// basisu_enc.cpp // Copyright (C) 2019 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_enc.h" #include "lodepng.h" #include "basisu_resampler.h" #include "basisu_resampler_filters.h" #include "basisu_etc.h" #include "transcoder/basisu_transcoder.h" #if defined(_WIN32) // For QueryPerformanceCounter/QueryPerformanceFrequency #define WIN32_LEAN_AND_MEAN #include <windows.h> #endif namespace basisu { uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; double interval_timer::g_timer_freq; uint8_t g_hamming_dist[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; // Encoder library initialization (just call once at startup) void basisu_encoder_init() { basist::basisu_transcoder_init(); } void error_printf(const char *pFmt, ...) { char buf[2048]; va_list args; va_start(args, pFmt); #ifdef _WIN32 vsprintf_s(buf, sizeof(buf), pFmt, args); #else vsnprintf(buf, sizeof(buf), pFmt, args); #endif va_end(args); fprintf(stderr, "ERROR: %s", buf); } #if defined(_WIN32) inline void query_counter(timer_ticks* pTicks) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); } inline void query_counter_frequency(timer_ticks* pTicks) { QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); } #elif defined(__APPLE__) #include <sys/time.h> inline void query_counter(timer_ticks* pTicks) { struct timeval cur_time; gettimeofday(&cur_time, NULL); *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); } inline void query_counter_frequency(timer_ticks* pTicks) { *pTicks = 1000000; } #elif defined(__GNUC__) #include <sys/timex.h> inline void query_counter(timer_ticks* pTicks) { struct timeval cur_time; gettimeofday(&cur_time, NULL); *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); } inline void query_counter_frequency(timer_ticks* pTicks) { *pTicks = 1000000; } #else #error TODO #endif interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) { if (!g_timer_freq) init(); } void interval_timer::start() { query_counter(&m_start_time); m_started = true; m_stopped = false; } void interval_timer::stop() { assert(m_started); query_counter(&m_stop_time); m_stopped = true; } double interval_timer::get_elapsed_secs() const { assert(m_started); if (!m_started) return 0; timer_ticks stop_time = m_stop_time; if (!m_stopped) query_counter(&stop_time); timer_ticks delta = stop_time - m_start_time; return delta * g_timer_freq; } void interval_timer::init() { if (!g_timer_freq) { query_counter_frequency(&g_freq); g_timer_freq = 1.0f / g_freq; query_counter(&g_init_ticks); } } timer_ticks interval_timer::get_ticks() { if (!g_timer_freq) init(); timer_ticks ticks; query_counter(&ticks); return ticks - g_init_ticks; } double interval_timer::ticks_to_secs(timer_ticks ticks) { if (!g_timer_freq) init(); return ticks * g_timer_freq; } bool load_png(const char* pFilename, image& img) { std::vector<uint8_t> buffer; unsigned err = lodepng::load_file(buffer, std::string(pFilename)); if (err) return false; unsigned w = 0, h = 0; if (sizeof(void *) == sizeof(uint32_t)) { // Inspect the image first on 32-bit builds, to see if the image would require too much memory. lodepng::State state; err = lodepng_inspect(&w, &h, &state, &buffer[0], buffer.size()); if ((err != 0) || (!w) || (!h)) return false; const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t); // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception. const uint32_t MAX_ALLOC_SIZE = 250000000; if (exepected_alloc_size >= MAX_ALLOC_SIZE) { error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); return false; } w = h = 0; } std::vector<uint8_t> out; err = lodepng::decode(out, w, h, &buffer[0], buffer.size()); if ((err != 0) || (!w) || (!h)) return false; if (out.size() != (w * h * 4)) return false; img.resize(w, h); memcpy(img.get_ptr(), &out[0], out.size()); return true; } bool save_png(const char* pFilename, const image & img, uint32_t image_save_flags, uint32_t grayscale_comp) { if (!img.get_total_pixels()) return false; std::vector<uint8_t> out; unsigned err = 0; if (image_save_flags & cImageSaveGrayscale) { uint8_vec g_pixels(img.get_width() * img.get_height()); uint8_t *pDst = &g_pixels[0]; for (uint32_t y = 0; y < img.get_height(); y++) for (uint32_t x = 0; x < img.get_width(); x++) *pDst++ = img(x, y)[grayscale_comp]; err = lodepng::encode(out, (const uint8_t*)& g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8); } else { bool has_alpha = img.has_alpha(); if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0)) { uint8_vec rgb_pixels(img.get_width() * 3 * img.get_height()); uint8_t *pDst = &rgb_pixels[0]; for (uint32_t y = 0; y < img.get_height(); y++) { for (uint32_t x = 0; x < img.get_width(); x++) { const color_rgba& c = img(x, y); pDst[0] = c.r; pDst[1] = c.g; pDst[2] = c.b; pDst += 3; } } err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8); } else { err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8); } } err = lodepng::save_file(out, std::string(pFilename)); if (err) return false; return true; } bool read_file_to_vec(const char* pFilename, uint8_vec& data) { FILE* pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, pFilename, "rb"); #else pFile = fopen(pFilename, "rb"); #endif if (!pFile) return false; fseek(pFile, 0, SEEK_END); #ifdef _WIN32 int64_t filesize = _ftelli64(pFile); #else int64_t filesize = ftello(pFile); #endif if (filesize < 0) { fclose(pFile); return false; } fseek(pFile, 0, SEEK_SET); if (sizeof(size_t) == sizeof(uint32_t)) { if (filesize > 0x70000000) { // File might be too big to load safely in one alloc fclose(pFile); return false; } } data.resize((size_t)filesize); if (filesize) { if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) { fclose(pFile); return false; } } fclose(pFile); return true; } bool write_data_to_file(const char* pFilename, const void* pData, size_t len) { FILE* pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, pFilename, "wb"); #else pFile = fopen(pFilename, "wb"); #endif if (!pFile) return false; if (len) { if (fwrite(pData, 1, len, pFile) != len) { fclose(pFile); return false; } } return fclose(pFile) != EOF; } float linear_to_srgb(float l) { assert(l >= 0.0f && l <= 1.0f); if (l < .0031308f) return saturate(l * 12.92f); else return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); } float srgb_to_linear(float s) { assert(s >= 0.0f && s <= 1.0f); if (s < .04045f) return saturate(s * (1.0f/12.92f)); else return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); } bool image_resample(const image &src, image &dst, bool srgb, const char *pFilter, float filter_scale, bool wrapping, uint32_t first_comp, uint32_t num_comps) { assert((first_comp + num_comps) <= 4); const int cMaxComps = 4; const uint32_t src_w = src.get_width(), src_h = src.get_height(); const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) { printf("Image is too large!\n"); return false; } if (!src_w || !src_h || !dst_w || !dst_h) return false; if ((num_comps < 1) || (num_comps > cMaxComps)) return false; if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) { printf("Image is too large!\n"); return false; } if ((src_w == dst_w) && (src_h == dst_h)) { dst = src; return true; } float srgb_to_linear_table[256]; if (srgb) { for (int i = 0; i < 256; ++i) srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); } const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; if (srgb) { for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); } std::vector<float> samples[cMaxComps]; Resampler *resamplers[cMaxComps]; resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); samples[0].resize(src_w); for (uint32_t i = 1; i < num_comps; ++i) { resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); samples[i].resize(src_w); } uint32_t dst_y = 0; for (uint32_t src_y = 0; src_y < src_h; ++src_y) { const color_rgba *pSrc = &src(0, src_y); // Put source lines into resampler(s) for (uint32_t x = 0; x < src_w; ++x) { for (uint32_t c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const uint32_t v = (*pSrc)[comp_index]; if (!srgb || (comp_index == 3)) samples[c][x] = v * (1.0f / 255.0f); else samples[c][x] = srgb_to_linear_table[v]; } pSrc++; } for (uint32_t c = 0; c < num_comps; ++c) { if (!resamplers[c]->put_line(&samples[c][0])) { for (uint32_t i = 0; i < num_comps; i++) delete resamplers[i]; return false; } } // Now retrieve any output lines for (;;) { uint32_t c; for (c = 0; c < num_comps; ++c) { const uint32_t comp_index = first_comp + c; const float *pOutput_samples = resamplers[c]->get_line(); if (!pOutput_samples) break; const bool linear_flag = !srgb || (comp_index == 3); color_rgba *pDst = &dst(0, dst_y); for (uint32_t x = 0; x < dst_w; x++) { // TODO: Add dithering if (linear_flag) { int j = (int)(255.0f * pOutput_samples[x] + .5f); (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); } else { int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; } pDst++; } } if (c < num_comps) break; ++dst_y; } } for (uint32_t i = 0; i < num_comps; ++i) delete resamplers[i]; return true; } void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) { // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen if (!num_syms) return; if (1 == num_syms) { A[0].m_key = 1; return; } A[0].m_key += A[1].m_key; int s = 2, r = 0, next; for (next = 1; next < (num_syms - 1); ++next) { if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) { A[next].m_key = A[r].m_key; A[r].m_key = static_cast<uint16_t>(next); ++r; } else { A[next].m_key = A[s].m_key; ++s; } if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) { A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[r].m_key); A[r].m_key = static_cast<uint16_t>(next); ++r; } else { A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[s].m_key); ++s; } } A[num_syms - 2].m_key = 0; for (next = num_syms - 3; next >= 0; --next) { A[next].m_key = 1 + A[A[next].m_key].m_key; } int num_avail = 1, num_used = 0, depth = 0; r = num_syms - 2; next = num_syms - 1; while (num_avail > 0) { for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) ; for ( ; num_avail > num_used; --next, --num_avail) A[next].m_key = static_cast<uint16_t>(depth); num_avail = 2 * num_used; num_used = 0; ++depth; } } void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) { int i; uint32_t total = 0; if (code_list_len <= 1) return; for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) pNum_codes[max_code_size] += pNum_codes[i]; for (i = max_code_size; i > 0; i--) total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); while (total != (1UL << max_code_size)) { pNum_codes[max_code_size]--; for (i = max_code_size - 1; i > 0; i--) { if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } } total--; } } sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) { uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; clear_obj(hist); for (i = 0; i < num_syms; i++) { uint32_t freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; } while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { const uint32_t *pHist = &hist[pass << 8]; uint32_t offsets[256], cur_ofs = 0; for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; sym_freq *t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; } return pCur_syms; } bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) { if (max_code_size > cHuffmanMaxSupportedCodeSize) return false; if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) return false; uint32_t total_used_syms = 0; for (uint32_t i = 0; i < num_syms; i++) if (pFreq[i]) total_used_syms++; if (!total_used_syms) return false; std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); for (uint32_t i = 0, j = 0; i < num_syms; i++) { if (pFreq[i]) { sym_freq0[j].m_key = pFreq[i]; sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); } } sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; clear_obj(num_codes); for (uint32_t i = 0; i < total_used_syms; i++) { if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) return false; num_codes[pSym_freq[i].m_key]++; } canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); m_code_sizes.resize(0); m_code_sizes.resize(num_syms); m_codes.resize(0); m_codes.resize(num_syms); for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) for (uint32_t l = num_codes[i]; l > 0; l--) m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; next_code[1] = 0; for (uint32_t j = 0, i = 2; i <= max_code_size; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1); for (uint32_t i = 0; i < num_syms; i++) { uint32_t rev_code = 0, code, code_size; if ((code_size = m_code_sizes[i]) == 0) continue; if (code_size > cHuffmanMaxSupportedInternalCodeSize) return false; code = next_code[code_size]++; for (uint32_t l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1); m_codes[i] = static_cast<uint16_t>(rev_code); } return true; } bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) { if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) return false; uint16_vec sym_freq(num_syms); uint32_t max_freq = 0; for (uint32_t i = 0; i < num_syms; i++) max_freq = maximum(max_freq, pSym_freq[i]); if (max_freq < UINT16_MAX) { for (uint32_t i = 0; i < num_syms; i++) sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); } else { for (uint32_t i = 0; i < num_syms; i++) if (pSym_freq[i]) sym_freq[i] = static_cast<uint16_t>(maximum<uint32_t>((pSym_freq[i] * 65534U + (max_freq >> 1)) / max_freq, 1)); } return init(num_syms, &sym_freq[0], max_code_size); } void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) { if (run_size) { if (run_size < cHuffmanSmallRepeatSizeMin) { while (run_size--) syms.push_back(static_cast<uint16_t>(len)); } else if (run_size <= cHuffmanSmallRepeatSizeMax) { syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); } else { assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); } } run_size = 0; } void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) { if (run_size) { if (run_size < cHuffmanSmallZeroRunSizeMin) { while (run_size--) syms.push_back(0); } else if (run_size <= cHuffmanSmallZeroRunSizeMax) { syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); } else { assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); } } run_size = 0; } uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) { const uint64_t start_bits = m_total_bits; const uint8_vec &code_sizes = tab.get_code_sizes(); uint32_t total_used = tab.get_total_used_codes(); put_bits(total_used, cHuffmanMaxSymsLog2); if (!total_used) return 0; uint16_vec syms; syms.reserve(total_used + 16); uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; for (uint32_t i = 0; i <= total_used; ++i) { const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; assert((code_len == 0xFF) || (code_len <= 16)); if (code_len) { end_zero_run(syms, zero_run_size); if (code_len != prev_code_len) { end_nonzero_run(syms, nonzero_run_size, prev_code_len); if (code_len != 0xFF) syms.push_back(static_cast<uint16_t>(code_len)); } else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) end_nonzero_run(syms, nonzero_run_size, prev_code_len); } else { end_nonzero_run(syms, nonzero_run_size, prev_code_len); if (++zero_run_size == cHuffmanBigZeroRunSizeMax) end_zero_run(syms, zero_run_size); } prev_code_len = code_len; } histogram h(cHuffmanTotalCodelengthCodes); for (uint32_t i = 0; i < syms.size(); i++) h.inc(syms[i] & 63); huffman_encoding_table ct; if (!ct.init(h, 7)) return 0; assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); uint32_t total_codelength_codes; for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) break; assert(total_codelength_codes); put_bits(total_codelength_codes, 5); for (uint32_t i = 0; i < total_codelength_codes; i++) put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); for (uint32_t i = 0; i < syms.size(); ++i) { const uint32_t l = syms[i] & 63, e = syms[i] >> 6; put_code(l, ct); if (l == cHuffmanSmallZeroRunCode) put_bits(e, cHuffmanSmallZeroRunExtraBits); else if (l == cHuffmanBigZeroRunCode) put_bits(e, cHuffmanBigZeroRunExtraBits); else if (l == cHuffmanSmallRepeatCode) put_bits(e, cHuffmanSmallRepeatExtraBits); else if (l == cHuffmanBigRepeatCode) put_bits(e, cHuffmanBigRepeatExtraBits); } return (uint32_t)(m_total_bits - start_bits); } bool huffman_test(int rand_seed) { histogram h(19); // Feed in a fibonacci sequence to force large codesizes h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; h[16] += 1597; h[17] += 2584; h[18] += 4181; huffman_encoding_table etab; etab.init(h, 16); { bitwise_coder c; c.init(1024); c.emit_huffman_table(etab); for (int i = 0; i < 19; i++) c.put_code(i, etab); c.flush(); basist::bitwise_decoder d; d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); basist::huffman_decoding_table dtab; bool success = d.read_huffman_table(dtab); if (!success) { assert(0); printf("Failure 5\n"); return false; } for (uint32_t i = 0; i < 19; i++) { uint32_t s = d.decode_huffman(dtab); if (s != i) { assert(0); printf("Failure 5\n"); return false; } } } basisu::rand r; r.seed(rand_seed); for (int iter = 0; iter < 500000; iter++) { printf("%u\n", iter); uint32_t max_sym = r.irand(0, 8193); uint32_t num_codes = r.irand(1, 10000); uint_vec syms(num_codes); for (uint32_t i = 0; i < num_codes; i++) { if (r.bit()) syms[i] = r.irand(0, max_sym); else { int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); s = basisu::clamp<int>(s, 0, max_sym); syms[i] = s; } } histogram h1(max_sym + 1); for (uint32_t i = 0; i < num_codes; i++) h1[syms[i]]++; huffman_encoding_table etab2; if (!etab2.init(h1, 16)) { assert(0); printf("Failed 0\n"); return false; } bitwise_coder c; c.init(1024); c.emit_huffman_table(etab2); for (uint32_t i = 0; i < num_codes; i++) c.put_code(syms[i], etab2); c.flush(); basist::bitwise_decoder d; d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); basist::huffman_decoding_table dtab; bool success = d.read_huffman_table(dtab); if (!success) { assert(0); printf("Failed 2\n"); return false; } for (uint32_t i = 0; i < num_codes; i++) { uint32_t s = d.decode_huffman(dtab); if (s != syms[i]) { assert(0); printf("Failed 4\n"); return false; } } } return true; } void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { assert((num_syms > 0) && (num_indices > 0)); assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); clear(); m_remap_table.resize(num_syms); m_entries_picked.reserve(num_syms); m_total_count_to_picked.resize(num_syms); if (num_indices <= 1) return; prepare_hist(num_syms, num_indices, pIndices); find_initial(num_syms); while (m_entries_to_do.size()) { // Find the best entry to move into the picked list. uint32_t best_entry; double best_count; find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); // We now have chosen an entry to place in the picked list, now determine which side it goes on. const uint32_t entry_to_move = m_entries_to_do[best_entry]; float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); // Put entry_to_move either on the "left" or "right" side of the picked entries if (side <= 0) m_entries_picked.push_back(entry_to_move); else m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); // Erase best_entry from the todo list m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry for (uint32_t i = 0; i < m_entries_to_do.size(); i++) m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); } for (uint32_t i = 0; i < num_syms; i++) m_remap_table[m_entries_picked[i]] = i; } void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) { m_hist.resize(0); m_hist.resize(num_syms * num_syms); for (uint32_t i = 0; i < num_indices; i++) { const uint32_t idx = pIndices[i]; inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); } } void palette_index_reorderer::find_initial(uint32_t num_syms) { uint32_t max_count = 0, max_index = 0; for (uint32_t i = 0; i < num_syms * num_syms; i++) if (m_hist[i] > max_count) max_count = m_hist[i], max_index = i; uint32_t a = max_index / num_syms, b = max_index % num_syms; m_entries_picked.push_back(a); m_entries_picked.push_back(b); for (uint32_t i = 0; i < num_syms; i++) if ((i != b) && (i != a)) m_entries_to_do.push_back(i); for (uint32_t i = 0; i < m_entries_to_do.size(); i++) for (uint32_t j = 0; j < m_entries_picked.size(); j++) m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); } void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { best_entry = 0; best_count = 0; for (uint32_t i = 0; i < m_entries_to_do.size(); i++) { const uint32_t u = m_entries_to_do[i]; double total_count = m_total_count_to_picked[u]; if (pDist_func) { float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); assert((w >= 0.0f) && (w <= 1.0f)); total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); } if (total_count <= best_count) continue; best_entry = i; best_count = total_count; } } float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) { float which_side = 0; int l_count = 0, r_count = 0; for (uint32_t j = 0; j < m_entries_picked.size(); j++) { const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); which_side += static_cast<float>(r * count); if (r >= 0) l_count += r * count; else r_count += -r * count; } if (pDist_func) { float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); which_side = w_left * l_count - w_right * r_count; } return which_side; } void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) { assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); const uint32_t width = std::min(a.get_width(), b.get_width()); const uint32_t height = std::min(a.get_height(), b.get_height()); double hist[256]; clear_obj(hist); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { const color_rgba &ca = a(x, y), &cb = b(x, y); if (total_chans) { for (uint32_t c = 0; c < total_chans; c++) hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; } else { if (use_601_luma) hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; else hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; } } } m_max = 0; double sum = 0.0f, sum2 = 0.0f; for (uint32_t i = 0; i < 256; i++) { if (hist[i]) { m_max = std::max<float>(m_max, (float)i); double v = i * hist[i]; sum += v; sum2 += i * v; } } double total_values = (double)width * (double)height; if (avg_comp_error) total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0 * 255.0); m_rms = (float)sqrt(m_mean_squared); m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0, 0.0f, 300.0f) : 1e+10f; } void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) { rand r(seed); uint8_t *pDst = static_cast<uint8_t *>(pBuf); while (size >= sizeof(uint32_t)) { *(uint32_t *)pDst = r.urand32(); pDst += sizeof(uint32_t); size -= sizeof(uint32_t); } while (size) { *pDst++ = r.byte(); size--; } } uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) { if (!pBuf || !len) return 0; uint32_t h = static_cast<uint32_t>(len); const uint32_t bytes_left = len & 3; len >>= 2; while (len--) { const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); h += pWords[0]; const uint32_t t = (pWords[1] << 11) ^ h; h = (h << 16) ^ t; pBuf += sizeof(uint32_t); h += h >> 11; } switch (bytes_left) { case 1: h += *reinterpret_cast<const signed char*>(pBuf); h ^= h << 10; h += h >> 1; break; case 2: h += *reinterpret_cast<const uint16_t *>(pBuf); h ^= h << 11; h += h >> 17; break; case 3: h += *reinterpret_cast<const uint16_t *>(pBuf); h ^= h << 16; h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; h += h >> 11; break; default: break; } h ^= h << 3; h += h >> 5; h ^= h << 4; h += h >> 17; h ^= h << 25; h += h >> 6; return h; } job_pool::job_pool(uint32_t num_threads) : m_kill_flag(false), m_num_active_jobs(0) { assert(num_threads >= 1U); debug_printf("job_pool::job_pool: %u total threads\n", num_threads); if (num_threads > 1) { m_threads.resize(num_threads - 1); for (int i = 0; i < ((int)num_threads - 1); i++) m_threads[i] = std::thread([this, i] { job_thread(i); }); } } job_pool::~job_pool() { debug_printf("job_pool::~job_pool\n"); // Notify all workers that they need to die right now. m_kill_flag = true; m_has_work.notify_all(); // Wait for all workers to die. for (uint32_t i = 0; i < m_threads.size(); i++) m_threads[i].join(); } void job_pool::add_job(const std::function<void()>& job) { std::unique_lock<std::mutex> lock(m_mutex); m_queue.emplace_back(job); const size_t queue_size = m_queue.size(); lock.unlock(); if (queue_size > 1) m_has_work.notify_one(); } void job_pool::add_job(std::function<void()>&& job) { std::unique_lock<std::mutex> lock(m_mutex); m_queue.emplace_back(std::move(job)); const size_t queue_size = m_queue.size(); lock.unlock(); if (queue_size > 1) m_has_work.notify_one(); } void job_pool::wait_for_all() { std::unique_lock<std::mutex> lock(m_mutex); // Drain the job queue on the calling thread. while (!m_queue.empty()) { std::function<void()> job(m_queue.back()); m_queue.pop_back(); lock.unlock(); job(); lock.lock(); } // The queue is empty, now wait for all active jobs to finish up. m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); } void job_pool::job_thread(uint32_t index) { debug_printf("job_pool::job_thread: starting %u\n", index); while (true) { std::unique_lock<std::mutex> lock(m_mutex); // Wait for any jobs to be issued. m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); // Check to see if we're supposed to exit. if (m_kill_flag) break; // Get the job and execute it. std::function<void()> job(m_queue.back()); m_queue.pop_back(); ++m_num_active_jobs; lock.unlock(); job(); lock.lock(); --m_num_active_jobs; // Now check if there are no more jobs remaining. const bool all_done = m_queue.empty() && !m_num_active_jobs; lock.unlock(); if (all_done) m_no_more_jobs.notify_all(); } debug_printf("job_pool::job_thread: exiting\n"); } } // namespace basisu