// File: basisu_bc7enc.cpp // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_bc7enc.h" #ifdef _DEBUG #define BC7ENC_CHECK_OVERALL_ERROR 1 #else #define BC7ENC_CHECK_OVERALL_ERROR 0 #endif using namespace basist; namespace basisu { // Helpers static inline color_quad_u8 *color_quad_u8_set_clamped(color_quad_u8 *pRes, int32_t r, int32_t g, int32_t b, int32_t a) { pRes->m_c[0] = (uint8_t)clampi(r, 0, 255); pRes->m_c[1] = (uint8_t)clampi(g, 0, 255); pRes->m_c[2] = (uint8_t)clampi(b, 0, 255); pRes->m_c[3] = (uint8_t)clampi(a, 0, 255); return pRes; } static inline color_quad_u8 *color_quad_u8_set(color_quad_u8 *pRes, int32_t r, int32_t g, int32_t b, int32_t a) { assert((uint32_t)(r | g | b | a) <= 255); pRes->m_c[0] = (uint8_t)r; pRes->m_c[1] = (uint8_t)g; pRes->m_c[2] = (uint8_t)b; pRes->m_c[3] = (uint8_t)a; return pRes; } static inline bc7enc_bool color_quad_u8_notequals(const color_quad_u8 *pLHS, const color_quad_u8 *pRHS) { return (pLHS->m_c[0] != pRHS->m_c[0]) || (pLHS->m_c[1] != pRHS->m_c[1]) || (pLHS->m_c[2] != pRHS->m_c[2]) || (pLHS->m_c[3] != pRHS->m_c[3]); } static inline bc7enc_vec4F*vec4F_set_scalar(bc7enc_vec4F*pV, float x) { pV->m_c[0] = x; pV->m_c[1] = x; pV->m_c[2] = x; pV->m_c[3] = x; return pV; } static inline bc7enc_vec4F*vec4F_set(bc7enc_vec4F*pV, float x, float y, float z, float w) { pV->m_c[0] = x; pV->m_c[1] = y; pV->m_c[2] = z; pV->m_c[3] = w; return pV; } static inline bc7enc_vec4F*vec4F_saturate_in_place(bc7enc_vec4F*pV) { pV->m_c[0] = saturate(pV->m_c[0]); pV->m_c[1] = saturate(pV->m_c[1]); pV->m_c[2] = saturate(pV->m_c[2]); pV->m_c[3] = saturate(pV->m_c[3]); return pV; } static inline bc7enc_vec4F vec4F_saturate(const bc7enc_vec4F*pV) { bc7enc_vec4F res; res.m_c[0] = saturate(pV->m_c[0]); res.m_c[1] = saturate(pV->m_c[1]); res.m_c[2] = saturate(pV->m_c[2]); res.m_c[3] = saturate(pV->m_c[3]); return res; } static inline bc7enc_vec4F vec4F_from_color(const color_quad_u8 *pC) { bc7enc_vec4F res; vec4F_set(&res, pC->m_c[0], pC->m_c[1], pC->m_c[2], pC->m_c[3]); return res; } static inline bc7enc_vec4F vec4F_add(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] + pRHS->m_c[0], pLHS->m_c[1] + pRHS->m_c[1], pLHS->m_c[2] + pRHS->m_c[2], pLHS->m_c[3] + pRHS->m_c[3]); return res; } static inline bc7enc_vec4F vec4F_sub(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] - pRHS->m_c[0], pLHS->m_c[1] - pRHS->m_c[1], pLHS->m_c[2] - pRHS->m_c[2], pLHS->m_c[3] - pRHS->m_c[3]); return res; } static inline float vec4F_dot(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { return pLHS->m_c[0] * pRHS->m_c[0] + pLHS->m_c[1] * pRHS->m_c[1] + pLHS->m_c[2] * pRHS->m_c[2] + pLHS->m_c[3] * pRHS->m_c[3]; } static inline bc7enc_vec4F vec4F_mul(const bc7enc_vec4F*pLHS, float s) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] * s, pLHS->m_c[1] * s, pLHS->m_c[2] * s, pLHS->m_c[3] * s); return res; } static inline bc7enc_vec4F* vec4F_normalize_in_place(bc7enc_vec4F*pV) { float s = pV->m_c[0] * pV->m_c[0] + pV->m_c[1] * pV->m_c[1] + pV->m_c[2] * pV->m_c[2] + pV->m_c[3] * pV->m_c[3]; if (s != 0.0f) { s = 1.0f / sqrtf(s); pV->m_c[0] *= s; pV->m_c[1] *= s; pV->m_c[2] *= s; pV->m_c[3] *= s; } return pV; } // Precomputed weight constants used during least fit determination. For each entry in g_bc7_weights[]: w * w, (1.0f - w) * w, (1.0f - w) * (1.0f - w), w const float g_bc7_weights1x[2 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_bc7_weights2x[4 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.107666f, 0.220459f, 0.451416f, 0.328125f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_bc7_weights3x[8 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.019775f, 0.120850f, 0.738525f, 0.140625f, 0.079102f, 0.202148f, 0.516602f, 0.281250f, 0.177979f, 0.243896f, 0.334229f, 0.421875f, 0.334229f, 0.243896f, 0.177979f, 0.578125f, 0.516602f, 0.202148f, 0.079102f, 0.718750f, 0.738525f, 0.120850f, 0.019775f, 0.859375f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_bc7_weights4x[16 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.019775f, 0.120850f, 0.738525f, 0.140625f, 0.041260f, 0.161865f, 0.635010f, 0.203125f, 0.070557f, 0.195068f, 0.539307f, 0.265625f, 0.107666f, 0.220459f, 0.451416f, 0.328125f, 0.165039f, 0.241211f, 0.352539f, 0.406250f, 0.219727f, 0.249023f, 0.282227f, 0.468750f, 0.282227f, 0.249023f, 0.219727f, 0.531250f, 0.352539f, 0.241211f, 0.165039f, 0.593750f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 0.539307f, 0.195068f, 0.070557f, 0.734375f, 0.635010f, 0.161865f, 0.041260f, 0.796875f, 0.738525f, 0.120850f, 0.019775f, 0.859375f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_astc_weights4x[16 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.015625f, 0.109375f, 0.765625f, 0.125000f, 0.035156f, 0.152344f, 0.660156f, 0.187500f, 0.070557f, 0.195068f, 0.539307f, 0.265625f, 0.107666f, 0.220459f, 0.451416f, 0.328125f, 0.152588f, 0.238037f, 0.371338f, 0.390625f, 0.205322f, 0.247803f, 0.299072f, 0.453125f, 0.299072f, 0.247803f, 0.205322f, 0.546875f, 0.371338f, 0.238037f, 0.152588f, 0.609375f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 0.539307f, 0.195068f, 0.070557f, 0.734375f, 0.660156f, 0.152344f, 0.035156f, 0.812500f, 0.765625f, 0.109375f, 0.015625f, 0.875000f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_astc_weights5x[32 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.000977f, 0.030273f, 0.938477f, 0.031250f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.008789f, 0.084961f, 0.821289f, 0.093750f, 0.015625f, 0.109375f, 0.765625f, 0.125000f, 0.024414f, 0.131836f, 0.711914f, 0.156250f, 0.035156f, 0.152344f, 0.660156f, 0.187500f, 0.047852f, 0.170898f, 0.610352f, 0.218750f, 0.062500f, 0.187500f, 0.562500f, 0.250000f, 0.079102f, 0.202148f, 0.516602f, 0.281250f, 0.097656f, 0.214844f, 0.472656f, 0.312500f, 0.118164f, 0.225586f, 0.430664f, 0.343750f, 0.140625f, 0.234375f, 0.390625f, 0.375000f, 0.165039f, 0.241211f, 0.352539f, 0.406250f, 0.191406f, 0.246094f, 0.316406f, 0.437500f, 0.219727f, 0.249023f, 0.282227f, 0.468750f, 0.282227f, 0.249023f, 0.219727f, 0.531250f, 0.316406f, 0.246094f, 0.191406f, 0.562500f, 0.352539f, 0.241211f, 0.165039f, 0.593750f, 0.390625f, 0.234375f, 0.140625f, 0.625000f, 0.430664f, 0.225586f, 0.118164f, 0.656250f, 0.472656f, 0.214844f, 0.097656f, 0.687500f, 0.516602f, 0.202148f, 0.079102f, 0.718750f, 0.562500f, 0.187500f, 0.062500f, 0.750000f, 0.610352f, 0.170898f, 0.047852f, 0.781250f, 0.660156f, 0.152344f, 0.035156f, 0.812500f, 0.711914f, 0.131836f, 0.024414f, 0.843750f, 0.765625f, 0.109375f, 0.015625f, 0.875000f, 0.821289f, 0.084961f, 0.008789f, 0.906250f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 0.938477f, 0.030273f, 0.000977f, 0.968750f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; const float g_astc_weights_3levelsx[3 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, .5f * .5f, (1.0f - .5f) * .5f, (1.0f - .5f) * (1.0f - .5f), .5f, 1.000000f, 0.000000f, 0.000000f, 1.000000f }; static endpoint_err g_bc7_mode_1_optimal_endpoints[256][2]; // [c][pbit] static const uint32_t BC7ENC_MODE_1_OPTIMAL_INDEX = 2; static endpoint_err g_astc_4bit_3bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX = 2; static endpoint_err g_astc_4bit_2bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX = 1; static endpoint_err g_astc_range7_2bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX = 1; static endpoint_err g_astc_range13_4bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX = 2; static endpoint_err g_astc_range13_2bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX = 1; static endpoint_err g_astc_range11_5bit_optimal_endpoints[256]; // [c] static const uint32_t BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX = 13; // not 1, which is optimal, because 26 losslessly maps to BC7 4-bit weights astc_quant_bin g_astc_sorted_order_unquant[BC7ENC_TOTAL_ASTC_RANGES][256]; // [sorted unquantized order] static uint8_t g_astc_nearest_sorted_index[BC7ENC_TOTAL_ASTC_RANGES][256]; static void astc_init() { for (uint32_t range = 0; range < BC7ENC_TOTAL_ASTC_RANGES; range++) { if (!astc_is_valid_endpoint_range(range)) continue; const uint32_t levels = astc_get_levels(range); uint32_t vals[256]; // TODO for (uint32_t i = 0; i < levels; i++) vals[i] = (unquant_astc_endpoint_val(i, range) << 8) | i; std::sort(vals, vals + levels); for (uint32_t i = 0; i < levels; i++) { uint32_t order = vals[i] & 0xFF; uint32_t unq = vals[i] >> 8; g_astc_sorted_order_unquant[range][i].m_unquant = (uint8_t)unq; g_astc_sorted_order_unquant[range][i].m_index = (uint8_t)order; } // i #if 0 if (g_astc_bise_range_table[range][1] || g_astc_bise_range_table[range][2]) { printf("// Range: %u, Levels: %u, Bits: %u, Trits: %u, Quints: %u\n", range, levels, g_astc_bise_range_table[range][0], g_astc_bise_range_table[range][1], g_astc_bise_range_table[range][2]); printf("{"); for (uint32_t i = 0; i < levels; i++) { printf("{%u,%u}", g_astc_sorted_order_unquant[range][i].m_index, g_astc_sorted_order_unquant[range][i].m_unquant); if (i != (levels - 1)) printf(","); } printf("}\n"); } #endif #if 0 if (g_astc_bise_range_table[range][1] || g_astc_bise_range_table[range][2]) { printf("// Range: %u, Levels: %u, Bits: %u, Trits: %u, Quints: %u\n", range, levels, g_astc_bise_range_table[range][0], g_astc_bise_range_table[range][1], g_astc_bise_range_table[range][2]); printf("{"); for (uint32_t i = 0; i < levels; i++) { printf("{%u,%u}", g_astc_unquant[range][i].m_index, g_astc_unquant[range][i].m_unquant); if (i != (levels - 1)) printf(","); } printf("}\n"); } #endif for (uint32_t i = 0; i < 256; i++) { uint32_t best_index = 0; int best_err = INT32_MAX; for (uint32_t j = 0; j < levels; j++) { int err = g_astc_sorted_order_unquant[range][j].m_unquant - i; if (err < 0) err = -err; if (err < best_err) { best_err = err; best_index = j; } } g_astc_nearest_sorted_index[range][i] = (uint8_t)best_index; } // i } // range } static inline uint32_t astc_interpolate(uint32_t l, uint32_t h, uint32_t w) { // This is for linear values, not sRGB. l = (l << 8) | l; h = (h << 8) | h; uint32_t k = (l * (64 - w) + h * w + 32) >> 6; return k >> 8; } // Initialize the lookup table used for optimal single color compression in mode 1. Must be called before encoding. void bc7enc_compress_block_init() { astc_init(); // BC7 666.1 for (int c = 0; c < 256; c++) { for (uint32_t lp = 0; lp < 2; lp++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 64; l++) { uint32_t low = ((l << 1) | lp) << 1; low |= (low >> 7); for (uint32_t h = 0; h < 64; h++) { uint32_t high = ((h << 1) | lp) << 1; high |= (high >> 7); const int k = (low * (64 - g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX]) + high * g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX] + 32) >> 6; const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_bc7_mode_1_optimal_endpoints[c][lp] = best; } // lp } // c // ASTC [0,15] 3-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 16; l++) { uint32_t low = (l << 4) | l; for (uint32_t h = 0; h < 16; h++) { uint32_t high = (h << 4) | h; const int k = astc_interpolate(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_4bit_3bit_optimal_endpoints[c] = best; } // c // ASTC [0,15] 2-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 16; l++) { uint32_t low = (l << 4) | l; for (uint32_t h = 0; h < 16; h++) { uint32_t high = (h << 4) | h; const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_4bit_2bit_optimal_endpoints[c] = best; } // c // ASTC range 7 [0,11] 2-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 12; l++) { uint32_t low = g_astc_sorted_order_unquant[7][l].m_unquant; for (uint32_t h = 0; h < 12; h++) { uint32_t high = g_astc_sorted_order_unquant[7][h].m_unquant; const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_range7_2bit_optimal_endpoints[c] = best; } // c // ASTC range 13 [0,47] 4-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 48; l++) { uint32_t low = g_astc_sorted_order_unquant[13][l].m_unquant; for (uint32_t h = 0; h < 48; h++) { uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant; const int k = astc_interpolate(low, high, g_astc_weights4[BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_range13_4bit_optimal_endpoints[c] = best; } // c // ASTC range 13 [0,47] 2-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 48; l++) { uint32_t low = g_astc_sorted_order_unquant[13][l].m_unquant; for (uint32_t h = 0; h < 48; h++) { uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant; const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_range13_2bit_optimal_endpoints[c] = best; } // c // ASTC range 11 [0,31] 5-bit for (int c = 0; c < 256; c++) { endpoint_err best; best.m_error = (uint16_t)UINT16_MAX; for (uint32_t l = 0; l < 32; l++) { uint32_t low = g_astc_sorted_order_unquant[11][l].m_unquant; for (uint32_t h = 0; h < 32; h++) { uint32_t high = g_astc_sorted_order_unquant[11][h].m_unquant; const int k = astc_interpolate(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]); const int err = (k - c) * (k - c); if (err < best.m_error) { best.m_error = (uint16_t)err; best.m_lo = (uint8_t)l; best.m_hi = (uint8_t)h; } } // h } // l g_astc_range11_5bit_optimal_endpoints[c] = best; } // c } static void compute_least_squares_endpoints_rgba(uint32_t N, const uint8_t *pSelectors, const bc7enc_vec4F* pSelector_weights, bc7enc_vec4F* pXl, bc7enc_vec4F* pXh, const color_quad_u8 *pColors) { // Least squares using normal equations: http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec10.pdf // I did this in matrix form first, expanded out all the ops, then optimized it a bit. double z00 = 0.0f, z01 = 0.0f, z10 = 0.0f, z11 = 0.0f; double q00_r = 0.0f, q10_r = 0.0f, t_r = 0.0f; double q00_g = 0.0f, q10_g = 0.0f, t_g = 0.0f; double q00_b = 0.0f, q10_b = 0.0f, t_b = 0.0f; double q00_a = 0.0f, q10_a = 0.0f, t_a = 0.0f; for (uint32_t i = 0; i < N; i++) { const uint32_t sel = pSelectors[i]; z00 += pSelector_weights[sel].m_c[0]; z10 += pSelector_weights[sel].m_c[1]; z11 += pSelector_weights[sel].m_c[2]; float w = pSelector_weights[sel].m_c[3]; q00_r += w * pColors[i].m_c[0]; t_r += pColors[i].m_c[0]; q00_g += w * pColors[i].m_c[1]; t_g += pColors[i].m_c[1]; q00_b += w * pColors[i].m_c[2]; t_b += pColors[i].m_c[2]; q00_a += w * pColors[i].m_c[3]; t_a += pColors[i].m_c[3]; } q10_r = t_r - q00_r; q10_g = t_g - q00_g; q10_b = t_b - q00_b; q10_a = t_a - q00_a; z01 = z10; double det = z00 * z11 - z01 * z10; if (det != 0.0f) det = 1.0f / det; double iz00, iz01, iz10, iz11; iz00 = z11 * det; iz01 = -z01 * det; iz10 = -z10 * det; iz11 = z00 * det; pXl->m_c[0] = (float)(iz00 * q00_r + iz01 * q10_r); pXh->m_c[0] = (float)(iz10 * q00_r + iz11 * q10_r); pXl->m_c[1] = (float)(iz00 * q00_g + iz01 * q10_g); pXh->m_c[1] = (float)(iz10 * q00_g + iz11 * q10_g); pXl->m_c[2] = (float)(iz00 * q00_b + iz01 * q10_b); pXh->m_c[2] = (float)(iz10 * q00_b + iz11 * q10_b); pXl->m_c[3] = (float)(iz00 * q00_a + iz01 * q10_a); pXh->m_c[3] = (float)(iz10 * q00_a + iz11 * q10_a); for (uint32_t c = 0; c < 4; c++) { if ((pXl->m_c[c] < 0.0f) || (pXh->m_c[c] > 255.0f)) { uint32_t lo_v = UINT32_MAX, hi_v = 0; for (uint32_t i = 0; i < N; i++) { lo_v = minimumu(lo_v, pColors[i].m_c[c]); hi_v = maximumu(hi_v, pColors[i].m_c[c]); } if (lo_v == hi_v) { pXl->m_c[c] = (float)lo_v; pXh->m_c[c] = (float)hi_v; } } } } static void compute_least_squares_endpoints_rgb(uint32_t N, const uint8_t *pSelectors, const bc7enc_vec4F*pSelector_weights, bc7enc_vec4F*pXl, bc7enc_vec4F*pXh, const color_quad_u8 *pColors) { double z00 = 0.0f, z01 = 0.0f, z10 = 0.0f, z11 = 0.0f; double q00_r = 0.0f, q10_r = 0.0f, t_r = 0.0f; double q00_g = 0.0f, q10_g = 0.0f, t_g = 0.0f; double q00_b = 0.0f, q10_b = 0.0f, t_b = 0.0f; for (uint32_t i = 0; i < N; i++) { const uint32_t sel = pSelectors[i]; z00 += pSelector_weights[sel].m_c[0]; z10 += pSelector_weights[sel].m_c[1]; z11 += pSelector_weights[sel].m_c[2]; float w = pSelector_weights[sel].m_c[3]; q00_r += w * pColors[i].m_c[0]; t_r += pColors[i].m_c[0]; q00_g += w * pColors[i].m_c[1]; t_g += pColors[i].m_c[1]; q00_b += w * pColors[i].m_c[2]; t_b += pColors[i].m_c[2]; } q10_r = t_r - q00_r; q10_g = t_g - q00_g; q10_b = t_b - q00_b; z01 = z10; double det = z00 * z11 - z01 * z10; if (det != 0.0f) det = 1.0f / det; double iz00, iz01, iz10, iz11; iz00 = z11 * det; iz01 = -z01 * det; iz10 = -z10 * det; iz11 = z00 * det; pXl->m_c[0] = (float)(iz00 * q00_r + iz01 * q10_r); pXh->m_c[0] = (float)(iz10 * q00_r + iz11 * q10_r); pXl->m_c[1] = (float)(iz00 * q00_g + iz01 * q10_g); pXh->m_c[1] = (float)(iz10 * q00_g + iz11 * q10_g); pXl->m_c[2] = (float)(iz00 * q00_b + iz01 * q10_b); pXh->m_c[2] = (float)(iz10 * q00_b + iz11 * q10_b); pXl->m_c[3] = 255.0f; pXh->m_c[3] = 255.0f; for (uint32_t c = 0; c < 3; c++) { if ((pXl->m_c[c] < 0.0f) || (pXh->m_c[c] > 255.0f)) { uint32_t lo_v = UINT32_MAX, hi_v = 0; for (uint32_t i = 0; i < N; i++) { lo_v = minimumu(lo_v, pColors[i].m_c[c]); hi_v = maximumu(hi_v, pColors[i].m_c[c]); } if (lo_v == hi_v) { pXl->m_c[c] = (float)lo_v; pXh->m_c[c] = (float)hi_v; } } } } static inline color_quad_u8 scale_color(const color_quad_u8* pC, const color_cell_compressor_params* pParams) { color_quad_u8 results; if (pParams->m_astc_endpoint_range) { for (uint32_t i = 0; i < 4; i++) { results.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pC->m_c[i]].m_unquant; } } else { const uint32_t n = pParams->m_comp_bits + (pParams->m_has_pbits ? 1 : 0); assert((n >= 4) && (n <= 8)); for (uint32_t i = 0; i < 4; i++) { uint32_t v = pC->m_c[i] << (8 - n); v |= (v >> n); assert(v <= 255); results.m_c[i] = (uint8_t)(v); } } return results; } static inline uint64_t compute_color_distance_rgb(const color_quad_u8 *pE1, const color_quad_u8 *pE2, bc7enc_bool perceptual, const uint32_t weights[4]) { int dr, dg, db; if (perceptual) { const int l1 = pE1->m_c[0] * 109 + pE1->m_c[1] * 366 + pE1->m_c[2] * 37; const int cr1 = ((int)pE1->m_c[0] << 9) - l1; const int cb1 = ((int)pE1->m_c[2] << 9) - l1; const int l2 = pE2->m_c[0] * 109 + pE2->m_c[1] * 366 + pE2->m_c[2] * 37; const int cr2 = ((int)pE2->m_c[0] << 9) - l2; const int cb2 = ((int)pE2->m_c[2] << 9) - l2; dr = (l1 - l2) >> 8; dg = (cr1 - cr2) >> 8; db = (cb1 - cb2) >> 8; } else { dr = (int)pE1->m_c[0] - (int)pE2->m_c[0]; dg = (int)pE1->m_c[1] - (int)pE2->m_c[1]; db = (int)pE1->m_c[2] - (int)pE2->m_c[2]; } return weights[0] * (uint32_t)(dr * dr) + weights[1] * (uint32_t)(dg * dg) + weights[2] * (uint32_t)(db * db); } static inline uint64_t compute_color_distance_rgba(const color_quad_u8 *pE1, const color_quad_u8 *pE2, bc7enc_bool perceptual, const uint32_t weights[4]) { int da = (int)pE1->m_c[3] - (int)pE2->m_c[3]; return compute_color_distance_rgb(pE1, pE2, perceptual, weights) + (weights[3] * (uint32_t)(da * da)); } static uint64_t pack_mode1_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors) { uint32_t best_err = UINT_MAX; uint32_t best_p = 0; for (uint32_t p = 0; p < 2; p++) { uint32_t err = g_bc7_mode_1_optimal_endpoints[r][p].m_error + g_bc7_mode_1_optimal_endpoints[g][p].m_error + g_bc7_mode_1_optimal_endpoints[b][p].m_error; if (err < best_err) { best_err = err; best_p = p; } } const endpoint_err *pEr = &g_bc7_mode_1_optimal_endpoints[r][best_p]; const endpoint_err *pEg = &g_bc7_mode_1_optimal_endpoints[g][best_p]; const endpoint_err *pEb = &g_bc7_mode_1_optimal_endpoints[b][best_p]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0); pResults->m_pbits[0] = best_p; pResults->m_pbits[1] = 0; memset(pSelectors, BC7ENC_MODE_1_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 3; i++) { uint32_t low = ((pResults->m_low_endpoint.m_c[i] << 1) | pResults->m_pbits[0]) << 1; low |= (low >> 7); uint32_t high = ((pResults->m_high_endpoint.m_c[i] << 1) | pResults->m_pbits[0]) << 1; high |= (high >> 7); p.m_c[i] = (uint8_t)((low * (64 - g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX]) + high * g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX] + 32) >> 6); } p.m_c[3] = 255; uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t pack_astc_4bit_3bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors) { const endpoint_err *pEr = &g_astc_4bit_3bit_optimal_endpoints[r]; const endpoint_err *pEg = &g_astc_4bit_3bit_optimal_endpoints[g]; const endpoint_err *pEb = &g_astc_4bit_3bit_optimal_endpoints[b]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0); pResults->m_pbits[0] = 0; pResults->m_pbits[1] = 0; for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } memset(pSelectors, BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 3; i++) { uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i]; uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i]; p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]); } p.m_c[3] = 255; uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t pack_astc_4bit_2bit_to_one_color_rgba(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint32_t a, uint8_t *pSelectors) { const endpoint_err *pEr = &g_astc_4bit_2bit_optimal_endpoints[r]; const endpoint_err *pEg = &g_astc_4bit_2bit_optimal_endpoints[g]; const endpoint_err *pEb = &g_astc_4bit_2bit_optimal_endpoints[b]; const endpoint_err *pEa = &g_astc_4bit_2bit_optimal_endpoints[a]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, pEa->m_lo); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, pEa->m_hi); pResults->m_pbits[0] = 0; pResults->m_pbits[1] = 0; for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } memset(pSelectors, BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 4; i++) { uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i]; uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i]; p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]); } uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgba(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t pack_astc_range7_2bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors) { assert(pParams->m_astc_endpoint_range == 7 && pParams->m_num_selector_weights == 4); const endpoint_err *pEr = &g_astc_range7_2bit_optimal_endpoints[r]; const endpoint_err *pEg = &g_astc_range7_2bit_optimal_endpoints[g]; const endpoint_err *pEb = &g_astc_range7_2bit_optimal_endpoints[b]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0); pResults->m_pbits[0] = 0; pResults->m_pbits[1] = 0; for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } memset(pSelectors, BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 3; i++) { uint32_t low = g_astc_sorted_order_unquant[7][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[7][pResults->m_high_endpoint.m_c[i]].m_unquant; p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]); } p.m_c[3] = 255; uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t pack_astc_range13_2bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors) { assert(pParams->m_astc_endpoint_range == 13 && pParams->m_num_selector_weights == 4 && !pParams->m_has_alpha); const endpoint_err *pEr = &g_astc_range13_2bit_optimal_endpoints[r]; const endpoint_err *pEg = &g_astc_range13_2bit_optimal_endpoints[g]; const endpoint_err *pEb = &g_astc_range13_2bit_optimal_endpoints[b]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 47); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 47); pResults->m_pbits[0] = 0; pResults->m_pbits[1] = 0; for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } memset(pSelectors, BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 4; i++) { uint32_t low = g_astc_sorted_order_unquant[13][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[13][pResults->m_high_endpoint.m_c[i]].m_unquant; p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]); } uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t pack_astc_range11_5bit_to_one_color(const color_cell_compressor_params* pParams, color_cell_compressor_results* pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t* pSelectors) { assert(pParams->m_astc_endpoint_range == 11 && pParams->m_num_selector_weights == 32 && !pParams->m_has_alpha); const endpoint_err* pEr = &g_astc_range11_5bit_optimal_endpoints[r]; const endpoint_err* pEg = &g_astc_range11_5bit_optimal_endpoints[g]; const endpoint_err* pEb = &g_astc_range11_5bit_optimal_endpoints[b]; color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 31); color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 31); pResults->m_pbits[0] = 0; pResults->m_pbits[1] = 0; for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } memset(pSelectors, BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX, pParams->m_num_pixels); color_quad_u8 p; for (uint32_t i = 0; i < 4; i++) { uint32_t low = g_astc_sorted_order_unquant[11][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[11][pResults->m_high_endpoint.m_c[i]].m_unquant; p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]); } uint64_t total_err = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights); pResults->m_best_overall_err = total_err; return total_err; } static uint64_t evaluate_solution(const color_quad_u8 *pLow, const color_quad_u8 *pHigh, const uint32_t pbits[2], const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults) { color_quad_u8 quantMinColor = *pLow; color_quad_u8 quantMaxColor = *pHigh; if (pParams->m_has_pbits) { uint32_t minPBit, maxPBit; if (pParams->m_endpoints_share_pbit) maxPBit = minPBit = pbits[0]; else { minPBit = pbits[0]; maxPBit = pbits[1]; } quantMinColor.m_c[0] = (uint8_t)((pLow->m_c[0] << 1) | minPBit); quantMinColor.m_c[1] = (uint8_t)((pLow->m_c[1] << 1) | minPBit); quantMinColor.m_c[2] = (uint8_t)((pLow->m_c[2] << 1) | minPBit); quantMinColor.m_c[3] = (uint8_t)((pLow->m_c[3] << 1) | minPBit); quantMaxColor.m_c[0] = (uint8_t)((pHigh->m_c[0] << 1) | maxPBit); quantMaxColor.m_c[1] = (uint8_t)((pHigh->m_c[1] << 1) | maxPBit); quantMaxColor.m_c[2] = (uint8_t)((pHigh->m_c[2] << 1) | maxPBit); quantMaxColor.m_c[3] = (uint8_t)((pHigh->m_c[3] << 1) | maxPBit); } color_quad_u8 actualMinColor = scale_color(&quantMinColor, pParams); color_quad_u8 actualMaxColor = scale_color(&quantMaxColor, pParams); const uint32_t N = pParams->m_num_selector_weights; assert(N >= 1 && N <= 32); color_quad_u8 weightedColors[32]; weightedColors[0] = actualMinColor; weightedColors[N - 1] = actualMaxColor; const uint32_t nc = pParams->m_has_alpha ? 4 : 3; if (pParams->m_astc_endpoint_range) { for (uint32_t i = 1; i < (N - 1); i++) { for (uint32_t j = 0; j < nc; j++) weightedColors[i].m_c[j] = (uint8_t)(astc_interpolate(actualMinColor.m_c[j], actualMaxColor.m_c[j], pParams->m_pSelector_weights[i])); } } else { for (uint32_t i = 1; i < (N - 1); i++) for (uint32_t j = 0; j < nc; j++) weightedColors[i].m_c[j] = (uint8_t)((actualMinColor.m_c[j] * (64 - pParams->m_pSelector_weights[i]) + actualMaxColor.m_c[j] * pParams->m_pSelector_weights[i] + 32) >> 6); } const int lr = actualMinColor.m_c[0]; const int lg = actualMinColor.m_c[1]; const int lb = actualMinColor.m_c[2]; const int dr = actualMaxColor.m_c[0] - lr; const int dg = actualMaxColor.m_c[1] - lg; const int db = actualMaxColor.m_c[2] - lb; uint64_t total_err = 0; if (pParams->m_pForce_selectors) { for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { const color_quad_u8* pC = &pParams->m_pPixels[i]; const uint8_t sel = pParams->m_pForce_selectors[i]; assert(sel < N); total_err += (pParams->m_has_alpha ? compute_color_distance_rgba : compute_color_distance_rgb)(&weightedColors[sel], pC, pParams->m_perceptual, pParams->m_weights); pResults->m_pSelectors_temp[i] = sel; } } else if (!pParams->m_perceptual) { if (pParams->m_has_alpha) { const int la = actualMinColor.m_c[3]; const int da = actualMaxColor.m_c[3] - la; const float f = N / (float)(squarei(dr) + squarei(dg) + squarei(db) + squarei(da) + .00000125f); for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { const color_quad_u8 *pC = &pParams->m_pPixels[i]; int r = pC->m_c[0]; int g = pC->m_c[1]; int b = pC->m_c[2]; int a = pC->m_c[3]; int best_sel = (int)((float)((r - lr) * dr + (g - lg) * dg + (b - lb) * db + (a - la) * da) * f + .5f); best_sel = clampi(best_sel, 1, N - 1); uint64_t err0 = compute_color_distance_rgba(&weightedColors[best_sel - 1], pC, BC7ENC_FALSE, pParams->m_weights); uint64_t err1 = compute_color_distance_rgba(&weightedColors[best_sel], pC, BC7ENC_FALSE, pParams->m_weights); if (err0 == err1) { // Prefer non-interpolation if ((best_sel - 1) == 0) best_sel = 0; } else if (err1 > err0) { err1 = err0; --best_sel; } total_err += err1; pResults->m_pSelectors_temp[i] = (uint8_t)best_sel; } } else { const float f = N / (float)(squarei(dr) + squarei(dg) + squarei(db) + .00000125f); for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { const color_quad_u8 *pC = &pParams->m_pPixels[i]; int r = pC->m_c[0]; int g = pC->m_c[1]; int b = pC->m_c[2]; int sel = (int)((float)((r - lr) * dr + (g - lg) * dg + (b - lb) * db) * f + .5f); sel = clampi(sel, 1, N - 1); uint64_t err0 = compute_color_distance_rgb(&weightedColors[sel - 1], pC, BC7ENC_FALSE, pParams->m_weights); uint64_t err1 = compute_color_distance_rgb(&weightedColors[sel], pC, BC7ENC_FALSE, pParams->m_weights); int best_sel = sel; uint64_t best_err = err1; if (err0 == err1) { // Prefer non-interpolation if ((best_sel - 1) == 0) best_sel = 0; } else if (err0 < best_err) { best_err = err0; best_sel = sel - 1; } total_err += best_err; pResults->m_pSelectors_temp[i] = (uint8_t)best_sel; } } } else { for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { uint64_t best_err = UINT64_MAX; uint32_t best_sel = 0; if (pParams->m_has_alpha) { for (uint32_t j = 0; j < N; j++) { uint64_t err = compute_color_distance_rgba(&weightedColors[j], &pParams->m_pPixels[i], BC7ENC_TRUE, pParams->m_weights); if (err < best_err) { best_err = err; best_sel = j; } // Prefer non-interpolation else if ((err == best_err) && (j == (N - 1))) best_sel = j; } } else { for (uint32_t j = 0; j < N; j++) { uint64_t err = compute_color_distance_rgb(&weightedColors[j], &pParams->m_pPixels[i], BC7ENC_TRUE, pParams->m_weights); if (err < best_err) { best_err = err; best_sel = j; } // Prefer non-interpolation else if ((err == best_err) && (j == (N - 1))) best_sel = j; } } total_err += best_err; pResults->m_pSelectors_temp[i] = (uint8_t)best_sel; } } if (total_err < pResults->m_best_overall_err) { pResults->m_best_overall_err = total_err; pResults->m_low_endpoint = *pLow; pResults->m_high_endpoint = *pHigh; pResults->m_pbits[0] = pbits[0]; pResults->m_pbits[1] = pbits[1]; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); } return total_err; } static bool areDegenerateEndpoints(color_quad_u8* pTrialMinColor, color_quad_u8* pTrialMaxColor, const bc7enc_vec4F* pXl, const bc7enc_vec4F* pXh) { for (uint32_t i = 0; i < 3; i++) { if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i]) { if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.0f) return true; } } return false; } static void fixDegenerateEndpoints(uint32_t mode, color_quad_u8 *pTrialMinColor, color_quad_u8 *pTrialMaxColor, const bc7enc_vec4F*pXl, const bc7enc_vec4F*pXh, uint32_t iscale, int flags) { if (mode == 255) { for (uint32_t i = 0; i < 3; i++) { if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i]) { if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.000125f) { if (flags & 1) { if (pTrialMinColor->m_c[i] > 0) pTrialMinColor->m_c[i]--; } if (flags & 2) { if (pTrialMaxColor->m_c[i] < iscale) pTrialMaxColor->m_c[i]++; } } } } } else if (mode == 1) { // fix degenerate case where the input collapses to a single colorspace voxel, and we loose all freedom (test with grayscale ramps) for (uint32_t i = 0; i < 3; i++) { if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i]) { if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.000125f) { if (pTrialMinColor->m_c[i] > (iscale >> 1)) { if (pTrialMinColor->m_c[i] > 0) pTrialMinColor->m_c[i]--; else if (pTrialMaxColor->m_c[i] < iscale) pTrialMaxColor->m_c[i]++; } else { if (pTrialMaxColor->m_c[i] < iscale) pTrialMaxColor->m_c[i]++; else if (pTrialMinColor->m_c[i] > 0) pTrialMinColor->m_c[i]--; } } } } } } static uint64_t find_optimal_solution(uint32_t mode, bc7enc_vec4F xl, bc7enc_vec4F xh, const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults) { vec4F_saturate_in_place(&xl); vec4F_saturate_in_place(&xh); if (pParams->m_astc_endpoint_range) { const uint32_t levels = astc_get_levels(pParams->m_astc_endpoint_range); const float scale = 255.0f; color_quad_u8 trialMinColor8Bit, trialMaxColor8Bit; color_quad_u8_set_clamped(&trialMinColor8Bit, (int)(xl.m_c[0] * scale + .5f), (int)(xl.m_c[1] * scale + .5f), (int)(xl.m_c[2] * scale + .5f), (int)(xl.m_c[3] * scale + .5f)); color_quad_u8_set_clamped(&trialMaxColor8Bit, (int)(xh.m_c[0] * scale + .5f), (int)(xh.m_c[1] * scale + .5f), (int)(xh.m_c[2] * scale + .5f), (int)(xh.m_c[3] * scale + .5f)); color_quad_u8 trialMinColor, trialMaxColor; for (uint32_t i = 0; i < 4; i++) { trialMinColor.m_c[i] = g_astc_nearest_sorted_index[pParams->m_astc_endpoint_range][trialMinColor8Bit.m_c[i]]; trialMaxColor.m_c[i] = g_astc_nearest_sorted_index[pParams->m_astc_endpoint_range][trialMaxColor8Bit.m_c[i]]; } if (areDegenerateEndpoints(&trialMinColor, &trialMaxColor, &xl, &xh)) { color_quad_u8 trialMinColorOrig(trialMinColor), trialMaxColorOrig(trialMaxColor); fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 1); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); trialMinColor = trialMinColorOrig; trialMaxColor = trialMaxColorOrig; fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 0); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); trialMinColor = trialMinColorOrig; trialMaxColor = trialMaxColorOrig; fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 2); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); trialMinColor = trialMinColorOrig; trialMaxColor = trialMaxColorOrig; fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 3); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); } else { if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) { evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); } } for (uint32_t i = 0; i < 4; i++) { pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index; pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index; } } else if (pParams->m_has_pbits) { const int iscalep = (1 << (pParams->m_comp_bits + 1)) - 1; const float scalep = (float)iscalep; const int32_t totalComps = pParams->m_has_alpha ? 4 : 3; uint32_t best_pbits[2]; color_quad_u8 bestMinColor, bestMaxColor; if (!pParams->m_endpoints_share_pbit) { float best_err0 = 1e+9; float best_err1 = 1e+9; for (int p = 0; p < 2; p++) { color_quad_u8 xMinColor, xMaxColor; // Notes: The pbit controls which quantization intervals are selected. // total_levels=2^(comp_bits+1), where comp_bits=4 for mode 0, etc. // pbit 0: v=(b*2)/(total_levels-1), pbit 1: v=(b*2+1)/(total_levels-1) where b is the component bin from [0,total_levels/2-1] and v is the [0,1] component value // rearranging you get for pbit 0: b=floor(v*(total_levels-1)/2+.5) // rearranging you get for pbit 1: b=floor((v*(total_levels-1)-1)/2+.5) for (uint32_t c = 0; c < 4; c++) { xMinColor.m_c[c] = (uint8_t)(clampi(((int)((xl.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p)); xMaxColor.m_c[c] = (uint8_t)(clampi(((int)((xh.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p)); } color_quad_u8 scaledLow = scale_color(&xMinColor, pParams); color_quad_u8 scaledHigh = scale_color(&xMaxColor, pParams); float err0 = 0, err1 = 0; for (int i = 0; i < totalComps; i++) { err0 += squaref(scaledLow.m_c[i] - xl.m_c[i] * 255.0f); err1 += squaref(scaledHigh.m_c[i] - xh.m_c[i] * 255.0f); } if (err0 < best_err0) { best_err0 = err0; best_pbits[0] = p; bestMinColor.m_c[0] = xMinColor.m_c[0] >> 1; bestMinColor.m_c[1] = xMinColor.m_c[1] >> 1; bestMinColor.m_c[2] = xMinColor.m_c[2] >> 1; bestMinColor.m_c[3] = xMinColor.m_c[3] >> 1; } if (err1 < best_err1) { best_err1 = err1; best_pbits[1] = p; bestMaxColor.m_c[0] = xMaxColor.m_c[0] >> 1; bestMaxColor.m_c[1] = xMaxColor.m_c[1] >> 1; bestMaxColor.m_c[2] = xMaxColor.m_c[2] >> 1; bestMaxColor.m_c[3] = xMaxColor.m_c[3] >> 1; } } } else { // Endpoints share pbits float best_err = 1e+9; for (int p = 0; p < 2; p++) { color_quad_u8 xMinColor, xMaxColor; for (uint32_t c = 0; c < 4; c++) { xMinColor.m_c[c] = (uint8_t)(clampi(((int)((xl.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p)); xMaxColor.m_c[c] = (uint8_t)(clampi(((int)((xh.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p)); } color_quad_u8 scaledLow = scale_color(&xMinColor, pParams); color_quad_u8 scaledHigh = scale_color(&xMaxColor, pParams); float err = 0; for (int i = 0; i < totalComps; i++) err += squaref((scaledLow.m_c[i] / 255.0f) - xl.m_c[i]) + squaref((scaledHigh.m_c[i] / 255.0f) - xh.m_c[i]); if (err < best_err) { best_err = err; best_pbits[0] = p; best_pbits[1] = p; for (uint32_t j = 0; j < 4; j++) { bestMinColor.m_c[j] = xMinColor.m_c[j] >> 1; bestMaxColor.m_c[j] = xMaxColor.m_c[j] >> 1; } } } } fixDegenerateEndpoints(mode, &bestMinColor, &bestMaxColor, &xl, &xh, iscalep >> 1, 0); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&bestMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&bestMaxColor, &pResults->m_high_endpoint) || (best_pbits[0] != pResults->m_pbits[0]) || (best_pbits[1] != pResults->m_pbits[1])) evaluate_solution(&bestMinColor, &bestMaxColor, best_pbits, pParams, pResults); } else { const int iscale = (1 << pParams->m_comp_bits) - 1; const float scale = (float)iscale; color_quad_u8 trialMinColor, trialMaxColor; color_quad_u8_set_clamped(&trialMinColor, (int)(xl.m_c[0] * scale + .5f), (int)(xl.m_c[1] * scale + .5f), (int)(xl.m_c[2] * scale + .5f), (int)(xl.m_c[3] * scale + .5f)); color_quad_u8_set_clamped(&trialMaxColor, (int)(xh.m_c[0] * scale + .5f), (int)(xh.m_c[1] * scale + .5f), (int)(xh.m_c[2] * scale + .5f), (int)(xh.m_c[3] * scale + .5f)); fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, iscale, 0); if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint)) evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults); } return pResults->m_best_overall_err; } void check_best_overall_error(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults) { const uint32_t n = pParams->m_num_selector_weights; assert(n <= 32); color_quad_u8 colors[32]; for (uint32_t c = 0; c < 4; c++) { colors[0].m_c[c] = g_astc_unquant[pParams->m_astc_endpoint_range][pResults->m_astc_low_endpoint.m_c[c]].m_unquant; assert(colors[0].m_c[c] == g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[c]].m_unquant); colors[n-1].m_c[c] = g_astc_unquant[pParams->m_astc_endpoint_range][pResults->m_astc_high_endpoint.m_c[c]].m_unquant; assert(colors[n-1].m_c[c] == g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[c]].m_unquant); } for (uint32_t i = 1; i < pParams->m_num_selector_weights - 1; i++) for (uint32_t c = 0; c < 4; c++) colors[i].m_c[c] = (uint8_t)astc_interpolate(colors[0].m_c[c], colors[n - 1].m_c[c], pParams->m_pSelector_weights[i]); uint64_t total_err = 0; for (uint32_t p = 0; p < pParams->m_num_pixels; p++) { const color_quad_u8 &orig = pParams->m_pPixels[p]; const color_quad_u8 &packed = colors[pResults->m_pSelectors[p]]; if (pParams->m_has_alpha) total_err += compute_color_distance_rgba(&orig, &packed, pParams->m_perceptual, pParams->m_weights); else total_err += compute_color_distance_rgb(&orig, &packed, pParams->m_perceptual, pParams->m_weights); } assert(total_err == pResults->m_best_overall_err); // HACK HACK //if (total_err != pResults->m_best_overall_err) // printf("X"); } static bool is_solid_rgb(const color_cell_compressor_params *pParams, uint32_t &r, uint32_t &g, uint32_t &b) { r = pParams->m_pPixels[0].m_c[0]; g = pParams->m_pPixels[0].m_c[1]; b = pParams->m_pPixels[0].m_c[2]; bool allSame = true; for (uint32_t i = 1; i < pParams->m_num_pixels; i++) { if ((r != pParams->m_pPixels[i].m_c[0]) || (g != pParams->m_pPixels[i].m_c[1]) || (b != pParams->m_pPixels[i].m_c[2])) { allSame = false; break; } } return allSame; } static bool is_solid_rgba(const color_cell_compressor_params *pParams, uint32_t &r, uint32_t &g, uint32_t &b, uint32_t &a) { r = pParams->m_pPixels[0].m_c[0]; g = pParams->m_pPixels[0].m_c[1]; b = pParams->m_pPixels[0].m_c[2]; a = pParams->m_pPixels[0].m_c[3]; bool allSame = true; for (uint32_t i = 1; i < pParams->m_num_pixels; i++) { if ((r != pParams->m_pPixels[i].m_c[0]) || (g != pParams->m_pPixels[i].m_c[1]) || (b != pParams->m_pPixels[i].m_c[2]) || (a != pParams->m_pPixels[i].m_c[3])) { allSame = false; break; } } return allSame; } uint64_t color_cell_compression(uint32_t mode, const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, const bc7enc_compress_block_params *pComp_params) { if (!pParams->m_astc_endpoint_range) { assert((mode == 6) || (!pParams->m_has_alpha)); } assert(pParams->m_num_selector_weights >= 1 && pParams->m_num_selector_weights <= 32); assert(pParams->m_pSelector_weights[0] == 0); assert(pParams->m_pSelector_weights[pParams->m_num_selector_weights - 1] == 64); pResults->m_best_overall_err = UINT64_MAX; uint32_t cr, cg, cb, ca; // If the partition's colors are all the same, then just pack them as a single color. if (!pParams->m_pForce_selectors) { if (mode == 1) { if (is_solid_rgb(pParams, cr, cg, cb)) return pack_mode1_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors); } else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 8) && (!pParams->m_has_alpha)) { if (is_solid_rgb(pParams, cr, cg, cb)) return pack_astc_4bit_3bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors); } else if ((pParams->m_astc_endpoint_range == 7) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha)) { if (is_solid_rgb(pParams, cr, cg, cb)) return pack_astc_range7_2bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors); } else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 4) && (pParams->m_has_alpha)) { if (is_solid_rgba(pParams, cr, cg, cb, ca)) return pack_astc_4bit_2bit_to_one_color_rgba(pParams, pResults, cr, cg, cb, ca, pResults->m_pSelectors); } else if ((pParams->m_astc_endpoint_range == 13) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha)) { if (is_solid_rgb(pParams, cr, cg, cb)) return pack_astc_range13_2bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors); } else if ((pParams->m_astc_endpoint_range == 11) && (pParams->m_num_selector_weights == 32) && (!pParams->m_has_alpha)) { if (is_solid_rgb(pParams, cr, cg, cb)) return pack_astc_range11_5bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors); } } // Compute partition's mean color and principle axis. bc7enc_vec4F meanColor, axis; vec4F_set_scalar(&meanColor, 0.0f); for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]); meanColor = vec4F_add(&meanColor, &color); } bc7enc_vec4F meanColorScaled = vec4F_mul(&meanColor, 1.0f / (float)(pParams->m_num_pixels)); meanColor = vec4F_mul(&meanColor, 1.0f / (float)(pParams->m_num_pixels * 255.0f)); vec4F_saturate_in_place(&meanColor); if (pParams->m_has_alpha) { // Use incremental PCA for RGBA PCA, because it's simple. vec4F_set_scalar(&axis, 0.0f); for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]); color = vec4F_sub(&color, &meanColorScaled); bc7enc_vec4F a = vec4F_mul(&color, color.m_c[0]); bc7enc_vec4F b = vec4F_mul(&color, color.m_c[1]); bc7enc_vec4F c = vec4F_mul(&color, color.m_c[2]); bc7enc_vec4F d = vec4F_mul(&color, color.m_c[3]); bc7enc_vec4F n = i ? axis : color; vec4F_normalize_in_place(&n); axis.m_c[0] += vec4F_dot(&a, &n); axis.m_c[1] += vec4F_dot(&b, &n); axis.m_c[2] += vec4F_dot(&c, &n); axis.m_c[3] += vec4F_dot(&d, &n); } vec4F_normalize_in_place(&axis); } else { // Use covar technique for RGB PCA, because it doesn't require per-pixel normalization. float cov[6] = { 0, 0, 0, 0, 0, 0 }; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { const color_quad_u8 *pV = &pParams->m_pPixels[i]; float r = pV->m_c[0] - meanColorScaled.m_c[0]; float g = pV->m_c[1] - meanColorScaled.m_c[1]; float b = pV->m_c[2] - meanColorScaled.m_c[2]; cov[0] += r*r; cov[1] += r*g; cov[2] += r*b; cov[3] += g*g; cov[4] += g*b; cov[5] += b*b; } float xr = .9f, xg = 1.0f, xb = .7f; for (uint32_t iter = 0; iter < 3; iter++) { float r = xr * cov[0] + xg * cov[1] + xb * cov[2]; float g = xr * cov[1] + xg * cov[3] + xb * cov[4]; float b = xr * cov[2] + xg * cov[4] + xb * cov[5]; float m = maximumf(maximumf(fabsf(r), fabsf(g)), fabsf(b)); if (m > 1e-10f) { m = 1.0f / m; r *= m; g *= m; b *= m; } xr = r; xg = g; xb = b; } float len = xr * xr + xg * xg + xb * xb; if (len < 1e-10f) vec4F_set_scalar(&axis, 0.0f); else { len = 1.0f / sqrtf(len); xr *= len; xg *= len; xb *= len; vec4F_set(&axis, xr, xg, xb, 0); } } if (vec4F_dot(&axis, &axis) < .5f) { if (pParams->m_perceptual) vec4F_set(&axis, .213f, .715f, .072f, pParams->m_has_alpha ? .715f : 0); else vec4F_set(&axis, 1.0f, 1.0f, 1.0f, pParams->m_has_alpha ? 1.0f : 0); vec4F_normalize_in_place(&axis); } bc7enc_vec4F minColor, maxColor; float l = 1e+9f, h = -1e+9f; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]); bc7enc_vec4F q = vec4F_sub(&color, &meanColorScaled); float d = vec4F_dot(&q, &axis); l = minimumf(l, d); h = maximumf(h, d); } l *= (1.0f / 255.0f); h *= (1.0f / 255.0f); bc7enc_vec4F b0 = vec4F_mul(&axis, l); bc7enc_vec4F b1 = vec4F_mul(&axis, h); bc7enc_vec4F c0 = vec4F_add(&meanColor, &b0); bc7enc_vec4F c1 = vec4F_add(&meanColor, &b1); minColor = vec4F_saturate(&c0); maxColor = vec4F_saturate(&c1); bc7enc_vec4F whiteVec; vec4F_set_scalar(&whiteVec, 1.0f); if (vec4F_dot(&minColor, &whiteVec) > vec4F_dot(&maxColor, &whiteVec)) { #if 1 std::swap(minColor.m_c[0], maxColor.m_c[0]); std::swap(minColor.m_c[1], maxColor.m_c[1]); std::swap(minColor.m_c[2], maxColor.m_c[2]); std::swap(minColor.m_c[3], maxColor.m_c[3]); #elif 0 // Fails to compile correctly with MSVC 2019 (code generation bug) std::swap(minColor, maxColor); #else // Fails with MSVC 2019 bc7enc_vec4F temp = minColor; minColor = maxColor; maxColor = temp; #endif } // First find a solution using the block's PCA. if (!find_optimal_solution(mode, minColor, maxColor, pParams, pResults)) return 0; for (uint32_t i = 0; i < pComp_params->m_least_squares_passes; i++) { // Now try to refine the solution using least squares by computing the optimal endpoints from the current selectors. bc7enc_vec4F xl, xh; vec4F_set_scalar(&xl, 0.0f); vec4F_set_scalar(&xh, 0.0f); if (pParams->m_has_alpha) compute_least_squares_endpoints_rgba(pParams->m_num_pixels, pResults->m_pSelectors, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); else compute_least_squares_endpoints_rgb(pParams->m_num_pixels, pResults->m_pSelectors, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); xl = vec4F_mul(&xl, (1.0f / 255.0f)); xh = vec4F_mul(&xh, (1.0f / 255.0f)); if (!find_optimal_solution(mode, xl, xh, pParams, pResults)) return 0; } if ((!pParams->m_pForce_selectors) && (pComp_params->m_uber_level > 0)) { // In uber level 1, try varying the selectors a little, somewhat like cluster fit would. First try incrementing the minimum selectors, // then try decrementing the selectrors, then try both. uint8_t selectors_temp[16], selectors_temp1[16]; memcpy(selectors_temp, pResults->m_pSelectors, pParams->m_num_pixels); const int max_selector = pParams->m_num_selector_weights - 1; uint32_t min_sel = 256; uint32_t max_sel = 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { uint32_t sel = selectors_temp[i]; min_sel = minimumu(min_sel, sel); max_sel = maximumu(max_sel, sel); } for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { uint32_t sel = selectors_temp[i]; if ((sel == min_sel) && (sel < (pParams->m_num_selector_weights - 1))) sel++; selectors_temp1[i] = (uint8_t)sel; } bc7enc_vec4F xl, xh; vec4F_set_scalar(&xl, 0.0f); vec4F_set_scalar(&xh, 0.0f); if (pParams->m_has_alpha) compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); else compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); xl = vec4F_mul(&xl, (1.0f / 255.0f)); xh = vec4F_mul(&xh, (1.0f / 255.0f)); if (!find_optimal_solution(mode, xl, xh, pParams, pResults)) return 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { uint32_t sel = selectors_temp[i]; if ((sel == max_sel) && (sel > 0)) sel--; selectors_temp1[i] = (uint8_t)sel; } if (pParams->m_has_alpha) compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); else compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); xl = vec4F_mul(&xl, (1.0f / 255.0f)); xh = vec4F_mul(&xh, (1.0f / 255.0f)); if (!find_optimal_solution(mode, xl, xh, pParams, pResults)) return 0; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) { uint32_t sel = selectors_temp[i]; if ((sel == min_sel) && (sel < (pParams->m_num_selector_weights - 1))) sel++; else if ((sel == max_sel) && (sel > 0)) sel--; selectors_temp1[i] = (uint8_t)sel; } if (pParams->m_has_alpha) compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); else compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); xl = vec4F_mul(&xl, (1.0f / 255.0f)); xh = vec4F_mul(&xh, (1.0f / 255.0f)); if (!find_optimal_solution(mode, xl, xh, pParams, pResults)) return 0; // In uber levels 2+, try taking more advantage of endpoint extrapolation by scaling the selectors in one direction or another. const uint32_t uber_err_thresh = (pParams->m_num_pixels * 56) >> 4; if ((pComp_params->m_uber_level >= 2) && (pResults->m_best_overall_err > uber_err_thresh)) { const int Q = (pComp_params->m_uber_level >= 4) ? (pComp_params->m_uber_level - 2) : 1; for (int ly = -Q; ly <= 1; ly++) { for (int hy = max_selector - 1; hy <= (max_selector + Q); hy++) { if ((ly == 0) && (hy == max_selector)) continue; for (uint32_t i = 0; i < pParams->m_num_pixels; i++) selectors_temp1[i] = (uint8_t)clampf(floorf((float)max_selector * ((float)selectors_temp[i] - (float)ly) / ((float)hy - (float)ly) + .5f), 0, (float)max_selector); //bc7enc_vec4F xl, xh; vec4F_set_scalar(&xl, 0.0f); vec4F_set_scalar(&xh, 0.0f); if (pParams->m_has_alpha) compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); else compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels); xl = vec4F_mul(&xl, (1.0f / 255.0f)); xh = vec4F_mul(&xh, (1.0f / 255.0f)); if (!find_optimal_solution(mode, xl, xh, pParams, pResults)) return 0; } } } } if (!pParams->m_pForce_selectors) { // Try encoding the partition as a single color by using the optimal single colors tables to encode the block to its mean. if (mode == 1) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f); uint64_t avg_err = pack_mode1_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 8) && (!pParams->m_has_alpha)) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f); uint64_t avg_err = pack_astc_4bit_3bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } else if ((pParams->m_astc_endpoint_range == 7) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha)) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f); uint64_t avg_err = pack_astc_range7_2bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 4) && (pParams->m_has_alpha)) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f), a = (int)(.5f + meanColor.m_c[3] * 255.0f); uint64_t avg_err = pack_astc_4bit_2bit_to_one_color_rgba(pParams, &avg_results, r, g, b, a, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } else if ((pParams->m_astc_endpoint_range == 13) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha)) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f); uint64_t avg_err = pack_astc_range13_2bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } else if ((pParams->m_astc_endpoint_range == 11) && (pParams->m_num_selector_weights == 32) && (!pParams->m_has_alpha)) { color_cell_compressor_results avg_results = *pResults; const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f); uint64_t avg_err = pack_astc_range11_5bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp); if (avg_err < pResults->m_best_overall_err) { *pResults = avg_results; memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels); pResults->m_best_overall_err = avg_err; } } } #if BC7ENC_CHECK_OVERALL_ERROR check_best_overall_error(pParams, pResults); #endif return pResults->m_best_overall_err; } uint64_t color_cell_compression_est_astc( uint32_t num_weights, uint32_t num_comps, const uint32_t *pWeight_table, uint32_t num_pixels, const color_quad_u8* pPixels, uint64_t best_err_so_far, const uint32_t weights[4]) { assert(num_comps == 3 || num_comps == 4); assert(num_weights >= 1 && num_weights <= 32); assert(pWeight_table[0] == 0 && pWeight_table[num_weights - 1] == 64); // Find RGB bounds as an approximation of the block's principle axis uint32_t lr = 255, lg = 255, lb = 255, la = 255; uint32_t hr = 0, hg = 0, hb = 0, ha = 0; if (num_comps == 4) { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; if (pC->m_c[0] < lr) lr = pC->m_c[0]; if (pC->m_c[1] < lg) lg = pC->m_c[1]; if (pC->m_c[2] < lb) lb = pC->m_c[2]; if (pC->m_c[3] < la) la = pC->m_c[3]; if (pC->m_c[0] > hr) hr = pC->m_c[0]; if (pC->m_c[1] > hg) hg = pC->m_c[1]; if (pC->m_c[2] > hb) hb = pC->m_c[2]; if (pC->m_c[3] > ha) ha = pC->m_c[3]; } } else { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; if (pC->m_c[0] < lr) lr = pC->m_c[0]; if (pC->m_c[1] < lg) lg = pC->m_c[1]; if (pC->m_c[2] < lb) lb = pC->m_c[2]; if (pC->m_c[0] > hr) hr = pC->m_c[0]; if (pC->m_c[1] > hg) hg = pC->m_c[1]; if (pC->m_c[2] > hb) hb = pC->m_c[2]; } la = 255; ha = 255; } color_quad_u8 lowColor, highColor; color_quad_u8_set(&lowColor, lr, lg, lb, la); color_quad_u8_set(&highColor, hr, hg, hb, ha); // Place endpoints at bbox diagonals and compute interpolated colors color_quad_u8 weightedColors[32]; weightedColors[0] = lowColor; weightedColors[num_weights - 1] = highColor; for (uint32_t i = 1; i < (num_weights - 1); i++) { weightedColors[i].m_c[0] = (uint8_t)astc_interpolate(lowColor.m_c[0], highColor.m_c[0], pWeight_table[i]); weightedColors[i].m_c[1] = (uint8_t)astc_interpolate(lowColor.m_c[1], highColor.m_c[1], pWeight_table[i]); weightedColors[i].m_c[2] = (uint8_t)astc_interpolate(lowColor.m_c[2], highColor.m_c[2], pWeight_table[i]); weightedColors[i].m_c[3] = (num_comps == 4) ? (uint8_t)astc_interpolate(lowColor.m_c[3], highColor.m_c[3], pWeight_table[i]) : 255; } // Compute dots and thresholds const int ar = highColor.m_c[0] - lowColor.m_c[0]; const int ag = highColor.m_c[1] - lowColor.m_c[1]; const int ab = highColor.m_c[2] - lowColor.m_c[2]; const int aa = highColor.m_c[3] - lowColor.m_c[3]; int dots[32]; if (num_comps == 4) { for (uint32_t i = 0; i < num_weights; i++) dots[i] = weightedColors[i].m_c[0] * ar + weightedColors[i].m_c[1] * ag + weightedColors[i].m_c[2] * ab + weightedColors[i].m_c[3] * aa; } else { assert(aa == 0); for (uint32_t i = 0; i < num_weights; i++) dots[i] = weightedColors[i].m_c[0] * ar + weightedColors[i].m_c[1] * ag + weightedColors[i].m_c[2] * ab; } int thresh[32 - 1]; for (uint32_t i = 0; i < (num_weights - 1); i++) thresh[i] = (dots[i] + dots[i + 1] + 1) >> 1; uint64_t total_err = 0; if ((weights[0] | weights[1] | weights[2] | weights[3]) == 1) { if (num_comps == 4) { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2] + aa * pC->m_c[3]; // Find approximate selector uint32_t s = 0; for (int j = num_weights - 2; j >= 0; j--) { if (d >= thresh[j]) { s = j + 1; break; } } // Compute error const color_quad_u8* pE1 = &weightedColors[s]; int dr = (int)pE1->m_c[0] - (int)pC->m_c[0]; int dg = (int)pE1->m_c[1] - (int)pC->m_c[1]; int db = (int)pE1->m_c[2] - (int)pC->m_c[2]; int da = (int)pE1->m_c[3] - (int)pC->m_c[3]; total_err += (dr * dr) + (dg * dg) + (db * db) + (da * da); if (total_err > best_err_so_far) break; } } else { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2]; // Find approximate selector uint32_t s = 0; for (int j = num_weights - 2; j >= 0; j--) { if (d >= thresh[j]) { s = j + 1; break; } } // Compute error const color_quad_u8* pE1 = &weightedColors[s]; int dr = (int)pE1->m_c[0] - (int)pC->m_c[0]; int dg = (int)pE1->m_c[1] - (int)pC->m_c[1]; int db = (int)pE1->m_c[2] - (int)pC->m_c[2]; total_err += (dr * dr) + (dg * dg) + (db * db); if (total_err > best_err_so_far) break; } } } else { if (num_comps == 4) { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2] + aa * pC->m_c[3]; // Find approximate selector uint32_t s = 0; for (int j = num_weights - 2; j >= 0; j--) { if (d >= thresh[j]) { s = j + 1; break; } } // Compute error const color_quad_u8* pE1 = &weightedColors[s]; int dr = (int)pE1->m_c[0] - (int)pC->m_c[0]; int dg = (int)pE1->m_c[1] - (int)pC->m_c[1]; int db = (int)pE1->m_c[2] - (int)pC->m_c[2]; int da = (int)pE1->m_c[3] - (int)pC->m_c[3]; total_err += weights[0] * (dr * dr) + weights[1] * (dg * dg) + weights[2] * (db * db) + weights[3] * (da * da); if (total_err > best_err_so_far) break; } } else { for (uint32_t i = 0; i < num_pixels; i++) { const color_quad_u8* pC = &pPixels[i]; int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2]; // Find approximate selector uint32_t s = 0; for (int j = num_weights - 2; j >= 0; j--) { if (d >= thresh[j]) { s = j + 1; break; } } // Compute error const color_quad_u8* pE1 = &weightedColors[s]; int dr = (int)pE1->m_c[0] - (int)pC->m_c[0]; int dg = (int)pE1->m_c[1] - (int)pC->m_c[1]; int db = (int)pE1->m_c[2] - (int)pC->m_c[2]; total_err += weights[0] * (dr * dr) + weights[1] * (dg * dg) + weights[2] * (db * db); if (total_err > best_err_so_far) break; } } } return total_err; } } // namespace basisu