_flags, m_params.m_rdo_uastc_multithreading ? m_params.m_pJob_pool : nullptr, (m_params.m_rdo_uastc_multithreading && m_params.m_pJob_pool) ? basisu::minimum(4, (uint32_t)m_params.m_pJob_pool->get_total_threads()) : 0); if (!status) { return cECFailedUASTCRDOPostProcess; } } m_uastc_backend_output.m_slice_image_data[slice_index].resize(tex.get_size_in_bytes()); memcpy(&m_uastc_backend_output.m_slice_image_data[slice_index][0], tex.get_ptr(), tex.get_size_in_bytes()); m_uastc_backend_output.m_slice_image_crcs[slice_index] = basist::crc16(tex.get_ptr(), tex.get_size_in_bytes(), 0); } // slice_index return cECSuccess; } bool basis_compressor::generate_mipmaps(const image &img, basisu::vector &mips, bool has_alpha) { debug_printf("basis_compressor::generate_mipmaps\n"); interval_timer tm; tm.start(); uint32_t total_levels = 1; uint32_t w = img.get_width(), h = img.get_height(); while (maximum(w, h) > (uint32_t)m_params.m_mip_smallest_dimension) { w = maximum(w >> 1U, 1U); h = maximum(h >> 1U, 1U); total_levels++; } #if BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN // Requires stb_image_resize stbir_filter filter = STBIR_FILTER_DEFAULT; if (m_params.m_mip_filter == "box") filter = STBIR_FILTER_BOX; else if (m_params.m_mip_filter == "triangle") filter = STBIR_FILTER_TRIANGLE; else if (m_params.m_mip_filter == "cubic") filter = STBIR_FILTER_CUBICBSPLINE; else if (m_params.m_mip_filter == "catmull") filter = STBIR_FILTER_CATMULLROM; else if (m_params.m_mip_filter == "mitchell") filter = STBIR_FILTER_MITCHELL; for (uint32_t level = 1; level < total_levels; level++) { const uint32_t level_width = maximum(1, img.get_width() >> level); const uint32_t level_height = maximum(1, img.get_height() >> level); image &level_img = *enlarge_vector(mips, 1); level_img.resize(level_width, level_height); int result = stbir_resize_uint8_generic( (const uint8_t *)img.get_ptr(), img.get_width(), img.get_height(), img.get_pitch() * sizeof(color_rgba), (uint8_t *)level_img.get_ptr(), level_img.get_width(), level_img.get_height(), level_img.get_pitch() * sizeof(color_rgba), has_alpha ? 4 : 3, has_alpha ? 3 : STBIR_ALPHA_CHANNEL_NONE, m_params.m_mip_premultiplied ? STBIR_FLAG_ALPHA_PREMULTIPLIED : 0, m_params.m_mip_wrapping ? STBIR_EDGE_WRAP : STBIR_EDGE_CLAMP, filter, m_params.m_mip_srgb ? STBIR_COLORSPACE_SRGB : STBIR_COLORSPACE_LINEAR, nullptr); if (result == 0) { error_printf("basis_compressor::generate_mipmaps: stbir_resize_uint8_generic() failed!\n"); return false; } if (m_params.m_mip_renormalize) level_img.renormalize_normal_map(); } #else for (uint32_t level = 1; level < total_levels; level++) { const uint32_t level_width = maximum(1, img.get_width() >> level); const uint32_t level_height = maximum(1, img.get_height() >> level); image& level_img = *enlarge_vector(mips, 1); level_img.resize(level_width, level_height); const image* pSource_image = &img; if (m_params.m_mip_fast) { if (level > 1) pSource_image = &mips[level - 1]; } bool status = image_resample(*pSource_image, level_img, m_params.m_mip_srgb, m_params.m_mip_filter.c_str(), m_params.m_mip_scale, m_params.m_mip_wrapping, 0, has_alpha ? 4 : 3); if (!status) { error_printf("basis_compressor::generate_mipmaps: image_resample() failed!\n"); return false; } if (m_params.m_mip_renormalize) level_img.renormalize_normal_map(); } #endif if (m_params.m_debug) debug_printf("Total mipmap generation time: %3.3f secs\n", tm.get_elapsed_secs()); return true; } bool basis_compressor::read_source_images() { debug_printf("basis_compressor::read_source_images\n"); const uint32_t total_source_files = m_params.m_read_source_images ? (uint32_t)m_params.m_source_filenames.size() : (uint32_t)m_params.m_source_images.size(); if (!total_source_files) return false; m_stats.resize(0); m_slice_descs.resize(0); m_slice_images.resize(0); m_total_blocks = 0; uint32_t total_macroblocks = 0; m_any_source_image_has_alpha = false; basisu::vector source_images; basisu::vector source_filenames; // First load all source images, and determine if any have an alpha channel. for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++) { const char *pSource_filename = ""; image file_image; if (m_params.m_read_source_images) { pSource_filename = m_params.m_source_filenames[source_file_index].c_str(); // Load the source image if (!load_image(pSource_filename, file_image)) { error_printf("Failed reading source image: %s\n", pSource_filename); return false; } if (m_params.m_status_output) { printf("Read source image \"%s\", %ux%u\n", pSource_filename, file_image.get_width(), file_image.get_height()); } // Optionally load another image and put a grayscale version of it into the alpha channel. if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size())) { const char *pSource_alpha_image = m_params.m_source_alpha_filenames[source_file_index].c_str(); image alpha_data; if (!load_image(pSource_alpha_image, alpha_data)) { error_printf("Failed reading source image: %s\n", pSource_alpha_image); return false; } printf("Read source alpha image \"%s\", %ux%u\n", pSource_alpha_image, alpha_data.get_width(), alpha_data.get_height()); alpha_data.crop(file_image.get_width(), file_image.get_height()); for (uint32_t y = 0; y < file_image.get_height(); y++) for (uint32_t x = 0; x < file_image.get_width(); x++) file_image(x, y).a = (uint8_t)alpha_data(x, y).get_709_luma(); } } else { file_image = m_params.m_source_images[source_file_index]; } if (m_params.m_renormalize) file_image.renormalize_normal_map(); bool alpha_swizzled = false; if (m_params.m_swizzle[0] != 0 || m_params.m_swizzle[1] != 1 || m_params.m_swizzle[2] != 2 || m_params.m_swizzle[3] != 3) { // Used for XY normal maps in RG - puts X in color, Y in alpha for (uint32_t y = 0; y < file_image.get_height(); y++) for (uint32_t x = 0; x < file_image.get_width(); x++) { const color_rgba &c = file_image(x, y); file_image(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]); } alpha_swizzled = m_params.m_swizzle[3] != 3; } bool has_alpha = false; if (m_params.m_force_alpha || alpha_swizzled) has_alpha = true; else if (!m_params.m_check_for_alpha) file_image.set_alpha(255); else if (file_image.has_alpha()) has_alpha = true; if (has_alpha) m_any_source_image_has_alpha = true; debug_printf("Source image index %u filename %s %ux%u has alpha: %u\n", source_file_index, pSource_filename, file_image.get_width(), file_image.get_height(), has_alpha); if (m_params.m_y_flip) file_image.flip_y(); #if DEBUG_EXTRACT_SINGLE_BLOCK image block_image(4, 4); const uint32_t block_x = 0; const uint32_t block_y = 0; block_image.blit(block_x * 4, block_y * 4, 4, 4, 0, 0, file_image, 0); file_image = block_image; #endif #if DEBUG_CROP_TEXTURE_TO_64x64 file_image.resize(64, 64); #endif if (m_params.m_resample_width > 0 && m_params.m_resample_height > 0) { int new_width = basisu::minimum(m_params.m_resample_width, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION); int new_height = basisu::minimum(m_params.m_resample_height, BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION); debug_printf("Resampling to %ix%i\n", new_width, new_height); // TODO: A box filter - kaiser looks too sharp on video. Let the caller control this. image temp_img(new_width, new_height); image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser"); temp_img.swap(file_image); } else if (m_params.m_resample_factor > 0.0f) { int new_width = basisu::minimum(basisu::maximum(1, (int)ceilf(file_image.get_width() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION); int new_height = basisu::minimum(basisu::maximum(1, (int)ceilf(file_image.get_height() * m_params.m_resample_factor)), BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION); debug_printf("Resampling to %ix%i\n", new_width, new_height); // TODO: A box filter - kaiser looks too sharp on video. Let the caller control this. image temp_img(new_width, new_height); image_resample(file_image, temp_img, m_params.m_perceptual, "box"); // "kaiser"); temp_img.swap(file_image); } if ((!file_image.get_width()) || (!file_image.get_height())) { error_printf("basis_compressor::read_source_images: Source image has a zero width and/or height!\n"); return false; } if ((file_image.get_width() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (file_image.get_height() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION)) { error_printf("basis_compressor::read_source_images: Source image \"%s\" is too large!\n", pSource_filename); return false; } source_images.enlarge(1)->swap(file_image); source_filenames.push_back(pSource_filename); } // Check if the caller has generated their own mipmaps. if (m_params.m_source_mipmap_images.size()) { // Make sure they've passed us enough mipmap chains. if ((m_params.m_source_images.size() != m_params.m_source_mipmap_images.size()) || (total_source_files != m_params.m_source_images.size())) { error_printf("basis_compressor::read_source_images(): m_params.m_source_mipmap_images.size() must equal m_params.m_source_images.size()!\n"); return false; } // Check if any of the user-supplied mipmap levels has alpha. // We're assuming the user has already preswizzled their mipmap source images. if (!m_any_source_image_has_alpha) { for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++) { for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++) { const image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index]; if (mip_img.has_alpha()) { m_any_source_image_has_alpha = true; break; } } if (m_any_source_image_has_alpha) break; } } } debug_printf("Any source image has alpha: %u\n", m_any_source_image_has_alpha); for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++) { const std::string &source_filename = source_filenames[source_file_index]; // Now, for each source image, create the slices corresponding to that image. basisu::vector slices; slices.reserve(32); // The first (largest) mipmap level. image& file_image = source_images[source_file_index]; // Reserve a slot for mip0. slices.resize(1); if (m_params.m_source_mipmap_images.size()) { // User-provided mipmaps for each layer or image in the texture array. for (uint32_t mip_index = 0; mip_index < m_params.m_source_mipmap_images[source_file_index].size(); mip_index++) { image& mip_img = m_params.m_source_mipmap_images[source_file_index][mip_index]; if (m_params.m_swizzle[0] != 0 || m_params.m_swizzle[1] != 1 || m_params.m_swizzle[2] != 2 || m_params.m_swizzle[3] != 3) { // Used for XY normal maps in RG - puts X in color, Y in alpha for (uint32_t y = 0; y < mip_img.get_height(); y++) for (uint32_t x = 0; x < mip_img.get_width(); x++) { const color_rgba &c = mip_img(x, y); mip_img(x, y).set_noclamp_rgba(c[m_params.m_swizzle[0]], c[m_params.m_swizzle[1]], c[m_params.m_swizzle[2]], c[m_params.m_swizzle[3]]); } } slices.push_back(mip_img); } } else if (m_params.m_mip_gen) { // Automatically generate mipmaps. if (!generate_mipmaps(file_image, slices, m_any_source_image_has_alpha)) return false; } // Swap in the largest mipmap level here to avoid copying it, because generate_mips() will change the array. // NOTE: file_image is now blank. slices[0].swap(file_image); uint_vec mip_indices(slices.size()); for (uint32_t i = 0; i < slices.size(); i++) mip_indices[i] = i; if ((m_any_source_image_has_alpha) && (!m_params.m_uastc)) { // For ETC1S, if source has alpha, then even mips will have RGB, and odd mips will have alpha in RGB. basisu::vector alpha_slices; uint_vec new_mip_indices; alpha_slices.reserve(slices.size() * 2); for (uint32_t i = 0; i < slices.size(); i++) { image lvl_rgb(slices[i]); image lvl_a(lvl_rgb); for (uint32_t y = 0; y < lvl_a.get_height(); y++) { for (uint32_t x = 0; x < lvl_a.get_width(); x++) { uint8_t a = lvl_a(x, y).a; lvl_a(x, y).set_noclamp_rgba(a, a, a, 255); } } lvl_rgb.set_alpha(255); alpha_slices.push_back(lvl_rgb); new_mip_indices.push_back(i); alpha_slices.push_back(lvl_a); new_mip_indices.push_back(i); } slices.swap(alpha_slices); mip_indices.swap(new_mip_indices); } assert(slices.size() == mip_indices.size()); for (uint32_t slice_index = 0; slice_index < slices.size(); slice_index++) { image& slice_image = slices[slice_index]; const uint32_t orig_width = slice_image.get_width(); const uint32_t orig_height = slice_image.get_height(); bool is_alpha_slice = false; if (m_any_source_image_has_alpha) { if (m_params.m_uastc) { is_alpha_slice = slice_image.has_alpha(); } else { is_alpha_slice = (slice_index & 1) != 0; } } // Enlarge the source image to 4x4 block boundaries, duplicating edge pixels if necessary to avoid introducing extra colors into blocks. slice_image.crop_dup_borders(slice_image.get_block_width(4) * 4, slice_image.get_block_height(4) * 4); if (m_params.m_debug_images) { save_png(string_format("basis_debug_source_image_%u_slice_%u.png", source_file_index, slice_index).c_str(), slice_image); } const uint32_t dest_image_index = m_slice_images.size(); enlarge_vector(m_stats, 1); enlarge_vector(m_slice_images, 1); enlarge_vector(m_slice_descs, 1); m_stats[dest_image_index].m_filename = source_filename.c_str(); m_stats[dest_image_index].m_width = orig_width; m_stats[dest_image_index].m_height = orig_height; debug_printf("****** Slice %u: mip %u, alpha_slice: %u, filename: \"%s\", original: %ux%u actual: %ux%u\n", m_slice_descs.size() - 1, mip_indices[slice_index], is_alpha_slice, source_filename.c_str(), orig_width, orig_height, slice_image.get_width(), slice_image.get_height()); basisu_backend_slice_desc &slice_desc = m_slice_descs[dest_image_index]; slice_desc.m_first_block_index = m_total_blocks; slice_desc.m_orig_width = orig_width; slice_desc.m_orig_height = orig_height; slice_desc.m_width = slice_image.get_width(); slice_desc.m_height = slice_image.get_height(); slice_desc.m_num_blocks_x = slice_image.get_block_width(4); slice_desc.m_num_blocks_y = slice_image.get_block_height(4); slice_desc.m_num_macroblocks_x = (slice_desc.m_num_blocks_x + 1) >> 1; slice_desc.m_num_macroblocks_y = (slice_desc.m_num_blocks_y + 1) >> 1; slice_desc.m_source_file_index = source_file_index; slice_desc.m_mip_index = mip_indices[slice_index]; slice_desc.m_alpha = is_alpha_slice; slice_desc.m_iframe = false; if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames) { slice_desc.m_iframe = (source_file_index == 0); } m_total_blocks += slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y; total_macroblocks += slice_desc.m_num_macroblocks_x * slice_desc.m_num_macroblocks_y; // Finally, swap in the slice's image to avoid copying it. // NOTE: slice_image is now blank. m_slice_images[dest_image_index].swap(slice_image); } // slice_index } // source_file_index debug_printf("Total blocks: %u, Total macroblocks: %u\n", m_total_blocks, total_macroblocks); // Make sure we don't have too many slices if (m_slice_descs.size() > BASISU_MAX_SLICES) { error_printf("Too many slices!\n"); return false; } // Basic sanity check on the slices for (uint32_t i = 1; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &prev_slice_desc = m_slice_descs[i - 1]; const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; // Make sure images are in order int image_delta = (int)slice_desc.m_source_file_index - (int)prev_slice_desc.m_source_file_index; if (image_delta > 1) return false; // Make sure mipmap levels are in order if (!image_delta) { int level_delta = (int)slice_desc.m_mip_index - (int)prev_slice_desc.m_mip_index; if (level_delta > 1) return false; } } if (m_params.m_status_output) { printf("Total basis file slices: %u\n", (uint32_t)m_slice_descs.size()); } for (uint32_t i = 0; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; if (m_params.m_status_output) { printf("Slice: %u, alpha: %u, orig width/height: %ux%u, width/height: %ux%u, first_block: %u, image_index: %u, mip_level: %u, iframe: %u\n", i, slice_desc.m_alpha, slice_desc.m_orig_width, slice_desc.m_orig_height, slice_desc.m_width, slice_desc.m_height, slice_desc.m_first_block_index, slice_desc.m_source_file_index, slice_desc.m_mip_index, slice_desc.m_iframe); } if (m_any_source_image_has_alpha) { if (!m_params.m_uastc) { // For ETC1S, alpha slices must be at odd slice indices. if (slice_desc.m_alpha) { if ((i & 1) == 0) return false; const basisu_backend_slice_desc& prev_slice_desc = m_slice_descs[i - 1]; // Make sure previous slice has this image's color data if (prev_slice_desc.m_source_file_index != slice_desc.m_source_file_index) return false; if (prev_slice_desc.m_alpha) return false; if (prev_slice_desc.m_mip_index != slice_desc.m_mip_index) return false; if (prev_slice_desc.m_num_blocks_x != slice_desc.m_num_blocks_x) return false; if (prev_slice_desc.m_num_blocks_y != slice_desc.m_num_blocks_y) return false; } else if (i & 1) return false; } } else if (slice_desc.m_alpha) { return false; } if ((slice_desc.m_orig_width > slice_desc.m_width) || (slice_desc.m_orig_height > slice_desc.m_height)) return false; if ((slice_desc.m_source_file_index == 0) && (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames)) { if (!slice_desc.m_iframe) return false; } } return true; } // Do some basic validation for 2D arrays, cubemaps, video, and volumes. bool basis_compressor::validate_texture_type_constraints() { debug_printf("basis_compressor::validate_texture_type_constraints\n"); // In 2D mode anything goes (each image may have a different resolution and # of mipmap levels). if (m_params.m_tex_type == basist::cBASISTexType2D) return true; uint32_t total_basis_images = 0; for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; total_basis_images = maximum(total_basis_images, slice_desc.m_source_file_index + 1); } if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray) { // For cubemaps, validate that the total # of Basis images is a multiple of 6. if ((total_basis_images % 6) != 0) { error_printf("basis_compressor::validate_texture_type_constraints: For cubemaps the total number of input images is not a multiple of 6!\n"); return false; } } // Now validate that all the mip0's have the same dimensions, and that each image has the same # of mipmap levels. uint_vec image_mipmap_levels(total_basis_images); int width = -1, height = -1; for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; image_mipmap_levels[slice_desc.m_source_file_index] = maximum(image_mipmap_levels[slice_desc.m_source_file_index], slice_desc.m_mip_index + 1); if (slice_desc.m_mip_index != 0) continue; if (width < 0) { width = slice_desc.m_orig_width; height = slice_desc.m_orig_height; } else if ((width != (int)slice_desc.m_orig_width) || (height != (int)slice_desc.m_orig_height)) { error_printf("basis_compressor::validate_texture_type_constraints: The source image resolutions are not all equal!\n"); return false; } } for (size_t i = 1; i < image_mipmap_levels.size(); i++) { if (image_mipmap_levels[0] != image_mipmap_levels[i]) { error_printf("basis_compressor::validate_texture_type_constraints: Each image must have the same number of mipmap levels!\n"); return false; } } return true; } bool basis_compressor::extract_source_blocks() { debug_printf("basis_compressor::extract_source_blocks\n"); m_source_blocks.resize(m_total_blocks); for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; const uint32_t num_blocks_x = slice_desc.m_num_blocks_x; const uint32_t num_blocks_y = slice_desc.m_num_blocks_y; const image& source_image = m_slice_images[slice_index]; for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) source_image.extract_block_clamped(m_source_blocks[slice_desc.m_first_block_index + block_x + block_y * num_blocks_x].get_ptr(), block_x * 4, block_y * 4, 4, 4); } return true; } bool basis_compressor::process_frontend() { debug_printf("basis_compressor::process_frontend\n"); #if 0 // TODO basis_etc1_pack_params pack_params; pack_params.m_quality = cETCQualityMedium; pack_params.m_perceptual = m_params.m_perceptual; pack_params.m_use_color4 = false; pack_etc1_block_context pack_context; std::unordered_set endpoint_hash; std::unordered_set selector_hash; for (uint32_t i = 0; i < m_source_blocks.size(); i++) { etc_block blk; pack_etc1_block(blk, m_source_blocks[i].get_ptr(), pack_params, pack_context); const color_rgba c0(blk.get_block_color(0, false)); endpoint_hash.insert((c0.r | (c0.g << 5) | (c0.b << 10)) | (blk.get_inten_table(0) << 16)); const color_rgba c1(blk.get_block_color(1, false)); endpoint_hash.insert((c1.r | (c1.g << 5) | (c1.b << 10)) | (blk.get_inten_table(1) << 16)); selector_hash.insert(blk.get_raw_selector_bits()); } const uint32_t total_unique_endpoints = (uint32_t)endpoint_hash.size(); const uint32_t total_unique_selectors = (uint32_t)selector_hash.size(); if (m_params.m_debug) { debug_printf("Unique endpoints: %u, unique selectors: %u\n", total_unique_endpoints, total_unique_selectors); } #endif const double total_texels = m_total_blocks * 16.0f; int endpoint_clusters = m_params.m_max_endpoint_clusters; int selector_clusters = m_params.m_max_selector_clusters; if (endpoint_clusters > basisu_frontend::cMaxEndpointClusters) { error_printf("Too many endpoint clusters! (%u but max is %u)\n", endpoint_clusters, basisu_frontend::cMaxEndpointClusters); return false; } if (selector_clusters > basisu_frontend::cMaxSelectorClusters) { error_printf("Too many selector clusters! (%u but max is %u)\n", selector_clusters, basisu_frontend::cMaxSelectorClusters); return false; } if (m_params.m_quality_level != -1) { const float quality = saturate(m_params.m_quality_level / 255.0f); const float bits_per_endpoint_cluster = 14.0f; const float max_desired_endpoint_cluster_bits_per_texel = 1.0f; // .15f int max_endpoints = static_cast((max_desired_endpoint_cluster_bits_per_texel * total_texels) / bits_per_endpoint_cluster); const float mid = 128.0f / 255.0f; float color_endpoint_quality = quality; const float endpoint_split_point = 0.5f; // In v1.2 and in previous versions, the endpoint codebook size at quality 128 was 3072. This wasn't quite large enough. const int ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE = 4800; const int MAX_ENDPOINT_CODEBOOK_SIZE = 8192; if (color_endpoint_quality <= mid) { color_endpoint_quality = lerp(0.0f, endpoint_split_point, powf(color_endpoint_quality / mid, .65f)); max_endpoints = clamp(max_endpoints, 256, ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE); max_endpoints = minimum(max_endpoints, m_total_blocks); if (max_endpoints < 64) max_endpoints = 64; endpoint_clusters = clamp((uint32_t)(.5f + lerp(32, static_cast(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters); } else { color_endpoint_quality = powf((color_endpoint_quality - mid) / (1.0f - mid), 1.6f); max_endpoints = clamp(max_endpoints, 256, MAX_ENDPOINT_CODEBOOK_SIZE); max_endpoints = minimum(max_endpoints, m_total_blocks); if (max_endpoints < ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE) max_endpoints = ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE; endpoint_clusters = clamp((uint32_t)(.5f + lerp(ENDPOINT_CODEBOOK_MID_QUALITY_CODEBOOK_SIZE, static_cast(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters); } float bits_per_selector_cluster = 14.0f; const float max_desired_selector_cluster_bits_per_texel = 1.0f; // .15f int max_selectors = static_cast((max_desired_selector_cluster_bits_per_texel * total_texels) / bits_per_selector_cluster); max_selectors = clamp(max_selectors, 256, basisu_frontend::cMaxSelectorClusters); max_selectors = minimum(max_selectors, m_total_blocks); float color_selector_quality = quality; //color_selector_quality = powf(color_selector_quality, 1.65f); color_selector_quality = powf(color_selector_quality, 2.62f); if (max_selectors < 96) max_selectors = 96; selector_clusters = clamp((uint32_t)(.5f + lerp(96, static_cast(max_selectors), color_selector_quality)), 8, basisu_frontend::cMaxSelectorClusters); debug_printf("Max endpoints: %u, max selectors: %u\n", endpoint_clusters, selector_clusters); if (m_params.m_quality_level >= 223) { if (!m_params.m_selector_rdo_thresh.was_changed()) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .25f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .25f; } } else if (m_params.m_quality_level >= 192) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .5f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .5f; } else if (m_params.m_quality_level >= 160) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .75f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .75f; } else if (m_params.m_quality_level >= 129) { float l = (quality - 129 / 255.0f) / ((160 - 129) / 255.0f); if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= lerp(1.0f, .75f, l); if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= lerp(1.0f, .75f, l); } } basisu_frontend::params p; p.m_num_source_blocks = m_total_blocks; p.m_pSource_blocks = &m_source_blocks[0]; p.m_max_endpoint_clusters = endpoint_clusters; p.m_max_selector_clusters = selector_clusters; p.m_perceptual = m_params.m_perceptual; p.m_debug_stats = m_params.m_debug; p.m_debug_images = m_params.m_debug_images; p.m_compression_level = m_params.m_compression_level; p.m_tex_type = m_params.m_tex_type; p.m_multithreaded = m_params.m_multithreading; p.m_disable_hierarchical_endpoint_codebooks = m_params.m_disable_hierarchical_endpoint_codebooks; p.m_validate = m_params.m_validate_etc1s; p.m_pJob_pool = m_params.m_pJob_pool; p.m_pGlobal_codebooks = m_params.m_pGlobal_codebooks; // Don't keep trying to use OpenCL if it ever fails. p.m_pOpenCL_context = !m_opencl_failed ? m_pOpenCL_context : nullptr; if (!m_frontend.init(p)) { error_printf("basisu_frontend::init() failed!\n"); return false; } m_frontend.compress(); if (m_frontend.get_opencl_failed()) m_opencl_failed = true; if (m_params.m_debug_images) { for (uint32_t i = 0; i < m_slice_descs.size(); i++) { char filename[1024]; #ifdef _WIN32 sprintf_s(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i); #else snprintf(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i); #endif m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, true); #ifdef _WIN32 sprintf_s(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i); #else snprintf(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i); #endif m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, false); } } return true; } bool basis_compressor::extract_frontend_texture_data() { if (!m_params.m_compute_stats) return true; debug_printf("basis_compressor::extract_frontend_texture_data\n"); m_frontend_output_textures.resize(m_slice_descs.size()); m_best_etc1s_images.resize(m_slice_descs.size()); m_best_etc1s_images_unpacked.resize(m_slice_descs.size()); for (uint32_t i = 0; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; const uint32_t num_blocks_x = slice_desc.m_num_blocks_x; const uint32_t num_blocks_y = slice_desc.m_num_blocks_y; const uint32_t width = num_blocks_x * 4; const uint32_t height = num_blocks_y * 4; m_frontend_output_textures[i].init(texture_format::cETC1, width, height); for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) memcpy(m_frontend_output_textures[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_output_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block)); #if 0 if (m_params.m_debug_images) { char filename[1024]; sprintf_s(filename, sizeof(filename), "rdo_etc_frontend_%u_", i); write_etc1_vis_images(m_frontend_output_textures[i], filename); } #endif m_best_etc1s_images[i].init(texture_format::cETC1, width, height); for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) memcpy(m_best_etc1s_images[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_etc1s_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block)); m_best_etc1s_images[i].unpack(m_best_etc1s_images_unpacked[i]); } return true; } bool basis_compressor::process_backend() { debug_printf("basis_compressor::process_backend\n"); basisu_backend_params backend_params; backend_params.m_debug = m_params.m_debug; backend_params.m_debug_images = m_params.m_debug_images; backend_params.m_etc1s = true; backend_params.m_compression_level = m_params.m_compression_level; if (!m_params.m_no_endpoint_rdo) backend_params.m_endpoint_rdo_quality_thresh = m_params.m_endpoint_rdo_thresh; if (!m_params.m_no_selector_rdo) backend_params.m_selector_rdo_quality_thresh = m_params.m_selector_rdo_thresh; backend_params.m_used_global_codebooks = m_frontend.get_params().m_pGlobal_codebooks != nullptr; backend_params.m_validate = m_params.m_validate_output_data; m_backend.init(&m_frontend, backend_params, m_slice_descs); uint32_t total_packed_bytes = m_backend.encode(); if (!total_packed_bytes) { error_printf("basis_compressor::encode() failed!\n"); return false; } debug_printf("Total packed bytes (estimated): %u\n", total_packed_bytes); return true; } bool basis_compressor::create_basis_file_and_transcode() { debug_printf("basis_compressor::create_basis_file_and_transcode\n"); const basisu_backend_output& encoded_output = m_params.m_uastc ? m_uastc_backend_output : m_backend.get_output(); if (!m_basis_file.init(encoded_output, m_params.m_tex_type, m_params.m_userdata0, m_params.m_userdata1, m_params.m_y_flip, m_params.m_us_per_frame)) { error_printf("basis_compressor::create_basis_file_and_transcode: basisu_backend:init() failed!\n"); return false; } const uint8_vec &comp_data = m_basis_file.get_compressed_data(); m_output_basis_file = comp_data; uint32_t total_orig_pixels = 0, total_texels = 0, total_orig_texels = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[i]; total_orig_pixels += slice_desc.m_orig_width * slice_desc.m_orig_height; total_texels += slice_desc.m_width * slice_desc.m_height; } m_basis_file_size = (uint32_t)comp_data.size(); m_basis_bits_per_texel = total_orig_texels ? (comp_data.size() * 8.0f) / total_orig_texels : 0; debug_printf("Total .basis output file size: %u, %3.3f bits/texel\n", comp_data.size(), comp_data.size() * 8.0f / total_orig_pixels); if (m_params.m_validate_output_data) { interval_timer tm; tm.start(); basist::basisu_transcoder_init(); debug_printf("basist::basisu_transcoder_init: Took %f ms\n", tm.get_elapsed_ms()); // Verify the compressed data by transcoding it to ASTC (or ETC1)/BC7 and validating the CRC's. basist::basisu_transcoder decoder; if (!decoder.validate_file_checksums(&comp_data[0], (uint32_t)comp_data.size(), true)) { error_printf("decoder.validate_file_checksums() failed!\n"); return false; } m_decoded_output_textures.resize(m_slice_descs.size()); m_decoded_output_textures_unpacked.resize(m_slice_descs.size()); m_decoded_output_textures_bc7.resize(m_slice_descs.size()); m_decoded_output_textures_unpacked_bc7.resize(m_slice_descs.size()); tm.start(); if (m_params.m_pGlobal_codebooks) { decoder.set_global_codebooks(m_params.m_pGlobal_codebooks); } if (!decoder.start_transcoding(&comp_data[0], (uint32_t)comp_data.size())) { error_printf("decoder.start_transcoding() failed!\n"); return false; } double start_transcoding_time = tm.get_elapsed_secs(); debug_printf("basisu_compressor::start_transcoding() took %3.3fms\n", start_transcoding_time * 1000.0f); double total_time_etc1s_or_astc = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { gpu_image decoded_texture; decoded_texture.init(m_params.m_uastc ? texture_format::cUASTC4x4 : texture_format::cETC1, m_slice_descs[i].m_width, m_slice_descs[i].m_height); tm.start(); basist::block_format format = m_params.m_uastc ? basist::block_format::cUASTC_4x4 : basist::block_format::cETC1; uint32_t bytes_per_block = m_params.m_uastc ? 16 : 8; if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i, reinterpret_cast(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, format, bytes_per_block)) { error_printf("Transcoding failed on slice %u!\n", i); return false; } total_time_etc1s_or_astc += tm.get_elapsed_secs(); if (encoded_output.m_tex_format == basist::basis_tex_format::cETC1S) { uint32_t image_crc16 = basist::crc16(decoded_texture.get_ptr(), decoded_texture.get_size_in_bytes(), 0); if (image_crc16 != encoded_output.m_slice_image_crcs[i]) { error_printf("Decoded image data CRC check failed on slice %u!\n", i); return false; } debug_printf("Decoded image data CRC check succeeded on slice %i\n", i); } m_decoded_output_textures[i] = decoded_texture; } double total_time_bc7 = 0; if (basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cUASTC4x4) && basist::basis_is_format_supported(basist::transcoder_texture_format::cTFBC7_RGBA, basist::basis_tex_format::cETC1S)) { for (uint32_t i = 0; i < m_slice_descs.size(); i++) { gpu_image decoded_texture; decoded_texture.init(texture_format::cBC7, m_slice_descs[i].m_width, m_slice_descs[i].m_height); tm.start(); if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i, reinterpret_cast(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cBC7, 16)) { error_printf("Transcoding failed to BC7 on slice %u!\n", i); return false; } total_time_bc7 += tm.get_elapsed_secs(); m_decoded_output_textures_bc7[i] = decoded_texture; } } for (uint32_t i = 0; i < m_slice_descs.size(); i++) { m_decoded_output_textures[i].unpack(m_decoded_output_textures_unpacked[i]); if (m_decoded_output_textures_bc7[i].get_pixel_width()) m_decoded_output_textures_bc7[i].unpack(m_decoded_output_textures_unpacked_bc7[i]); } debug_printf("Transcoded to %s in %3.3fms, %f texels/sec\n", m_params.m_uastc ? "ASTC" : "ETC1", total_time_etc1s_or_astc * 1000.0f, total_orig_pixels / total_time_etc1s_or_astc); if (total_time_bc7 != 0) debug_printf("Transcoded to BC7 in %3.3fms, %f texels/sec\n", total_time_bc7 * 1000.0f, total_orig_pixels / total_time_bc7); for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; const uint32_t total_blocks = slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y; BASISU_NOTE_UNUSED(total_blocks); assert(m_decoded_output_textures[slice_index].get_total_blocks() == total_blocks); } } // if (m_params.m_validate_output_data) return true; } bool basis_compressor::write_output_files_and_compute_stats() { debug_printf("basis_compressor::write_output_files_and_compute_stats\n"); const uint8_vec& comp_data = m_params.m_create_ktx2_file ? m_output_ktx2_file : m_basis_file.get_compressed_data(); if (m_params.m_write_output_basis_files) { const std::string& output_filename = m_params.m_out_filename; if (!write_vec_to_file(output_filename.c_str(), comp_data)) { error_printf("Failed writing output data to file \"%s\"\n", output_filename.c_str()); return false; } if (m_params.m_status_output) { printf("Wrote output .basis/.ktx2 file \"%s\"\n", output_filename.c_str()); } } size_t comp_size = 0; if ((m_params.m_compute_stats) && (m_params.m_uastc) && (comp_data.size())) { void* pComp_data = tdefl_compress_mem_to_heap(&comp_data[0], comp_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); size_t decomp_size = 0; void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0); if ((decomp_size != comp_data.size()) || (memcmp(pDecomp_data, &comp_data[0], decomp_size) != 0)) { printf("basis_compressor::create_basis_file_and_transcode:: miniz compression or decompression failed!\n"); return false; } mz_free(pComp_data); mz_free(pDecomp_data); uint32_t total_texels = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) total_texels += (m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y) * 16; m_basis_bits_per_texel = comp_size * 8.0f / total_texels; debug_printf(".basis file size: %u, LZ compressed file size: %u, %3.2f bits/texel\n", (uint32_t)comp_data.size(), (uint32_t)comp_size, m_basis_bits_per_texel); } m_stats.resize(m_slice_descs.size()); if (m_params.m_validate_output_data) { for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; if (m_params.m_compute_stats) { if (m_params.m_print_stats) printf("Slice: %u\n", slice_index); image_stats& s = m_stats[slice_index]; // TODO: We used to output SSIM (during heavy encoder development), but this slowed down compression too much. We'll be adding it back. image_metrics em; // ---- .basis stats em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 3); if (m_params.m_print_stats) em.print(".basis RGB Avg: "); s.m_basis_rgb_avg_psnr = em.m_psnr; em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 4); if (m_params.m_print_stats) em.print(".basis RGBA Avg: "); s.m_basis_rgba_avg_psnr = em.m_psnr; em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 1); if (m_params.m_print_stats) em.print(".basis R Avg: "); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 1, 1); if (m_params.m_print_stats) em.print(".basis G Avg: "); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 2, 1); if (m_params.m_print_stats) em.print(".basis B Avg: "); if (m_params.m_uastc) { em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 3, 1); if (m_params.m_print_stats) em.print(".basis A Avg: "); s.m_basis_a_avg_psnr = em.m_psnr; } em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0); if (m_params.m_print_stats) em.print(".basis 709 Luma: "); s.m_basis_luma_709_psnr = static_cast(em.m_psnr); s.m_basis_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0, true, true); if (m_params.m_print_stats) em.print(".basis 601 Luma: "); s.m_basis_luma_601_psnr = static_cast(em.m_psnr); if (m_slice_descs.size() == 1) { const uint32_t output_size = comp_size ? (uint32_t)comp_size : (uint32_t)comp_data.size(); if (m_params.m_print_stats) { debug_printf(".basis RGB PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_rgb_avg_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height))); debug_printf(".basis Luma 709 PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_luma_709_psnr / ((output_size * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height))); } } if (m_decoded_output_textures_unpacked_bc7[slice_index].get_width()) { // ---- BC7 stats em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 3); if (m_params.m_print_stats) em.print("BC7 RGB Avg: "); s.m_bc7_rgb_avg_psnr = em.m_psnr; em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 4); if (m_params.m_print_stats) em.print("BC7 RGBA Avg: "); s.m_bc7_rgba_avg_psnr = em.m_psnr; em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 1); if (m_params.m_print_stats) em.print("BC7 R Avg: "); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 1, 1); if (m_params.m_print_stats) em.print("BC7 G Avg: "); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 2, 1); if (m_params.m_print_stats) em.print("BC7 B Avg: "); if (m_params.m_uastc) { em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 3, 1); if (m_params.m_print_stats) em.print("BC7 A Avg: "); s.m_bc7_a_avg_psnr = em.m_psnr; } em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 0); if (m_params.m_print_stats) em.print("BC7 709 Luma: "); s.m_bc7_luma_709_psnr = static_cast(em.m_psnr); s.m_bc7_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc7[slice_index], 0, 0, true, true); if (m_params.m_print_stats) em.print("BC7 601 Luma: "); s.m_bc7_luma_601_psnr = static_cast(em.m_psnr); } if (!m_params.m_uastc) { // ---- Nearly best possible ETC1S stats em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 3); if (m_params.m_print_stats) em.print("Unquantized ETC1S RGB Avg: "); s.m_best_etc1s_rgb_avg_psnr = static_cast(em.m_psnr); em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0); if (m_params.m_print_stats) em.print("Unquantized ETC1S 709 Luma: "); s.m_best_etc1s_luma_709_psnr = static_cast(em.m_psnr); s.m_best_etc1s_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0, true, true); if (m_params.m_print_stats) em.print("Unquantized ETC1S 601 Luma: "); s.m_best_etc1s_luma_601_psnr = static_cast(em.m_psnr); } } std::string out_basename; if (m_params.m_out_filename.size()) string_get_filename(m_params.m_out_filename.c_str(), out_basename); else if (m_params.m_source_filenames.size()) string_get_filename(m_params.m_source_filenames[slice_desc.m_source_file_index].c_str(), out_basename); string_remove_extension(out_basename); out_basename = "basis_debug_" + out_basename + string_format("_slice_%u", slice_index); if ((!m_params.m_uastc) && (m_frontend.get_params().m_debug_images)) { // Write "best" ETC1S debug images if (!m_params.m_uastc) { gpu_image best_etc1s_gpu_image(m_best_etc1s_images[slice_index]); best_etc1s_gpu_image.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_best_etc1s.ktx").c_str(), best_etc1s_gpu_image); image best_etc1s_unpacked; best_etc1s_gpu_image.unpack(best_etc1s_unpacked); save_png(out_basename + "_best_etc1s.png", best_etc1s_unpacked); } } if (m_params.m_debug_images) { // Write decoded ETC1S/ASTC debug images { gpu_image decoded_etc1s_or_astc(m_decoded_output_textures[slice_index]); decoded_etc1s_or_astc.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_transcoded_etc1s_or_astc.ktx").c_str(), decoded_etc1s_or_astc); image temp(m_decoded_output_textures_unpacked[slice_index]); temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height); save_png(out_basename + "_transcoded_etc1s_or_astc.png", temp); } // Write decoded BC7 debug images if (m_decoded_output_textures_bc7[slice_index].get_pixel_width()) { gpu_image decoded_bc7(m_decoded_output_textures_bc7[slice_index]); decoded_bc7.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_transcoded_bc7.ktx").c_str(), decoded_bc7); image temp(m_decoded_output_textures_unpacked_bc7[slice_index]); temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height); save_png(out_basename + "_transcoded_bc7.png", temp); } } } } // if (m_params.m_validate_output_data) return true; } // Make sure all the mip 0's have the same dimensions and number of mipmap levels, or we can't encode the KTX2 file. bool basis_compressor::validate_ktx2_constraints() { uint32_t base_width = 0, base_height = 0; uint32_t total_layers = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { if (m_slice_descs[i].m_mip_index == 0) { if (!base_width) { base_width = m_slice_descs[i].m_orig_width; base_height = m_slice_descs[i].m_orig_height; } else { if ((m_slice_descs[i].m_orig_width != base_width) || (m_slice_descs[i].m_orig_height != base_height)) { return false; } } total_layers = maximum(total_layers, m_slice_descs[i].m_source_file_index + 1); } } basisu::vector total_mips(total_layers); for (uint32_t i = 0; i < m_slice_descs.size(); i++) total_mips[m_slice_descs[i].m_source_file_index] = maximum(total_mips[m_slice_descs[i].m_source_file_index], m_slice_descs[i].m_mip_index + 1); for (uint32_t i = 1; i < total_layers; i++) { if (total_mips[0] != total_mips[i]) { return false; } } return true; } static uint8_t g_ktx2_etc1s_nonalpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA3,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x3F,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF }; static uint8_t g_ktx2_etc1s_alpha_dfd[60] = { 0x3C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x38,0x0,0xA3,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x3F,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF,0x40,0x0,0x3F,0xF,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF }; static uint8_t g_ktx2_uastc_nonalpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA6,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x7F,0x4,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF }; static uint8_t g_ktx2_uastc_alpha_dfd[44] = { 0x2C,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x2,0x0,0x28,0x0,0xA6,0x1,0x2,0x0,0x3,0x3,0x0,0x0,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x7F,0x3,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0xFF,0xFF,0xFF,0xFF }; void basis_compressor::get_dfd(uint8_vec &dfd, const basist::ktx2_header &header) { const uint8_t* pDFD; uint32_t dfd_len; if (m_params.m_uastc) { if (m_any_source_image_has_alpha) { pDFD = g_ktx2_uastc_alpha_dfd; dfd_len = sizeof(g_ktx2_uastc_alpha_dfd); } else { pDFD = g_ktx2_uastc_nonalpha_dfd; dfd_len = sizeof(g_ktx2_uastc_nonalpha_dfd); } } else { if (m_any_source_image_has_alpha) { pDFD = g_ktx2_etc1s_alpha_dfd; dfd_len = sizeof(g_ktx2_etc1s_alpha_dfd); } else { pDFD = g_ktx2_etc1s_nonalpha_dfd; dfd_len = sizeof(g_ktx2_etc1s_nonalpha_dfd); } } assert(dfd_len >= 44); dfd.resize(dfd_len); memcpy(dfd.data(), pDFD, dfd_len); uint32_t dfd_bits = basisu::read_le_dword(dfd.data() + 3 * sizeof(uint32_t)); dfd_bits &= ~(0xFF << 16); if (m_params.m_ktx2_srgb_transfer_func) dfd_bits |= (basist::KTX2_KHR_DF_TRANSFER_SRGB << 16); else dfd_bits |= (basist::KTX2_KHR_DF_TRANSFER_LINEAR << 16); basisu::write_le_dword(dfd.data() + 3 * sizeof(uint32_t), dfd_bits); if (header.m_supercompression_scheme != basist::KTX2_SS_NONE) { uint32_t plane_bits = basisu::read_le_dword(dfd.data() + 5 * sizeof(uint32_t)); plane_bits &= ~0xFF; basisu::write_le_dword(dfd.data() + 5 * sizeof(uint32_t), plane_bits); } // Fix up the DFD channel(s) uint32_t dfd_chan0 = basisu::read_le_dword(dfd.data() + 7 * sizeof(uint32_t)); if (m_params.m_uastc) { dfd_chan0 &= ~(0xF << 24); // TODO: Allow the caller to override this if (m_any_source_image_has_alpha) dfd_chan0 |= (basist::KTX2_DF_CHANNEL_UASTC_RGBA << 24); else dfd_chan0 |= (basist::KTX2_DF_CHANNEL_UASTC_RGB << 24); } basisu::write_le_dword(dfd.data() + 7 * sizeof(uint32_t), dfd_chan0); } bool basis_compressor::create_ktx2_file() { if (m_params.m_uastc) { if ((m_params.m_ktx2_uastc_supercompression != basist::KTX2_SS_NONE) && (m_params.m_ktx2_uastc_supercompression != basist::KTX2_SS_ZSTANDARD)) return false; } const basisu_backend_output& backend_output = m_backend.get_output(); // Determine the width/height, number of array layers, mipmap levels, and the number of faces (1 for 2D, 6 for cubemap). // This does not support 1D or 3D. uint32_t base_width = 0, base_height = 0, total_layers = 0, total_levels = 0, total_faces = 1; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { if ((m_slice_descs[i].m_mip_index == 0) && (!base_width)) { base_width = m_slice_descs[i].m_orig_width; base_height = m_slice_descs[i].m_orig_height; } total_layers = maximum(total_layers, m_slice_descs[i].m_source_file_index + 1); if (!m_slice_descs[i].m_source_file_index) total_levels = maximum(total_levels, m_slice_descs[i].m_mip_index + 1); } if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray) { assert((total_layers % 6) == 0); total_layers /= 6; assert(total_layers >= 1); total_faces = 6; } basist::ktx2_header header; memset(&header, 0, sizeof(header)); memcpy(header.m_identifier, basist::g_ktx2_file_identifier, sizeof(basist::g_ktx2_file_identifier)); header.m_pixel_width = base_width; header.m_pixel_height = base_height; header.m_face_count = total_faces; header.m_vk_format = basist::KTX2_VK_FORMAT_UNDEFINED; header.m_type_size = 1; header.m_level_count = total_levels; header.m_layer_count = (total_layers > 1) ? total_layers : 0; if (m_params.m_uastc) { switch (m_params.m_ktx2_uastc_supercompression) { case basist::KTX2_SS_NONE: { header.m_supercompression_scheme = basist::KTX2_SS_NONE; break; } case basist::KTX2_SS_ZSTANDARD: { #if BASISD_SUPPORT_KTX2_ZSTD header.m_supercompression_scheme = basist::KTX2_SS_ZSTANDARD; #else header.m_supercompression_scheme = basist::KTX2_SS_NONE; #endif break; } default: assert(0); return false; } } basisu::vector level_data_bytes(total_levels); basisu::vector compressed_level_data_bytes(total_levels); uint_vec slice_level_offsets(m_slice_descs.size()); // This will append the texture data in the correct order (for each level: layer, then face). for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; slice_level_offsets[slice_index] = level_data_bytes[slice_desc.m_mip_index].size(); if (m_params.m_uastc) append_vector(level_data_bytes[slice_desc.m_mip_index], m_uastc_backend_output.m_slice_image_data[slice_index]); else append_vector(level_data_bytes[slice_desc.m_mip_index], backend_output.m_slice_image_data[slice_index]); } // UASTC supercompression if ((m_params.m_uastc) && (header.m_supercompression_scheme == basist::KTX2_SS_ZSTANDARD)) { #if BASISD_SUPPORT_KTX2_ZSTD for (uint32_t level_index = 0; level_index < total_levels; level_index++) { compressed_level_data_bytes[level_index].resize(ZSTD_compressBound(level_data_bytes[level_index].size())); size_t result = ZSTD_compress(compressed_level_data_bytes[level_index].data(), compressed_level_data_bytes[level_index].size(), level_data_bytes[level_index].data(), level_data_bytes[level_index].size(), m_params.m_ktx2_zstd_supercompression_level); if (ZSTD_isError(result)) return false; compressed_level_data_bytes[level_index].resize(result); } #else // Can't get here assert(0); return false; #endif } else { // No supercompression compressed_level_data_bytes = level_data_bytes; } uint8_vec etc1s_global_data; // Create ETC1S global supercompressed data if (!m_params.m_uastc) { basist::ktx2_etc1s_global_data_header etc1s_global_data_header; clear_obj(etc1s_global_data_header); etc1s_global_data_header.m_endpoint_count = backend_output.m_num_endpoints; etc1s_global_data_header.m_selector_count = backend_output.m_num_selectors; etc1s_global_data_header.m_endpoints_byte_length = backend_output.m_endpoint_palette.size(); etc1s_global_data_header.m_selectors_byte_length = backend_output.m_selector_palette.size(); etc1s_global_data_header.m_tables_byte_length = backend_output.m_slice_image_tables.size(); basisu::vector etc1s_image_descs(total_levels * total_layers * total_faces); memset(etc1s_image_descs.data(), 0, etc1s_image_descs.size_in_bytes()); for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc& slice_desc = m_slice_descs[slice_index]; const uint32_t level_index = slice_desc.m_mip_index; uint32_t layer_index = slice_desc.m_source_file_index; uint32_t face_index = 0; if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray) { face_index = layer_index % 6; layer_index /= 6; } const uint32_t etc1s_image_index = level_index * (total_layers * total_faces) + layer_index * total_faces + face_index; if (slice_desc.m_alpha) { etc1s_image_descs[etc1s_image_index].m_alpha_slice_byte_length = backend_output.m_slice_image_data[slice_index].size(); etc1s_image_descs[etc1s_image_index].m_alpha_slice_byte_offset = slice_level_offsets[slice_index]; } else { if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames) etc1s_image_descs[etc1s_image_index].m_image_flags = !slice_desc.m_iframe ? basist::KTX2_IMAGE_IS_P_FRAME : 0; etc1s_image_descs[etc1s_image_index].m_rgb_slice_byte_length = backend_output.m_slice_image_data[slice_index].size(); etc1s_image_descs[etc1s_image_index].m_rgb_slice_byte_offset = slice_level_offsets[slice_index]; } } // slice_index append_vector(etc1s_global_data, (const uint8_t*)&etc1s_global_data_header, sizeof(etc1s_global_data_header)); append_vector(etc1s_global_data, (const uint8_t*)etc1s_image_descs.data(), etc1s_image_descs.size_in_bytes()); append_vector(etc1s_global_data, backend_output.m_endpoint_palette); append_vector(etc1s_global_data, backend_output.m_selector_palette); append_vector(etc1s_global_data, backend_output.m_slice_image_tables); header.m_supercompression_scheme = basist::KTX2_SS_BASISLZ; } // Key values basist::ktx2_transcoder::key_value_vec key_values(m_params.m_ktx2_key_values); key_values.enlarge(1); const char* pKTXwriter = "KTXwriter"; key_values.back().m_key.resize(strlen(pKTXwriter) + 1); memcpy(key_values.back().m_key.data(), pKTXwriter, strlen(pKTXwriter) + 1); char writer_id[128]; #ifdef _MSC_VER sprintf_s(writer_id, sizeof(writer_id), "Basis Universal %s", BASISU_LIB_VERSION_STRING); #else snprintf(writer_id, sizeof(writer_id), "Basis Universal %s", BASISU_LIB_VERSION_STRING); #endif key_values.back().m_value.resize(strlen(writer_id) + 1); memcpy(key_values.back().m_value.data(), writer_id, strlen(writer_id) + 1); key_values.sort(); #if BASISU_DISABLE_KTX2_KEY_VALUES // HACK HACK - Clear the key values array, which causes no key values to be written (triggering the ktx2check validator bug). key_values.clear(); #endif uint8_vec key_value_data; // DFD uint8_vec dfd; get_dfd(dfd, header); const uint32_t kvd_file_offset = sizeof(header) + sizeof(basist::ktx2_level_index) * total_levels + dfd.size(); for (uint32_t pass = 0; pass < 2; pass++) { for (uint32_t i = 0; i < key_values.size(); i++) { if (key_values[i].m_key.size() < 2) return false; if (key_values[i].m_key.back() != 0) return false; const uint64_t total_len = (uint64_t)key_values[i].m_key.size() + (uint64_t)key_values[i].m_value.size(); if (total_len >= UINT32_MAX) return false; packed_uint<4> le_len((uint32_t)total_len); append_vector(key_value_data, (const uint8_t*)&le_len, sizeof(le_len)); append_vector(key_value_data, key_values[i].m_key); append_vector(key_value_data, key_values[i].m_value); const uint32_t ofs = key_value_data.size() & 3; const uint32_t padding = (4 - ofs) & 3; for (uint32_t p = 0; p < padding; p++) key_value_data.push_back(0); } if (header.m_supercompression_scheme != basist::KTX2_SS_NONE) break; #if BASISU_DISABLE_KTX2_ALIGNMENT_WORKAROUND break; #endif // Hack to ensure the KVD block ends on a 16 byte boundary, because we have no other official way of aligning the data. uint32_t kvd_end_file_offset = kvd_file_offset + key_value_data.size(); uint32_t bytes_needed_to_pad = (16 - (kvd_end_file_offset & 15)) & 15; if (!bytes_needed_to_pad) { // We're good. No need to add a dummy key. break; } assert(!pass); if (pass) return false; if (bytes_needed_to_pad < 6) bytes_needed_to_pad += 16; printf("WARNING: Due to a KTX2 validator bug related to mipPadding, we must insert a dummy key into the KTX2 file of %u bytes\n", bytes_needed_to_pad); // We're not good - need to add a dummy key large enough to force file alignment so the mip level array gets aligned. // We can't just add some bytes before the mip level array because ktx2check will see that as extra data in the file that shouldn't be there in ktxValidator::validateDataSize(). key_values.enlarge(1); for (uint32_t i = 0; i < (bytes_needed_to_pad - 4 - 1 - 1); i++) key_values.back().m_key.push_back(127); key_values.back().m_key.push_back(0); key_values.back().m_value.push_back(0); key_values.sort(); key_value_data.resize(0); // Try again } basisu::vector level_index_array(total_levels); memset(level_index_array.data(), 0, level_index_array.size_in_bytes()); m_output_ktx2_file.clear(); m_output_ktx2_file.reserve(m_output_basis_file.size()); // Dummy header m_output_ktx2_file.resize(sizeof(header)); // Level index array append_vector(m_output_ktx2_file, (const uint8_t*)level_index_array.data(), level_index_array.size_in_bytes()); // DFD const uint8_t* pDFD = dfd.data(); uint32_t dfd_len = dfd.size(); header.m_dfd_byte_offset = m_output_ktx2_file.size(); header.m_dfd_byte_length = dfd_len; append_vector(m_output_ktx2_file, pDFD, dfd_len); // Key value data if (key_value_data.size()) { assert(kvd_file_offset == m_output_ktx2_file.size()); header.m_kvd_byte_offset = m_output_ktx2_file.size(); header.m_kvd_byte_length = key_value_data.size(); append_vector(m_output_ktx2_file, key_value_data); } // Global Supercompressed Data if (etc1s_global_data.size()) { uint32_t ofs = m_output_ktx2_file.size() & 7; uint32_t padding = (8 - ofs) & 7; for (uint32_t i = 0; i < padding; i++) m_output_ktx2_file.push_back(0); header.m_sgd_byte_length = etc1s_global_data.size(); header.m_sgd_byte_offset = m_output_ktx2_file.size(); append_vector(m_output_ktx2_file, etc1s_global_data); } // mipPadding if (header.m_supercompression_scheme == basist::KTX2_SS_NONE) { // We currently can't do this or the validator will incorrectly give an error. uint32_t ofs = m_output_ktx2_file.size() & 15; uint32_t padding = (16 - ofs) & 15; // Make sure we're always aligned here (due to a validator bug). if (padding) { printf("Warning: KTX2 mip level data is not 16-byte aligned. This may trigger a ktx2check validation bug. Writing %u bytes of mipPadding.\n", padding); } for (uint32_t i = 0; i < padding; i++) m_output_ktx2_file.push_back(0); } // Level data - write the smallest mipmap first. for (int level = total_levels - 1; level >= 0; level--) { level_index_array[level].m_byte_length = compressed_level_data_bytes[level].size(); if (m_params.m_uastc) level_index_array[level].m_uncompressed_byte_length = level_data_bytes[level].size(); level_index_array[level].m_byte_offset = m_output_ktx2_file.size(); append_vector(m_output_ktx2_file, compressed_level_data_bytes[level]); } // Write final header memcpy(m_output_ktx2_file.data(), &header, sizeof(header)); // Write final level index array memcpy(m_output_ktx2_file.data() + sizeof(header), level_index_array.data(), level_index_array.size_in_bytes()); debug_printf("Total .ktx2 output file size: %u\n", m_output_ktx2_file.size()); return true; } bool basis_parallel_compress( uint32_t total_threads, const basisu::vector& params_vec, basisu::vector< parallel_results >& results_vec) { assert(g_library_initialized); if (!g_library_initialized) { error_printf("basis_parallel_compress: basisu_encoder_init() MUST be called before using any encoder functionality!\n"); return false; } assert(total_threads >= 1); total_threads = basisu::maximum(total_threads, 1); job_pool jpool(total_threads); results_vec.resize(0); results_vec.resize(params_vec.size()); std::atomic result; result = true; std::atomic opencl_failed; opencl_failed = false; for (uint32_t pindex = 0; pindex < params_vec.size(); pindex++) { jpool.add_job([pindex, ¶ms_vec, &results_vec, &result, &opencl_failed] { basis_compressor_params params = params_vec[pindex]; parallel_results& results = results_vec[pindex]; interval_timer tm; tm.start(); basis_compressor c; // Dummy job pool job_pool task_jpool(1); params.m_pJob_pool = &task_jpool; // TODO: Remove this flag entirely params.m_multithreading = true; // Stop using OpenCL if a failure ever occurs. if (opencl_failed) params.m_use_opencl = false; bool status = c.init(params); if (c.get_opencl_failed()) opencl_failed = true; if (status) { basis_compressor::error_code ec = c.process(); if (c.get_opencl_failed()) opencl_failed = true; results.m_error_code = ec; if (ec == basis_compressor::cECSuccess) { results.m_basis_file = c.get_output_basis_file(); results.m_ktx2_file = c.get_output_ktx2_file(); results.m_stats = c.get_stats(); results.m_basis_bits_per_texel = c.get_basis_bits_per_texel(); results.m_any_source_image_has_alpha = c.get_any_source_image_has_alpha(); } else { result = false; } } else { results.m_error_code = basis_compressor::cECFailedInitializing; result = false; } results.m_total_time = tm.get_elapsed_secs(); } ); } // pindex jpool.wait_for_all(); if (opencl_failed) error_printf("An OpenCL error occured sometime during compression. The compressor fell back to CPU processing after the failure.\n"); return result; } void* basis_compress( const basisu::vector& source_images, uint32_t flags_and_quality, float uastc_rdo_quality, size_t* pSize, image_stats* pStats) { // Check input parameters if ((!source_images.size()) || (!pSize)) { error_printf("basis_compress: Invalid parameter\n"); assert(0); return nullptr; } *pSize = 0; // Initialize a job pool uint32_t num_threads = 1; if (flags_and_quality & cFlagThreaded) num_threads = basisu::maximum(1, std::thread::hardware_concurrency()); job_pool jp(num_threads); // Initialize the compressor parameter struct basis_compressor_params comp_params; comp_params.m_pJob_pool = &jp; comp_params.m_y_flip = (flags_and_quality & cFlagYFlip) != 0; comp_params.m_debug = (flags_and_quality & cFlagDebug) != 0; // Copy the largest mipmap level comp_params.m_source_images.resize(1); comp_params.m_source_images[0] = source_images[0]; // Copy the smaller mipmap levels, if any if (source_images.size() > 1) { comp_params.m_source_mipmap_images.resize(1); comp_params.m_source_mipmap_images[0].resize(source_images.size() - 1); for (uint32_t i = 1; i < source_images.size(); i++) comp_params.m_source_mipmap_images[0][i - 1] = source_images[i]; } comp_params.m_multithreading = (flags_and_quality & cFlagThreaded) != 0; comp_params.m_use_opencl = (flags_and_quality & cFlagUseOpenCL) != 0; comp_params.m_write_output_basis_files = false; comp_params.m_perceptual = (flags_and_quality & cFlagSRGB) != 0; comp_params.m_mip_srgb = comp_params.m_perceptual; comp_params.m_mip_gen = (flags_and_quality & (cFlagGenMipsWrap | cFlagGenMipsClamp)) != 0; comp_params.m_mip_wrapping = (flags_and_quality & cFlagGenMipsWrap) != 0; comp_params.m_uastc = (flags_and_quality & cFlagUASTC) != 0; if (comp_params.m_uastc) { comp_params.m_pack_uastc_flags = flags_and_quality & cPackUASTCLevelMask; comp_params.m_rdo_uastc = (flags_and_quality & cFlagUASTCRDO) != 0; comp_params.m_rdo_uastc_quality_scalar = uastc_rdo_quality; } else comp_params.m_quality_level = basisu::maximum(1, flags_and_quality & 255); comp_params.m_create_ktx2_file = (flags_and_quality & cFlagKTX2) != 0; if (comp_params.m_create_ktx2_file) { // Set KTX2 specific parameters. if ((flags_and_quality & cFlagKTX2UASTCSuperCompression) && (comp_params.m_uastc)) comp_params.m_ktx2_uastc_supercompression = basist::KTX2_SS_ZSTANDARD; comp_params.m_ktx2_srgb_transfer_func = comp_params.m_perceptual; } comp_params.m_compute_stats = (pStats != nullptr); comp_params.m_print_stats = (flags_and_quality & cFlagPrintStats) != 0; comp_params.m_status_output = (flags_and_quality & cFlagPrintStatus) != 0; // Create the compressor, initialize it, and process the input basis_compressor comp; if (!comp.init(comp_params)) { error_printf("basis_compress: basis_compressor::init() failed!\n"); return nullptr; } basis_compressor::error_code ec = comp.process(); if (ec != basis_compressor::cECSuccess) { error_printf("basis_compress: basis_compressor::process() failed with error code %u\n", (uint32_t)ec); return nullptr; } if ((pStats) && (comp.get_opencl_failed())) { pStats->m_opencl_failed = true; } // Get the output file data and return it to the caller void* pFile_data = nullptr; const uint8_vec* pFile_data_vec = comp_params.m_create_ktx2_file ? &comp.get_output_ktx2_file() : &comp.get_output_basis_file(); pFile_data = malloc(pFile_data_vec->size()); if (!pFile_data) { error_printf("basis_compress: Out of memory\n"); return nullptr; } memcpy(pFile_data, pFile_data_vec->get_ptr(), pFile_data_vec->size()); *pSize = pFile_data_vec->size(); if ((pStats) && (comp.get_stats().size())) { *pStats = comp.get_stats()[0]; } return pFile_data; } void* basis_compress( const uint8_t* pImageRGBA, uint32_t width, uint32_t height, uint32_t pitch_in_pixels, uint32_t flags_and_quality, float uastc_rdo_quality, size_t* pSize, image_stats* pStats) { if (!pitch_in_pixels) pitch_in_pixels = width; if ((!pImageRGBA) || (!width) || (!height) || (pitch_in_pixels < width) || (!pSize)) { error_printf("basis_compress: Invalid parameter\n"); assert(0); return nullptr; } *pSize = 0; if ((width > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (height > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION)) { error_printf("basis_compress: Image too large\n"); return nullptr; } // Copy the source image basisu::vector source_image(1); source_image[0].crop(width, height, width, g_black_color, false); for (uint32_t y = 0; y < height; y++) memcpy(source_image[0].get_ptr() + y * width, (const color_rgba*)pImageRGBA + y * pitch_in_pixels, width * sizeof(color_rgba)); return basis_compress(source_image, flags_and_quality, uastc_rdo_quality, pSize, pStats); } void basis_free_data(void* p) { free(p); } bool basis_benchmark_etc1s_opencl(bool* pOpenCL_failed) { if (pOpenCL_failed) *pOpenCL_failed = false; if (!opencl_is_available()) { error_printf("basis_benchmark_etc1s_opencl: OpenCL support must be enabled first!\n"); return false; } const uint32_t W = 1024, H = 1024; basisu::vector images; image& img = images.enlarge(1)->resize(W, H); const uint32_t NUM_RAND_LETTERS = 6000;// 40000; rand r; r.seed(200); for (uint32_t i = 0; i < NUM_RAND_LETTERS; i++) { uint32_t x = r.irand(0, W - 1), y = r.irand(0, H - 1); uint32_t sx = r.irand(1, 4), sy = r.irand(1, 4); color_rgba c(r.byte(), r.byte(), r.byte(), 255); img.debug_text(x, y, sx, sy, c, nullptr, false, "%c", static_cast(r.irand(32, 127))); } //save_png("test.png", img); image_stats stats; uint32_t flags_and_quality = cFlagSRGB | cFlagThreaded | 255; size_t comp_size = 0; double best_cpu_time = 1e+9f, best_gpu_time = 1e+9f; const uint32_t TIMES_TO_ENCODE = 2; interval_timer tm; for (uint32_t i = 0; i < TIMES_TO_ENCODE; i++) { tm.start(); void* pComp_data = basis_compress( images, flags_and_quality, 1.0f, &comp_size, &stats); double cpu_time = tm.get_elapsed_secs(); if (!pComp_data) { error_printf("basis_benchmark_etc1s_opencl: basis_compress() failed (CPU)!\n"); return false; } best_cpu_time = minimum(best_cpu_time, cpu_time); basis_free_data(pComp_data); } printf("Best CPU time: %3.3f\n", best_cpu_time); for (uint32_t i = 0; i < TIMES_TO_ENCODE; i++) { tm.start(); void* pComp_data = basis_compress( images, flags_and_quality | cFlagUseOpenCL, 1.0f, &comp_size, &stats); if (stats.m_opencl_failed) { error_printf("basis_benchmark_etc1s_opencl: OpenCL failed!\n"); basis_free_data(pComp_data); if (pOpenCL_failed) *pOpenCL_failed = true; return false; } double gpu_time = tm.get_elapsed_secs(); if (!pComp_data) { error_printf("basis_benchmark_etc1s_opencl: basis_compress() failed (GPU)!\n"); return false; } best_gpu_time = minimum(best_gpu_time, gpu_time); basis_free_data(pComp_data); } printf("Best GPU time: %3.3f\n", best_gpu_time); return best_gpu_time < best_cpu_time; } } // namespace basisu