/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2020, assimp team



All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file Implementation of the post processing step to join identical vertices
 * for all imported meshes
 */


#ifndef ASSIMP_BUILD_NO_JOINVERTICES_PROCESS

#include "JoinVerticesProcess.h"
#include "ProcessHelper.h"
#include <assimp/Vertex.h>
#include <assimp/TinyFormatter.h>
#include <stdio.h>
#include <unordered_set>

using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
JoinVerticesProcess::JoinVerticesProcess()
{
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
JoinVerticesProcess::~JoinVerticesProcess()
{
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool JoinVerticesProcess::IsActive( unsigned int pFlags) const
{
    return (pFlags & aiProcess_JoinIdenticalVertices) != 0;
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void JoinVerticesProcess::Execute( aiScene* pScene)
{
    ASSIMP_LOG_DEBUG("JoinVerticesProcess begin");

    // get the total number of vertices BEFORE the step is executed
    int iNumOldVertices = 0;
    if (!DefaultLogger::isNullLogger()) {
        for( unsigned int a = 0; a < pScene->mNumMeshes; a++)   {
            iNumOldVertices +=  pScene->mMeshes[a]->mNumVertices;
        }
    }

    // execute the step
    int iNumVertices = 0;
    for( unsigned int a = 0; a < pScene->mNumMeshes; a++)
        iNumVertices += ProcessMesh( pScene->mMeshes[a],a);

    // if logging is active, print detailed statistics
    if (!DefaultLogger::isNullLogger()) {
        if (iNumOldVertices == iNumVertices) {
            ASSIMP_LOG_DEBUG("JoinVerticesProcess finished ");
        } else {
            ASSIMP_LOG_INFO_F("JoinVerticesProcess finished | Verts in: ", iNumOldVertices,
                " out: ", iNumVertices, " | ~",
                ((iNumOldVertices - iNumVertices) / (float)iNumOldVertices) * 100.f );
        }
    }

    pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT;
}

namespace {

bool areVerticesEqual(const Vertex &lhs, const Vertex &rhs, bool complex)
{
    // A little helper to find locally close vertices faster.
    // Try to reuse the lookup table from the last step.
    const static float epsilon = 1e-5f;
    // Squared because we check against squared length of the vector difference
    static const float squareEpsilon = epsilon * epsilon;

    // Square compare is useful for animeshes vertices compare
    if ((lhs.position - rhs.position).SquareLength() > squareEpsilon) {
        return false;
    }

    // We just test the other attributes even if they're not present in the mesh.
    // In this case they're initialized to 0 so the comparison succeeds.
    // By this method the non-present attributes are effectively ignored in the comparison.
    if ((lhs.normal - rhs.normal).SquareLength() > squareEpsilon) {
        return false;
    }

    if ((lhs.texcoords[0] - rhs.texcoords[0]).SquareLength() > squareEpsilon) {
        return false;
    }

    if ((lhs.tangent - rhs.tangent).SquareLength() > squareEpsilon) {
        return false;
    }

    if ((lhs.bitangent - rhs.bitangent).SquareLength() > squareEpsilon) {
        return false;
    }

    // Usually we won't have vertex colors or multiple UVs, so we can skip from here
    // Actually this increases runtime performance slightly, at least if branch
    // prediction is on our side.
    if (complex) {
        for (int i = 0; i < 8; i++) {
            if (i > 0 && (lhs.texcoords[i] - rhs.texcoords[i]).SquareLength() > squareEpsilon) {
                return false;
            }
            if (GetColorDifference(lhs.colors[i], rhs.colors[i]) > squareEpsilon) {
                return false;
            }
        }
    }
    return true;
}

template<class XMesh>
void updateXMeshVertices(XMesh *pMesh, std::vector<Vertex> &uniqueVertices) {
    // replace vertex data with the unique data sets
    pMesh->mNumVertices = (unsigned int)uniqueVertices.size();

    // ----------------------------------------------------------------------------
    // NOTE - we're *not* calling Vertex::SortBack() because it would check for
    // presence of every single vertex component once PER VERTEX. And our CPU
    // dislikes branches, even if they're easily predictable.
    // ----------------------------------------------------------------------------

    // Position, if present (check made for aiAnimMesh)
    if (pMesh->mVertices)
    {
        delete [] pMesh->mVertices;
        pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
        for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
            pMesh->mVertices[a] = uniqueVertices[a].position;
        }
    }

    // Normals, if present
    if (pMesh->mNormals)
    {
        delete [] pMesh->mNormals;
        pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
        for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
            pMesh->mNormals[a] = uniqueVertices[a].normal;
        }
    }
    // Tangents, if present
    if (pMesh->mTangents)
    {
        delete [] pMesh->mTangents;
        pMesh->mTangents = new aiVector3D[pMesh->mNumVertices];
        for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
            pMesh->mTangents[a] = uniqueVertices[a].tangent;
        }
    }
    // Bitangents as well
    if (pMesh->mBitangents)
    {
        delete [] pMesh->mBitangents;
        pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices];
        for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
            pMesh->mBitangents[a] = uniqueVertices[a].bitangent;
        }
    }
    // Vertex colors
    for (unsigned int a = 0; pMesh->HasVertexColors(a); a++)
    {
        delete [] pMesh->mColors[a];
        pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices];
        for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
            pMesh->mColors[a][b] = uniqueVertices[b].colors[a];
        }
    }
    // Texture coords
    for (unsigned int a = 0; pMesh->HasTextureCoords(a); a++)
    {
        delete [] pMesh->mTextureCoords[a];
        pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices];
        for (unsigned int b = 0; b < pMesh->mNumVertices; b++) {
            pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
        }
    }
}
} // namespace

// ------------------------------------------------------------------------------------------------
// Unites identical vertices in the given mesh
int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
{
    static_assert( AI_MAX_NUMBER_OF_COLOR_SETS    == 8, "AI_MAX_NUMBER_OF_COLOR_SETS    == 8");
	static_assert( AI_MAX_NUMBER_OF_TEXTURECOORDS == 8, "AI_MAX_NUMBER_OF_TEXTURECOORDS == 8");

    // Return early if we don't have any positions
    if (!pMesh->HasPositions() || !pMesh->HasFaces()) {
        return 0;
    }

    // We should care only about used vertices, not all of them
    // (this can happen due to original file vertices buffer being used by
    // multiple meshes)
    std::unordered_set<unsigned int> usedVertexIndices;
    usedVertexIndices.reserve(pMesh->mNumVertices);
    for( unsigned int a = 0; a < pMesh->mNumFaces; a++)
    {
        aiFace& face = pMesh->mFaces[a];
        for( unsigned int b = 0; b < face.mNumIndices; b++) {
            usedVertexIndices.insert(face.mIndices[b]);
        }
    }

    // We'll never have more vertices afterwards.
    std::vector<Vertex> uniqueVertices;
    uniqueVertices.reserve( pMesh->mNumVertices);

    // For each vertex the index of the vertex it was replaced by.
    // Since the maximal number of vertices is 2^31-1, the most significand bit can be used to mark
    //  whether a new vertex was created for the index (true) or if it was replaced by an existing
    //  unique vertex (false). This saves an additional std::vector<bool> and greatly enhances
    //  branching performance.
    static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff");
    std::vector<unsigned int> replaceIndex( pMesh->mNumVertices, 0xffffffff);

    // float posEpsilonSqr;
    SpatialSort* vertexFinder = NULL;
    SpatialSort _vertexFinder;

    typedef std::pair<SpatialSort,float> SpatPair;
    if (shared) {
        std::vector<SpatPair >* avf;
        shared->GetProperty(AI_SPP_SPATIAL_SORT,avf);
        if (avf)    {
            SpatPair& blubb = (*avf)[meshIndex];
            vertexFinder  = &blubb.first;
            // posEpsilonSqr = blubb.second;
        }
    }
    if (!vertexFinder)  {
        // bad, need to compute it.
        _vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D));
        vertexFinder = &_vertexFinder;
        // posEpsilonSqr = ComputePositionEpsilon(pMesh);
    }

    // Again, better waste some bytes than a realloc ...
    std::vector<unsigned int> verticesFound;
    verticesFound.reserve(10);

    // Run an optimized code path if we don't have multiple UVs or vertex colors.
    // This should yield false in more than 99% of all imports ...
    const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1);
    const bool hasAnimMeshes = pMesh->mNumAnimMeshes > 0;

    // We'll never have more vertices afterwards.
    std::vector<std::vector<Vertex>> uniqueAnimatedVertices;
    if (hasAnimMeshes) {
        uniqueAnimatedVertices.resize(pMesh->mNumAnimMeshes);
        for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
            uniqueAnimatedVertices[animMeshIndex].reserve(pMesh->mNumVertices);
        }
    }

    // Now check each vertex if it brings something new to the table
    for( unsigned int a = 0; a < pMesh->mNumVertices; a++)  {
        if (usedVertexIndices.find(a) == usedVertexIndices.end()) {
            continue;
        }

        // collect the vertex data
        Vertex v(pMesh,a);

        // collect all vertices that are close enough to the given position
        vertexFinder->FindIdenticalPositions( v.position, verticesFound);
        unsigned int matchIndex = 0xffffffff;

        // check all unique vertices close to the position if this vertex is already present among them
        for( unsigned int b = 0; b < verticesFound.size(); b++) {
            const unsigned int vidx = verticesFound[b];
            const unsigned int uidx = replaceIndex[ vidx];
            if( uidx & 0x80000000)
                continue;

            const Vertex& uv = uniqueVertices[ uidx];

            if (!areVerticesEqual(v, uv, complex)) {
                continue;
            }

            if (hasAnimMeshes) {
                // If given vertex is animated, then it has to be preserver 1 to 1 (base mesh and animated mesh require same topology)
                // NOTE: not doing this totaly breaks anim meshes as they don't have their own faces (they use pMesh->mFaces)
                bool breaksAnimMesh = false;
                for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
                    const Vertex& animatedUV = uniqueAnimatedVertices[animMeshIndex][ uidx];
                    Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
                    if (!areVerticesEqual(aniMeshVertex, animatedUV, complex)) {
                        breaksAnimMesh = true;
                        break;
                    }
                }
                if (breaksAnimMesh) {
                    continue;
                }
            }

            // we're still here -> this vertex perfectly matches our given vertex
            matchIndex = uidx;
            break;
        }

        // found a replacement vertex among the uniques?
        if( matchIndex != 0xffffffff)
        {
            // store where to found the matching unique vertex
            replaceIndex[a] = matchIndex | 0x80000000;
        }
        else
        {
            // no unique vertex matches it up to now -> so add it
            replaceIndex[a] = (unsigned int)uniqueVertices.size();
            uniqueVertices.push_back( v);
            if (hasAnimMeshes) {
                for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
                    Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
                    uniqueAnimatedVertices[animMeshIndex].push_back(aniMeshVertex);
                }
            }
        }
    }

    if (!DefaultLogger::isNullLogger() && DefaultLogger::get()->getLogSeverity() == Logger::VERBOSE)    {
        ASSIMP_LOG_DEBUG_F(
            "Mesh ",meshIndex,
            " (",
            (pMesh->mName.length ? pMesh->mName.data : "unnamed"),
            ") | Verts in: ",pMesh->mNumVertices,
            " out: ",
            uniqueVertices.size(),
            " | ~",
            ((pMesh->mNumVertices - uniqueVertices.size()) / (float)pMesh->mNumVertices) * 100.f,
            "%"
        );
    }

    updateXMeshVertices(pMesh, uniqueVertices);
    if (hasAnimMeshes) {
        for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
            updateXMeshVertices(pMesh->mAnimMeshes[animMeshIndex], uniqueAnimatedVertices[animMeshIndex]);
        }
    }

    // adjust the indices in all faces
    for( unsigned int a = 0; a < pMesh->mNumFaces; a++)
    {
        aiFace& face = pMesh->mFaces[a];
        for( unsigned int b = 0; b < face.mNumIndices; b++) {
            face.mIndices[b] = replaceIndex[face.mIndices[b]] & ~0x80000000;
        }
    }

    // adjust bone vertex weights.
    for( int a = 0; a < (int)pMesh->mNumBones; a++) {
        aiBone* bone = pMesh->mBones[a];
        std::vector<aiVertexWeight> newWeights;
        newWeights.reserve( bone->mNumWeights);

        if ( NULL != bone->mWeights ) {
            for ( unsigned int b = 0; b < bone->mNumWeights; b++ ) {
                const aiVertexWeight& ow = bone->mWeights[ b ];
                // if the vertex is a unique one, translate it
                if ( !( replaceIndex[ ow.mVertexId ] & 0x80000000 ) ) {
                    aiVertexWeight nw;
                    nw.mVertexId = replaceIndex[ ow.mVertexId ];
                    nw.mWeight = ow.mWeight;
                    newWeights.push_back( nw );
                }
            }
        } else {
            ASSIMP_LOG_ERROR( "X-Export: aiBone shall contain weights, but pointer to them is NULL." );
        }

        if (newWeights.size() > 0) {
            // kill the old and replace them with the translated weights
            delete [] bone->mWeights;
            bone->mNumWeights = (unsigned int)newWeights.size();

            bone->mWeights = new aiVertexWeight[bone->mNumWeights];
            memcpy( bone->mWeights, &newWeights[0], bone->mNumWeights * sizeof( aiVertexWeight));
        }
    }
    return pMesh->mNumVertices;
}

#endif // !! ASSIMP_BUILD_NO_JOINVERTICES_PROCESS