/* * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef B2GLUE_H #define B2GLUE_H #include "math_2d.h" #include <limits.h> namespace b2ConvexDecomp { typedef real_t float32; typedef int32_t int32; static inline float32 b2Sqrt(float32 val) { return Math::sqrt(val); } #define b2_maxFloat FLT_MAX #define b2_epsilon CMP_EPSILON #define b2_pi 3.14159265359f #define b2_maxPolygonVertices 16 #define b2Max MAX #define b2Min MIN #define b2Clamp CLAMP #define b2Abs ABS /// A small length used as a collision and constraint tolerance. Usually it is /// chosen to be numerically significant, but visually insignificant. #define b2_linearSlop 0.005f /// A small angle used as a collision and constraint tolerance. Usually it is /// chosen to be numerically significant, but visually insignificant. #define b2_angularSlop (2.0f / 180.0f * b2_pi) /// A 2D column vector. struct b2Vec2 { /// Default constructor does nothing (for performance). b2Vec2() {} /// Construct using coordinates. b2Vec2(float32 x, float32 y) : x(x), y(y) {} /// Set this vector to all zeros. void SetZero() { x = 0.0f; y = 0.0f; } /// Set this vector to some specified coordinates. void Set(float32 x_, float32 y_) { x = x_; y = y_; } /// Negate this vector. b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } /// Read from and indexed element. float32 operator () (int32 i) const { return (&x)[i]; } /// Write to an indexed element. float32& operator () (int32 i) { return (&x)[i]; } /// Add a vector to this vector. void operator += (const b2Vec2& v) { x += v.x; y += v.y; } /// Subtract a vector from this vector. void operator -= (const b2Vec2& v) { x -= v.x; y -= v.y; } /// Multiply this vector by a scalar. void operator *= (float32 a) { x *= a; y *= a; } /// Get the length of this vector (the norm). float32 Length() const { return b2Sqrt(x * x + y * y); } /// Get the length squared. For performance, use this instead of /// b2Vec2::Length (if possible). float32 LengthSquared() const { return x * x + y * y; } bool operator==(const b2Vec2& p_v) const { return x==p_v.x && y==p_v.y; } b2Vec2 operator+(const b2Vec2& p_v) const { return b2Vec2(x+p_v.x,y+p_v.y); } b2Vec2 operator-(const b2Vec2& p_v) const { return b2Vec2(x-p_v.x,y-p_v.y); } b2Vec2 operator*(float32 f) const { return b2Vec2(f*x,f*y); } /// Convert this vector into a unit vector. Returns the length. float32 Normalize() { float32 length = Length(); if (length < b2_epsilon) { return 0.0f; } float32 invLength = 1.0f / length; x *= invLength; y *= invLength; return length; } /* /// Does this vector contain finite coordinates? bool IsValid() const { return b2IsValid(x) && b2IsValid(y); } */ float32 x, y; }; inline b2Vec2 operator*(float32 f,const b2Vec2& p_v) { return b2Vec2(f*p_v.x,f*p_v.y); } /// Perform the dot product on two vectors. inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) { return a.x * b.x + a.y * b.y; } /// Perform the cross product on two vectors. In 2D this produces a scalar. inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) { return a.x * b.y - a.y * b.x; } /// Perform the cross product on a vector and a scalar. In 2D this produces /// a vector. inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) { return b2Vec2(s * a.y, -s * a.x); } } #endif