// basisu_astc_decomp.cpp: Only used for ASTC decompression, to validate the transcoder's output. // This version does not support HDR. /*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * rg: Removed external dependencies, remarked out HDR support because * we don't need it, minor fix to decompress() so it converts non-sRGB * output to 8-bits correctly. I've compared this decoder's output * vs. astc-codec with random inputs on 4x4 blocks, and after fixing a few obvious * bugs in astc-codec where it didn't correctly follow the spec they match so * I'm assuming they are both correct for 4x4 now. * HDR support should be easily added back in, but as we don't need it * I'm leaving this for someone else. * *//*! * \file * \brief ASTC Utilities. *//*--------------------------------------------------------------------*/ #include "basisu_astc_decomp.h" #include <assert.h> #include <algorithm> #define DE_LENGTH_OF_ARRAY(x) (sizeof(x)/sizeof(x[0])) #define DE_UNREF(x) (void)x typedef uint8_t deUint8; typedef int8_t deInt8; typedef uint32_t deUint32; typedef int32_t deInt32; typedef uint16_t deUint16; typedef int16_t deInt16; typedef int64_t deInt64; typedef uint64_t deUint64; #define DE_ASSERT assert namespace basisu_astc { static bool inBounds(int v, int l, int h) { return (v >= l) && (v < h); } static bool inRange(int v, int l, int h) { return (v >= l) && (v <= h); } template<typename T> static inline T max(T a, T b) { return (a > b) ? a : b; } template<typename T> static inline T min(T a, T b) { return (a < b) ? a : b; } template<typename T> static inline T clamp(T a, T l, T h) { if (a < l) return l; else if (a > h) return h; return a; } struct UVec4 { uint32_t m_c[4]; UVec4() { m_c[0] = 0; m_c[1] = 0; m_c[2] = 0; m_c[3] = 0; } UVec4(uint32_t x, uint32_t y, uint32_t z, uint32_t w) { m_c[0] = x; m_c[1] = y; m_c[2] = z; m_c[3] = w; } uint32_t x() const { return m_c[0]; } uint32_t y() const { return m_c[1]; } uint32_t z() const { return m_c[2]; } uint32_t w() const { return m_c[3]; } uint32_t& x() { return m_c[0]; } uint32_t& y() { return m_c[1]; } uint32_t& z() { return m_c[2]; } uint32_t& w() { return m_c[3]; } uint32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; } uint32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; } }; struct IVec4 { int32_t m_c[4]; IVec4() { m_c[0] = 0; m_c[1] = 0; m_c[2] = 0; m_c[3] = 0; } IVec4(int32_t x, int32_t y, int32_t z, int32_t w) { m_c[0] = x; m_c[1] = y; m_c[2] = z; m_c[3] = w; } int32_t x() const { return m_c[0]; } int32_t y() const { return m_c[1]; } int32_t z() const { return m_c[2]; } int32_t w() const { return m_c[3]; } int32_t& x() { return m_c[0]; } int32_t& y() { return m_c[1]; } int32_t& z() { return m_c[2]; } int32_t& w() { return m_c[3]; } UVec4 asUint() const { return UVec4(std::max(0, m_c[0]), std::max(0, m_c[1]), std::max(0, m_c[2]), std::max(0, m_c[3])); } int32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; } int32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; } }; struct IVec3 { int32_t m_c[3]; IVec3() { m_c[0] = 0; m_c[1] = 0; m_c[2] = 0; } IVec3(int32_t x, int32_t y, int32_t z) { m_c[0] = x; m_c[1] = y; m_c[2] = z; } int32_t x() const { return m_c[0]; } int32_t y() const { return m_c[1]; } int32_t z() const { return m_c[2]; } int32_t& x() { return m_c[0]; } int32_t& y() { return m_c[1]; } int32_t& z() { return m_c[2]; } int32_t operator[] (uint32_t idx) const { assert(idx < 3); return m_c[idx]; } int32_t& operator[] (uint32_t idx) { assert(idx < 3); return m_c[idx]; } }; static uint32_t deDivRoundUp32(uint32_t a, uint32_t b) { return (a + b - 1) / b; } static bool deInBounds32(uint32_t v, uint32_t l, uint32_t h) { return (v >= l) && (v < h); } namespace astc { using std::vector; namespace { // Common utilities enum { MAX_BLOCK_WIDTH = 12, MAX_BLOCK_HEIGHT = 12 }; inline deUint32 getBit (deUint32 src, int ndx) { DE_ASSERT(basisu_astc::inBounds(ndx, 0, 32)); return (src >> ndx) & 1; } inline deUint32 getBits (deUint32 src, int low, int high) { const int numBits = (high-low) + 1; DE_ASSERT(basisu_astc::inRange(numBits, 1, 32)); if (numBits < 32) return (deUint32)((src >> low) & ((1u<<numBits)-1)); else return (deUint32)((src >> low) & 0xFFFFFFFFu); } inline bool isBitSet (deUint32 src, int ndx) { return getBit(src, ndx) != 0; } inline deUint32 reverseBits (deUint32 src, int numBits) { DE_ASSERT(basisu_astc::inRange(numBits, 0, 32)); deUint32 result = 0; for (int i = 0; i < numBits; i++) result |= ((src >> i) & 1) << (numBits-1-i); return result; } inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits) { DE_ASSERT(numSrcBits <= numDstBits); DE_ASSERT((src & ((1<<numSrcBits)-1)) == src); deUint32 dst = 0; for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits) dst |= shift >= 0 ? src << shift : src >> -shift; return dst; } inline deInt32 signExtend (deInt32 src, int numSrcBits) { DE_ASSERT(basisu_astc::inRange(numSrcBits, 2, 31)); const bool negative = (src & (1 << (numSrcBits-1))) != 0; return src | (negative ? ~((1 << numSrcBits) - 1) : 0); } //inline bool isFloat16InfOrNan (deFloat16 v) //{ // return getBits(v, 10, 14) == 31; //} enum ISEMode { ISEMODE_TRIT = 0, ISEMODE_QUINT, ISEMODE_PLAIN_BIT, ISEMODE_LAST }; struct ISEParams { ISEMode mode; int numBits; ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {} }; inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues) { switch (iseParams.mode) { case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits; case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits; case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits; default: DE_ASSERT(false); return -1; } } ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence) { int curBitsForTritMode = 6; int curBitsForQuintMode = 5; int curBitsForPlainBitMode = 8; while (true) { DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; const int maxRange = basisu_astc::max(basisu_astc::max(tritRange, quintRange), plainBitRange); if (maxRange == tritRange) { const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_TRIT, curBitsForTritMode); curBitsForTritMode--; } else if (maxRange == quintRange) { const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); curBitsForQuintMode--; } else { const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); DE_ASSERT(maxRange == plainBitRange); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); curBitsForPlainBitMode--; } } } inline int computeNumColorEndpointValues (deUint32 endpointMode) { DE_ASSERT(endpointMode < 16); return (endpointMode/4 + 1) * 2; } // Decompression utilities enum DecompressResult { DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written DECOMPRESS_RESULT_LAST }; // A helper for getting bits from a 128-bit block. class Block128 { private: typedef deUint64 Word; enum { WORD_BYTES = sizeof(Word), WORD_BITS = 8*WORD_BYTES, NUM_WORDS = 128 / WORD_BITS }; //DE_STATIC_ASSERT(128 % WORD_BITS == 0); public: Block128 (const deUint8* src) { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) { m_words[wordNdx] = 0; for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx); } } deUint32 getBit (int ndx) const { DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128)); return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; } deUint32 getBits (int low, int high) const { DE_ASSERT(basisu_astc::inBounds(low, 0, 128)); DE_ASSERT(basisu_astc::inBounds(high, 0, 128)); DE_ASSERT(basisu_astc::inRange(high-low+1, 0, 32)); if (high-low+1 == 0) return 0; const int word0Ndx = low / WORD_BITS; const int word1Ndx = high / WORD_BITS; // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. if (word0Ndx == word1Ndx) return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS)); else { DE_ASSERT(word1Ndx == word0Ndx + 1); return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) | (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS)); } } bool isBitSet (int ndx) const { DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128)); return getBit(ndx) != 0; } private: Word m_words[NUM_WORDS]; }; // A helper for sequential access into a Block128. class BitAccessStream { public: BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward) : m_src (src) , m_startNdxInSrc (startNdxInSrc) , m_length (length) , m_forward (forward) , m_ndx (0) { } // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. deUint32 getNext (int num) { if (num == 0 || m_ndx >= m_length) return 0; const int end = m_ndx + num; const int numBitsFromSrc = basisu_astc::max(0, basisu_astc::min(m_length, end) - m_ndx); const int low = m_ndx; const int high = m_ndx + numBitsFromSrc - 1; m_ndx += num; return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); } private: const Block128& m_src; const int m_startNdxInSrc; const int m_length; const bool m_forward; int m_ndx; }; struct ISEDecodedResult { deUint32 m; deUint32 tq; //!< Trit or quint value, depending on ISE mode. deUint32 v; }; // Data from an ASTC block's "block mode" part (i.e. bits [0,10]). struct ASTCBlockMode { bool isError; // \note Following fields only relevant if !isError. bool isVoidExtent; // \note Following fields only relevant if !isVoidExtent. bool isDualPlane; int weightGridWidth; int weightGridHeight; ISEParams weightISEParams; ASTCBlockMode (void) : isError (true) , isVoidExtent (true) , isDualPlane (true) , weightGridWidth (-1) , weightGridHeight (-1) , weightISEParams (ISEMODE_LAST, -1) { } }; inline int computeNumWeights (const ASTCBlockMode& mode) { return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); } struct ColorEndpointPair { UVec4 e0; UVec4 e1; }; struct TexelWeightPair { deUint32 w[2]; }; ASTCBlockMode getASTCBlockMode (deUint32 blockModeData) { ASTCBlockMode blockMode; blockMode.isError = true; // \note Set to false later, if not error. blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; if (!blockMode.isVoidExtent) { if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0) return blockMode; // Invalid ("reserved"). deUint32 r = (deUint32)-1; // \note Set in the following branches. if (getBits(blockModeData, 0, 1) == 0) { const deUint32 r0 = getBit(blockModeData, 4); const deUint32 r1 = getBit(blockModeData, 2); const deUint32 r2 = getBit(blockModeData, 3); const deUint32 i78 = getBits(blockModeData, 7, 8); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i78 == 3) { const bool i5 = isBitSet(blockModeData, 5); blockMode.weightGridWidth = i5 ? 10 : 6; blockMode.weightGridHeight = i5 ? 6 : 10; } else { const deUint32 a = getBits(blockModeData, 5, 6); switch (i78) { case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break; case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break; default: DE_ASSERT(false); } } } else { const deUint32 r0 = getBit(blockModeData, 4); const deUint32 r1 = getBit(blockModeData, 0); const deUint32 r2 = getBit(blockModeData, 1); const deUint32 i23 = getBits(blockModeData, 2, 3); const deUint32 a = getBits(blockModeData, 5, 6); r = (r2 << 2) | (r1 << 1) | (r0 << 0); if (i23 == 3) { const deUint32 b = getBit(blockModeData, 7); const bool i8 = isBitSet(blockModeData, 8); blockMode.weightGridWidth = i8 ? b+2 : a+2; blockMode.weightGridHeight = i8 ? a+2 : b+6; } else { const deUint32 b = getBits(blockModeData, 7, 8); switch (i23) { case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break; case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break; case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break; default: DE_ASSERT(false); } } } const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); { ISEMode& m = blockMode.weightISEParams.mode; int& b = blockMode.weightISEParams.numBits; m = ISEMODE_PLAIN_BIT; b = 0; if (h) { switch (r) { case 2: m = ISEMODE_QUINT; b = 1; break; case 3: m = ISEMODE_TRIT; b = 2; break; case 4: b = 4; break; case 5: m = ISEMODE_QUINT; b = 2; break; case 6: m = ISEMODE_TRIT; b = 3; break; case 7: b = 5; break; default: DE_ASSERT(false); } } else { switch (r) { case 2: b = 1; break; case 3: m = ISEMODE_TRIT; break; case 4: b = 2; break; case 5: m = ISEMODE_QUINT; break; case 6: m = ISEMODE_TRIT; b = 1; break; case 7: b = 3; break; default: DE_ASSERT(false); } } } } blockMode.isError = false; return blockMode; } inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB) { if (isSRGB) { deUint8* const dstU = (deUint8*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) { dstU[4*i + 0] = 0xff; dstU[4*i + 1] = 0; dstU[4*i + 2] = 0xff; dstU[4*i + 3] = 0xff; } } else { float* const dstF = (float*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) { dstF[4*i + 0] = 1.0f; dstF[4*i + 1] = 0.0f; dstF[4*i + 2] = 1.0f; dstF[4*i + 3] = 1.0f; } } } DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode) { const deUint32 minSExtent = blockData.getBits(12, 24); const deUint32 maxSExtent = blockData.getBits(25, 37); const deUint32 minTExtent = blockData.getBits(38, 50); const deUint32 maxTExtent = blockData.getBits(51, 63); const bool allExtentsAllOnes = minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff; const bool isHDRBlock = blockData.isBitSet(9); if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } const deUint32 rgba[4] = { blockData.getBits(64, 79), blockData.getBits(80, 95), blockData.getBits(96, 111), blockData.getBits(112, 127) }; if (isSRGB) { deUint8* const dstU = (deUint8*)dst; for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8); } else { float* const dstF = (float*)dst; if (isHDRBlock) { // rg - REMOVING HDR SUPPORT FOR NOW #if 0 for (int c = 0; c < 4; c++) { if (isFloat16InfOrNan((deFloat16)rgba[c])) throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)"); } for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]); #endif } else { for (int i = 0; i < blockWidth*blockHeight; i++) for (int c = 0; c < 4; c++) dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f; } } return DECOMPRESS_RESULT_VALID_BLOCK; } void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart) { if (numPartitions == 1) endpointModesDst[0] = blockData.getBits(13, 16); else { const deUint32 highLevelSelector = blockData.getBits(23, 24); if (highLevelSelector == 0) { const deUint32 mode = blockData.getBits(25, 28); for (int i = 0; i < numPartitions; i++) endpointModesDst[i] = mode; } else { for (int partNdx = 0; partNdx < numPartitions; partNdx++) { const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); const deUint32 lowBit0Ndx = numPartitions + 2*partNdx; const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1; const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4); const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4); endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; } } } } int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions) { int result = 0; for (int i = 0; i < numPartitions; i++) result += computeNumColorEndpointValues(endpointModes[i]); return result; } void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) { DE_ASSERT(basisu_astc::inRange(numValues, 1, 5)); deUint32 m[5]; m[0] = data.getNext(numBits); deUint32 T01 = data.getNext(2); m[1] = data.getNext(numBits); deUint32 T23 = data.getNext(2); m[2] = data.getNext(numBits); deUint32 T4 = data.getNext(1); m[3] = data.getNext(numBits); deUint32 T56 = data.getNext(2); m[4] = data.getNext(numBits); deUint32 T7 = data.getNext(1); switch (numValues) { // \note Fall-throughs. case 1: T23 = 0; case 2: T4 = 0; case 3: T56 = 0; case 4: T7 = 0; case 5: break; default: DE_ASSERT(false); } const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); static const deUint32 tritsFromT[256][5] = { { 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 }, { 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 }, { 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 }, { 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 }, { 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 }, { 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 }, { 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 }, { 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 }, { 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 }, { 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 }, { 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 }, { 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 }, { 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 }, { 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 }, { 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 }, { 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 } }; const deUint32 (& trits)[5] = tritsFromT[T]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = trits[i]; dst[i].v = (trits[i] << numBits) + m[i]; } } void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) { DE_ASSERT(basisu_astc::inRange(numValues, 1, 3)); deUint32 m[3]; m[0] = data.getNext(numBits); deUint32 Q012 = data.getNext(3); m[1] = data.getNext(numBits); deUint32 Q34 = data.getNext(2); m[2] = data.getNext(numBits); deUint32 Q56 = data.getNext(2); switch (numValues) { // \note Fall-throughs. case 1: Q34 = 0; case 2: Q56 = 0; case 3: break; default: DE_ASSERT(false); } const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); static const deUint32 quintsFromQ[256][3] = { { 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 }, { 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 }, { 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 }, { 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 }, { 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 }, { 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 }, { 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 }, { 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 } }; const deUint32 (& quints)[3] = quintsFromQ[Q]; for (int i = 0; i < numValues; i++) { dst[i].m = m[i]; dst[i].tq = quints[i]; dst[i].v = (quints[i] << numBits) + m[i]; } } inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits) { dst[0].m = data.getNext(numBits); dst[0].v = dst[0].m; } void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params) { if (params.mode == ISEMODE_TRIT) { const int numBlocks = deDivRoundUp32(numValues, 5); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits); } } else if (params.mode == ISEMODE_QUINT) { const int numBlocks = deDivRoundUp32(numValues, 3); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits); } } else { DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); for (int i = 0; i < numValues; i++) decodeISEBitBlock(&dst[i], data, params.numBits); } } void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams) { if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); DE_ASSERT(basisu_astc::inRange(rangeCase, 0, 10)); static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 }; const deUint32 C = Ca[rangeCase]; for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) { const deUint32 a = getBit(iseResults[endpointNdx].m, 0); const deUint32 b = getBit(iseResults[endpointNdx].m, 1); const deUint32 c = getBit(iseResults[endpointNdx].m, 2); const deUint32 d = getBit(iseResults[endpointNdx].m, 3); const deUint32 e = getBit(iseResults[endpointNdx].m, 4); const deUint32 f = getBit(iseResults[endpointNdx].m, 5); const deUint32 A = a == 0 ? 0 : (1<<9)-1; const deUint32 B = rangeCase == 0 ? 0 : rangeCase == 1 ? 0 : rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1) : rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2) : rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0) : rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0) : rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0) : rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0) : rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0) : rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0) : rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0) : (deUint32)-1; DE_ASSERT(B != (deUint32)-1); dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80); } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); } } inline void bitTransferSigned (deInt32& a, deInt32& b) { b >>= 1; b |= a & 0x80; a >>= 1; a &= 0x3f; if (isBitSet(a, 5)) a -= 0x40; } inline UVec4 clampedRGBA (const IVec4& rgba) { return UVec4(basisu_astc::clamp(rgba.x(), 0, 0xff), basisu_astc::clamp(rgba.y(), 0, 0xff), basisu_astc::clamp(rgba.z(), 0, 0xff), basisu_astc::clamp(rgba.w(), 0, 0xff)); } inline IVec4 blueContract (int r, int g, int b, int a) { return IVec4((r+b)>>1, (g+b)>>1, b, a); } inline bool isColorEndpointModeHDR (deUint32 mode) { return mode == 2 || mode == 3 || mode == 7 || mode == 11 || mode == 14 || mode == 15; } void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3) { const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); const deUint32 m23 = getBits(v0, 6, 7); const deUint32 majComp = m10 != 3 ? m10 : m23 != 3 ? m23 : 0; const deUint32 mode = m10 != 3 ? m23 : m23 != 3 ? 4 : 5; deInt32 red = (deInt32)getBits(v0, 0, 5); deInt32 green = (deInt32)getBits(v1, 0, 4); deInt32 blue = (deInt32)getBits(v2, 0, 4); deInt32 scale = (deInt32)getBits(v3, 0, 4); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false) const deUint32 x0 = getBit(v1, 6); const deUint32 x1 = getBit(v1, 5); const deUint32 x2 = getBit(v2, 6); const deUint32 x3 = getBit(v2, 5); const deUint32 x4 = getBit(v3, 7); const deUint32 x5 = getBit(v3, 6); const deUint32 x6 = getBit(v3, 5); deInt32& R = red; deInt32& G = green; deInt32& B = blue; deInt32& S = scale; switch (mode) { case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break; case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break; case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break; case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break; case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break; case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 }; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); red <<= shiftAmounts[mode]; green <<= shiftAmounts[mode]; blue <<= shiftAmounts[mode]; scale <<= shiftAmounts[mode]; if (mode != 5) { green = red - green; blue = red - blue; } if (majComp == 1) std::swap(red, green); else if (majComp == 2) std::swap(red, blue); e0 = UVec4(basisu_astc::clamp(red - scale, 0, 0xfff), basisu_astc::clamp(green - scale, 0, 0xfff), basisu_astc::clamp(blue - scale, 0, 0xfff), 0x780); e1 = UVec4(basisu_astc::clamp(red, 0, 0xfff), basisu_astc::clamp(green, 0, 0xfff), basisu_astc::clamp(blue, 0, 0xfff), 0x780); } void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5) { const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7); if (major == 3) { e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780); e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780); } else { const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0); deInt32 c = (deInt32)(getBits(v1, 0, 5)); deInt32 b0 = (deInt32)(getBits(v2, 0, 5)); deInt32 b1 = (deInt32)(getBits(v3, 0, 5)); deInt32 d0 = (deInt32)(getBits(v4, 0, 4)); deInt32 d1 = (deInt32)(getBits(v5, 0, 4)); { #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false) const deUint32 x0 = getBit(v2, 6); const deUint32 x1 = getBit(v3, 6); const deUint32 x2 = getBit(v4, 6); const deUint32 x3 = getBit(v5, 6); const deUint32 x4 = getBit(v4, 5); const deUint32 x5 = getBit(v5, 5); switch (mode) { case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break; case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break; case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break; case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break; case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break; case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break; case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break; case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break; default: DE_ASSERT(false); } #undef ASSIGN_X_BITS #undef SHOR } static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 }; DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); d0 = signExtend(d0, numDBits[mode]); d1 = signExtend(d1, numDBits[mode]); const int shiftAmount = (mode >> 1) ^ 3; a <<= shiftAmount; c <<= shiftAmount; b0 <<= shiftAmount; b1 <<= shiftAmount; d0 <<= shiftAmount; d1 <<= shiftAmount; e0 = UVec4(basisu_astc::clamp(a-c, 0, 0xfff), basisu_astc::clamp(a-b0-c-d0, 0, 0xfff), basisu_astc::clamp(a-b1-c-d1, 0, 0xfff), 0x780); e1 = UVec4(basisu_astc::clamp(a, 0, 0xfff), basisu_astc::clamp(a-b0, 0, 0xfff), basisu_astc::clamp(a-b1, 0, 0xfff), 0x780); if (major == 1) { std::swap(e0.x(), e0.y()); std::swap(e1.x(), e1.y()); } else if (major == 2) { std::swap(e0.x(), e0.z()); std::swap(e1.x(), e1.z()); } } } void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In) { decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); deInt32 v6 = (deInt32)getBits(v6In, 0, 6); deInt32 v7 = (deInt32)getBits(v7In, 0, 6); if (mode == 3) { e0.w() = v6 << 5; e1.w() = v7 << 5; } else { v6 |= (v7 << (mode+1)) & 0x780; v7 &= (0x3f >> mode); v7 ^= 0x20 >> mode; v7 -= 0x20 >> mode; v6 <<= 4-mode; v7 <<= 4-mode; v7 += v6; v7 = basisu_astc::clamp(v7, 0, 0xfff); e0.w() = v6; e1.w() = v7; } } void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions) { int unquantizedNdx = 0; for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) { const deUint32 endpointMode = endpointModes[partitionNdx]; const deUint32* v = &unquantizedEndpoints[unquantizedNdx]; UVec4& e0 = dst[partitionNdx].e0; UVec4& e1 = dst[partitionNdx].e1; unquantizedNdx += computeNumColorEndpointValues(endpointMode); switch (endpointMode) { case 0: e0 = UVec4(v[0], v[0], v[0], 0xff); e1 = UVec4(v[1], v[1], v[1], 0xff); break; case 1: { const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); const deUint32 L1 = basisu_astc::min(0xffu, L0 + getBits(v[1], 0, 5)); e0 = UVec4(L0, L0, L0, 0xff); e1 = UVec4(L1, L1, L1, 0xff); break; } case 2: { const deUint32 v1Gr = v[1] >= v[0]; const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8; const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8; e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 3: { const bool m = isBitSet(v[0], 7); const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); const deUint32 d = m ? getBits(v[1], 0, 4) << 2 : getBits(v[1], 0, 3) << 1; const deUint32 y1 = basisu_astc::min(0xfffu, y0+d); e0 = UVec4(y0, y0, y0, 0x780); e1 = UVec4(y1, y1, y1, 0x780); break; } case 4: e0 = UVec4(v[0], v[0], v[0], v[2]); e1 = UVec4(v[1], v[1], v[1], v[3]); break; case 5: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); e0 = clampedRGBA(IVec4(v0, v0, v0, v2)); e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3)); break; } case 6: e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff); e1 = UVec4(v[0], v[1], v[2], 0xff); break; case 7: decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); break; case 8: if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) { e0 = UVec4(v[0], v[2], v[4], 0xff); e1 = UVec4(v[1], v[3], v[5], 0xff); } else { e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); } break; case 9: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; deInt32 v4 = (deInt32)v[4]; deInt32 v5 = (deInt32)v[5]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); if (v1+v3+v5 >= 0) { e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff)); e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff)); } else { e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff)); e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); } break; } case 10: e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]); e1 = UVec4(v[0], v[1], v[2], v[5]); break; case 11: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); break; case 12: if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) { e0 = UVec4(v[0], v[2], v[4], v[6]); e1 = UVec4(v[1], v[3], v[5], v[7]); } else { e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); } break; case 13: { deInt32 v0 = (deInt32)v[0]; deInt32 v1 = (deInt32)v[1]; deInt32 v2 = (deInt32)v[2]; deInt32 v3 = (deInt32)v[3]; deInt32 v4 = (deInt32)v[4]; deInt32 v5 = (deInt32)v[5]; deInt32 v6 = (deInt32)v[6]; deInt32 v7 = (deInt32)v[7]; bitTransferSigned(v1, v0); bitTransferSigned(v3, v2); bitTransferSigned(v5, v4); bitTransferSigned(v7, v6); if (v1+v3+v5 >= 0) { e0 = clampedRGBA(IVec4(v0, v2, v4, v6)); e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7)); } else { e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7)); e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); } break; } case 14: decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); e0.w() = v[6]; e1.w() = v[7]; break; case 15: decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); break; default: DE_ASSERT(false); } } } void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable) { const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29; ISEDecodedResult colorEndpointData[18]; { BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); } { deUint32 unquantizedEndpoints[18]; unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); } } void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode) { const int numWeights = computeNumWeights(blockMode); const ISEParams& iseParams = blockMode.weightISEParams; if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); if (rangeCase == 0 || rangeCase == 1) { static const deUint32 map0[3] = { 0, 32, 63 }; static const deUint32 map1[5] = { 0, 16, 32, 47, 63 }; const deUint32* const map = rangeCase == 0 ? &map0[0] : &map1[0]; for (int i = 0; i < numWeights; i++) { DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); dst[i] = map[weightGrid[i].v]; } } else { DE_ASSERT(rangeCase <= 6); static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 }; const deUint32 C = Ca[rangeCase-2]; for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) { const deUint32 a = getBit(weightGrid[weightNdx].m, 0); const deUint32 b = getBit(weightGrid[weightNdx].m, 1); const deUint32 c = getBit(weightGrid[weightNdx].m, 2); const deUint32 A = a == 0 ? 0 : (1<<7)-1; const deUint32 B = rangeCase == 2 ? 0 : rangeCase == 3 ? 0 : rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0) : rangeCase == 5 ? (b << 6) | (b << 1) : rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0) : (deUint32)-1; dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20); } } } else { DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); } for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; // Initialize nonexistent weights to poison values for (int weightNdx = numWeights; weightNdx < 64; weightNdx++) dst[weightNdx] = ~0u; } void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) { const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1); const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1); DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights)); for (int texelY = 0; texelY < blockHeight; texelY++) { for (int texelX = 0; texelX < blockWidth; texelX++) { const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6; const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6; const deUint32 jX = gX >> 4; const deUint32 jY = gY >> 4; const deUint32 fX = gX & 0xf; const deUint32 fY = gY & 0xf; const deUint32 w11 = (fX*fY + 8) >> 4; const deUint32 w10 = fY - w11; const deUint32 w01 = fX - w11; const deUint32 w00 = 16 - fX - fY + w11; const deUint32 i00 = jY*blockMode.weightGridWidth + jX; const deUint32 i01 = i00 + 1; const deUint32 i10 = i00 + blockMode.weightGridWidth; const deUint32 i11 = i00 + blockMode.weightGridWidth + 1; // These addresses can be out of bounds, but respective weights will be 0 then. DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0); DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0); DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0); DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0); for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) { // & 0x3f clamps address to bounds of unquantizedWeights const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; } } } } void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) { ISEDecodedResult weightGrid[64]; { BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); } { deUint32 unquantizedWeights[64]; unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode); } } inline deUint32 hash52 (deUint32 v) { deUint32 p = v; p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; p ^= p << 6; p ^= p >> 17; return p; } int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock) { DE_ASSERT(zIn == 0); const deUint32 x = smallBlock ? xIn << 1 : xIn; const deUint32 y = smallBlock ? yIn << 1 : yIn; const deUint32 z = smallBlock ? zIn << 1 : zIn; const deUint32 seed = seedIn + 1024*(numPartitions-1); const deUint32 rnum = hash52(seed); deUint8 seed1 = (deUint8)( rnum & 0xf); deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf); deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf); deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf); deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf); deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf); deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf); deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf); deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf); deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf); deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf); deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf); seed1 = (deUint8)(seed1 * seed1 ); seed2 = (deUint8)(seed2 * seed2 ); seed3 = (deUint8)(seed3 * seed3 ); seed4 = (deUint8)(seed4 * seed4 ); seed5 = (deUint8)(seed5 * seed5 ); seed6 = (deUint8)(seed6 * seed6 ); seed7 = (deUint8)(seed7 * seed7 ); seed8 = (deUint8)(seed8 * seed8 ); seed9 = (deUint8)(seed9 * seed9 ); seed10 = (deUint8)(seed10 * seed10); seed11 = (deUint8)(seed11 * seed11); seed12 = (deUint8)(seed12 * seed12); const int shA = (seed & 2) != 0 ? 4 : 5; const int shB = numPartitions == 3 ? 6 : 5; const int sh1 = (seed & 1) != 0 ? shA : shB; const int sh2 = (seed & 1) != 0 ? shB : shA; const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; seed1 = (deUint8)(seed1 >> sh1); seed2 = (deUint8)(seed2 >> sh2); seed3 = (deUint8)(seed3 >> sh1); seed4 = (deUint8)(seed4 >> sh2); seed5 = (deUint8)(seed5 >> sh1); seed6 = (deUint8)(seed6 >> sh2); seed7 = (deUint8)(seed7 >> sh1); seed8 = (deUint8)(seed8 >> sh2); seed9 = (deUint8)(seed9 >> sh3); seed10 = (deUint8)(seed10 >> sh3); seed11 = (deUint8)(seed11 >> sh3); seed12 = (deUint8)(seed12 >> sh3); const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14)); const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10)); const int c = numPartitions >= 3 ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0; const int d = numPartitions >= 4 ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0; return a >= b && a >= c && a >= d ? 0 : b >= c && b >= d ? 1 : c >= d ? 2 : 3; } DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed, int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes) { const bool smallBlock = blockWidth*blockHeight < 31; DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK; bool isHDREndpoint[4]; for (int i = 0; i < numPartitions; i++) { isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); // rg - REMOVING HDR SUPPORT FOR NOW if (isHDREndpoint[i]) return DECOMPRESS_RESULT_ERROR; } for (int texelY = 0; texelY < blockHeight; texelY++) for (int texelX = 0; texelX < blockWidth; texelX++) { const int texelNdx = texelY*blockWidth + texelX; const int colorEndpointNdx = numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock); DE_ASSERT(colorEndpointNdx < numPartitions); const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0; const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1; const TexelWeightPair& weight = texelWeights[texelNdx]; if (isLDRMode && isHDREndpoint[colorEndpointNdx]) { if (isSRGB) { ((deUint8*)dst)[texelNdx*4 + 0] = 0xff; ((deUint8*)dst)[texelNdx*4 + 1] = 0; ((deUint8*)dst)[texelNdx*4 + 2] = 0xff; ((deUint8*)dst)[texelNdx*4 + 3] = 0xff; } else { ((float*)dst)[texelNdx*4 + 0] = 1.0f; ((float*)dst)[texelNdx*4 + 1] = 0; ((float*)dst)[texelNdx*4 + 2] = 1.0f; ((float*)dst)[texelNdx*4 + 3] = 1.0f; } result = DECOMPRESS_RESULT_ERROR; } else { for (int channelNdx = 0; channelNdx < 4; channelNdx++) { if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR. { const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; if (isSRGB) ((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8); else ((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f; } else { //DE_STATIC_ASSERT((basisu_astc::meta::TypesSame<deFloat16, deUint16>::Value)); // rg - REMOVING HDR SUPPORT FOR NOW #if 0 const deUint32 c0 = e0[channelNdx] << 4; const deUint32 c1 = e1[channelNdx] << 4; const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; const deUint32 c = (c0*(64-w) + c1*w + 32) / 64; const deUint32 e = getBits(c, 11, 15); const deUint32 m = getBits(c, 0, 10); const deUint32 mt = m < 512 ? 3*m : m >= 1536 ? 5*m - 2048 : 4*m - 512; const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3)); ((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); #endif } } } } return result; } DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) { DE_ASSERT(isLDR || !isSRGB); // Decode block mode. const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); // Check for block mode errors. if (blockMode.isError) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Separate path for void-extent. if (blockMode.isVoidExtent) return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); // Compute weight grid values. const int numWeights = computeNumWeights(blockMode); const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); const int numPartitions = (int)blockData.getBits(11, 12) + 1; // Check for errors in weight grid, partition and dual-plane parameters. if (numWeights > 64 || numWeightDataBits > 96 || numWeightDataBits < 24 || blockMode.weightGridWidth > blockWidth || blockMode.weightGridHeight > blockHeight || (numPartitions == 4 && blockMode.isDualPlane)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Compute number of bits available for color endpoint data. const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0; const int numConfigDataBits = (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) + (blockMode.isDualPlane ? 2 : 0); const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 : numPartitions == 4 ? 7 : numPartitions == 3 ? 4 : numPartitions == 2 ? 1 : 0); // Decode color endpoint modes. deUint32 colorEndpointModes[4]; decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); // Check for errors in color endpoint value count. if (numColorEndpointValues > 18 || numBitsForColorEndpoints < (int)deDivRoundUp32(13*numColorEndpointValues, 5)) { setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); return DECOMPRESS_RESULT_ERROR; } // Compute color endpoints. ColorEndpointPair colorEndpoints[4]; computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints); // Compute texel weights. TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT]; computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); // Set texel colors. const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1; const deUint32 partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1; return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); } } // anonymous bool decompress(uint8_t *pDst, const uint8_t * data, bool isSRGB, int blockWidth, int blockHeight) { // rg - We only support LDR here, although adding back in HDR would be easy. const bool isLDR = true; DE_ASSERT(isLDR || !isSRGB); float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; const Block128 blockData(data); if (decompressBlock(isSRGB ? (void*)pDst : (void*)& linear[0], blockData, blockWidth, blockHeight, isSRGB, isLDR) != DECOMPRESS_RESULT_VALID_BLOCK) return false; if (!isSRGB) { int pix = 0; for (int i = 0; i < blockHeight; i++) { for (int j = 0; j < blockWidth; j++, pix++) { pDst[4 * pix + 0] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 0] * 65536.0f + .5f), 0, 65535) >> 8); pDst[4 * pix + 1] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 1] * 65536.0f + .5f), 0, 65535) >> 8); pDst[4 * pix + 2] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 2] * 65536.0f + .5f), 0, 65535) >> 8); pDst[4 * pix + 3] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 3] * 65536.0f + .5f), 0, 65535) >> 8); } } } return true; } } // astc } // basisu_astc