/**************************************************************************/ /* test_variant.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_VARIANT_H #define TEST_VARIANT_H #include "core/variant/variant.h" #include "core/variant/variant_parser.h" #include "tests/test_macros.h" namespace TestVariant { static inline Array build_array() { return Array(); } template static inline Array build_array(Variant item, Targs... Fargs) { Array a = build_array(Fargs...); a.push_front(item); return a; } static inline Dictionary build_dictionary() { return Dictionary(); } template static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) { Dictionary d = build_dictionary(Fargs...); d[key] = item; return d; } TEST_CASE("[Variant] Writer and parser integer") { int64_t a32 = 2147483648; // 2^31, so out of bounds for 32-bit signed int [-2^31, +2^31-1]. String a32_str; VariantWriter::write_to_string(a32, a32_str); CHECK_MESSAGE(a32_str != "-2147483648", "Should not wrap around"); int64_t b64 = 9223372036854775807; // 2^63-1, upper bound for signed 64-bit int. String b64_str; VariantWriter::write_to_string(b64, b64_str); CHECK_MESSAGE(b64_str == "9223372036854775807", "Should not wrap around."); VariantParser::StreamString ss; String errs; int line; Variant b64_parsed; int64_t b64_int_parsed; ss.s = b64_str; VariantParser::parse(&ss, b64_parsed, errs, line); b64_int_parsed = b64_parsed; CHECK_MESSAGE(b64_int_parsed == 9223372036854775807, "Should parse back."); ss.s = "9223372036854775808"; // Overflowed by one. VariantParser::parse(&ss, b64_parsed, errs, line); b64_int_parsed = b64_parsed; CHECK_MESSAGE(b64_int_parsed == 9223372036854775807, "The result should be clamped to max value."); ss.s = "1e100"; // Googol! Scientific notation. VariantParser::parse(&ss, b64_parsed, errs, line); b64_int_parsed = b64_parsed; CHECK_MESSAGE(b64_int_parsed == 9223372036854775807, "The result should be clamped to max value."); } TEST_CASE("[Variant] Writer and parser Variant::FLOAT") { // Variant::FLOAT is always 64-bit (C++ double). // This is the maximum non-infinity double-precision float. double a64 = 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368.0; String a64_str; VariantWriter::write_to_string(a64, a64_str); CHECK_MESSAGE(a64_str == "1.79769e+308", "Writes in scientific notation."); CHECK_MESSAGE(a64_str != "inf", "Should not overflow."); CHECK_MESSAGE(a64_str != "nan", "The result should be defined."); String errs; int line; Variant variant_parsed; double float_parsed; VariantParser::StreamString bss; bss.s = a64_str; VariantParser::parse(&bss, variant_parsed, errs, line); float_parsed = variant_parsed; // Loses precision, but that's alright. CHECK_MESSAGE(float_parsed == 1.79769e+308, "Should parse back."); // Approximation of Googol with a double-precision float. VariantParser::StreamString css; css.s = "1.0e+100"; VariantParser::parse(&css, variant_parsed, errs, line); float_parsed = variant_parsed; CHECK_MESSAGE(float_parsed == 1.0e+100, "Should match the double literal."); } TEST_CASE("[Variant] Assignment To Bool from Int,Float,String,Vec2,Vec2i,Vec3,Vec3i and Color") { Variant int_v = 0; Variant bool_v = true; int_v = bool_v; // int_v is now a bool CHECK(int_v == Variant(true)); bool_v = false; int_v = bool_v; CHECK(int_v.get_type() == Variant::BOOL); Variant float_v = 0.0f; bool_v = true; float_v = bool_v; CHECK(float_v == Variant(true)); bool_v = false; float_v = bool_v; CHECK(float_v.get_type() == Variant::BOOL); Variant string_v = ""; bool_v = true; string_v = bool_v; CHECK(string_v == Variant(true)); bool_v = false; string_v = bool_v; CHECK(string_v.get_type() == Variant::BOOL); Variant vec2_v = Vector2(0, 0); bool_v = true; vec2_v = bool_v; CHECK(vec2_v == Variant(true)); bool_v = false; vec2_v = bool_v; CHECK(vec2_v.get_type() == Variant::BOOL); Variant vec2i_v = Vector2i(0, 0); bool_v = true; vec2i_v = bool_v; CHECK(vec2i_v == Variant(true)); bool_v = false; vec2i_v = bool_v; CHECK(vec2i_v.get_type() == Variant::BOOL); Variant vec3_v = Vector3(0, 0, 0); bool_v = true; vec3_v = bool_v; CHECK(vec3_v == Variant(true)); bool_v = false; vec3_v = bool_v; CHECK(vec3_v.get_type() == Variant::BOOL); Variant vec3i_v = Vector3i(0, 0, 0); bool_v = true; vec3i_v = bool_v; CHECK(vec3i_v == Variant(true)); bool_v = false; vec3i_v = bool_v; CHECK(vec3i_v.get_type() == Variant::BOOL); Variant col_v = Color(0.5f, 0.2f, 0.75f); bool_v = true; col_v = bool_v; CHECK(col_v == Variant(true)); bool_v = false; col_v = bool_v; CHECK(col_v.get_type() == Variant::BOOL); } TEST_CASE("[Variant] Assignment To Int from Bool,Float,String,Vec2,Vec2i,Vec3,Vec3i and Color") { Variant bool_v = false; Variant int_v = 2; bool_v = int_v; // Now bool_v is int CHECK(bool_v == Variant(2)); int_v = -3; bool_v = int_v; CHECK(bool_v.get_type() == Variant::INT); Variant float_v = 0.0f; int_v = 2; float_v = int_v; CHECK(float_v == Variant(2)); int_v = -3; float_v = int_v; CHECK(float_v.get_type() == Variant::INT); Variant string_v = ""; int_v = 2; string_v = int_v; CHECK(string_v == Variant(2)); int_v = -3; string_v = int_v; CHECK(string_v.get_type() == Variant::INT); Variant vec2_v = Vector2(0, 0); int_v = 2; vec2_v = int_v; CHECK(vec2_v == Variant(2)); int_v = -3; vec2_v = int_v; CHECK(vec2_v.get_type() == Variant::INT); Variant vec2i_v = Vector2i(0, 0); int_v = 2; vec2i_v = int_v; CHECK(vec2i_v == Variant(2)); int_v = -3; vec2i_v = int_v; CHECK(vec2i_v.get_type() == Variant::INT); Variant vec3_v = Vector3(0, 0, 0); int_v = 2; vec3_v = int_v; CHECK(vec3_v == Variant(2)); int_v = -3; vec3_v = int_v; CHECK(vec3_v.get_type() == Variant::INT); Variant vec3i_v = Vector3i(0, 0, 0); int_v = 2; vec3i_v = int_v; CHECK(vec3i_v == Variant(2)); int_v = -3; vec3i_v = int_v; CHECK(vec3i_v.get_type() == Variant::INT); Variant col_v = Color(0.5f, 0.2f, 0.75f); int_v = 2; col_v = int_v; CHECK(col_v == Variant(2)); int_v = -3; col_v = int_v; CHECK(col_v.get_type() == Variant::INT); } TEST_CASE("[Variant] Assignment To Float from Bool,Int,String,Vec2,Vec2i,Vec3,Vec3i and Color") { Variant bool_v = false; Variant float_v = 1.5f; bool_v = float_v; // Now bool_v is float CHECK(bool_v == Variant(1.5f)); float_v = -4.6f; bool_v = float_v; CHECK(bool_v.get_type() == Variant::FLOAT); Variant int_v = 1; float_v = 1.5f; int_v = float_v; CHECK(int_v == Variant(1.5f)); float_v = -4.6f; int_v = float_v; CHECK(int_v.get_type() == Variant::FLOAT); Variant string_v = ""; float_v = 1.5f; string_v = float_v; CHECK(string_v == Variant(1.5f)); float_v = -4.6f; string_v = float_v; CHECK(string_v.get_type() == Variant::FLOAT); Variant vec2_v = Vector2(0, 0); float_v = 1.5f; vec2_v = float_v; CHECK(vec2_v == Variant(1.5f)); float_v = -4.6f; vec2_v = float_v; CHECK(vec2_v.get_type() == Variant::FLOAT); Variant vec2i_v = Vector2i(0, 0); float_v = 1.5f; vec2i_v = float_v; CHECK(vec2i_v == Variant(1.5f)); float_v = -4.6f; vec2i_v = float_v; CHECK(vec2i_v.get_type() == Variant::FLOAT); Variant vec3_v = Vector3(0, 0, 0); float_v = 1.5f; vec3_v = float_v; CHECK(vec3_v == Variant(1.5f)); float_v = -4.6f; vec3_v = float_v; CHECK(vec3_v.get_type() == Variant::FLOAT); Variant vec3i_v = Vector3i(0, 0, 0); float_v = 1.5f; vec3i_v = float_v; CHECK(vec3i_v == Variant(1.5f)); float_v = -4.6f; vec3i_v = float_v; CHECK(vec3i_v.get_type() == Variant::FLOAT); Variant col_v = Color(0.5f, 0.2f, 0.75f); float_v = 1.5f; col_v = float_v; CHECK(col_v == Variant(1.5f)); float_v = -4.6f; col_v = float_v; CHECK(col_v.get_type() == Variant::FLOAT); } TEST_CASE("[Variant] Assignment To String from Bool,Int,Float,Vec2,Vec2i,Vec3,Vec3i and Color") { Variant bool_v = false; Variant string_v = "Hello"; bool_v = string_v; // Now bool_v is string CHECK(bool_v == Variant("Hello")); string_v = "Hello there"; bool_v = string_v; CHECK(bool_v.get_type() == Variant::STRING); Variant int_v = 0; string_v = "Hello"; int_v = string_v; CHECK(int_v == Variant("Hello")); string_v = "Hello there"; int_v = string_v; CHECK(int_v.get_type() == Variant::STRING); Variant float_v = 0.0f; string_v = "Hello"; float_v = string_v; CHECK(float_v == Variant("Hello")); string_v = "Hello there"; float_v = string_v; CHECK(float_v.get_type() == Variant::STRING); Variant vec2_v = Vector2(0, 0); string_v = "Hello"; vec2_v = string_v; CHECK(vec2_v == Variant("Hello")); string_v = "Hello there"; vec2_v = string_v; CHECK(vec2_v.get_type() == Variant::STRING); Variant vec2i_v = Vector2i(0, 0); string_v = "Hello"; vec2i_v = string_v; CHECK(vec2i_v == Variant("Hello")); string_v = "Hello there"; vec2i_v = string_v; CHECK(vec2i_v.get_type() == Variant::STRING); Variant vec3_v = Vector3(0, 0, 0); string_v = "Hello"; vec3_v = string_v; CHECK(vec3_v == Variant("Hello")); string_v = "Hello there"; vec3_v = string_v; CHECK(vec3_v.get_type() == Variant::STRING); Variant vec3i_v = Vector3i(0, 0, 0); string_v = "Hello"; vec3i_v = string_v; CHECK(vec3i_v == Variant("Hello")); string_v = "Hello there"; vec3i_v = string_v; CHECK(vec3i_v.get_type() == Variant::STRING); Variant col_v = Color(0.5f, 0.2f, 0.75f); string_v = "Hello"; col_v = string_v; CHECK(col_v == Variant("Hello")); string_v = "Hello there"; col_v = string_v; CHECK(col_v.get_type() == Variant::STRING); } TEST_CASE("[Variant] Assignment To Vec2 from Bool,Int,Float,String,Vec2i,Vec3,Vec3i and Color") { Variant bool_v = false; Variant vec2_v = Vector2(2.2f, 3.5f); bool_v = vec2_v; // Now bool_v is Vector2 CHECK(bool_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); bool_v = vec2_v; CHECK(bool_v.get_type() == Variant::VECTOR2); Variant int_v = 0; vec2_v = Vector2(2.2f, 3.5f); int_v = vec2_v; CHECK(int_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); int_v = vec2_v; CHECK(int_v.get_type() == Variant::VECTOR2); Variant float_v = 0.0f; vec2_v = Vector2(2.2f, 3.5f); float_v = vec2_v; CHECK(float_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); float_v = vec2_v; CHECK(float_v.get_type() == Variant::VECTOR2); Variant string_v = ""; vec2_v = Vector2(2.2f, 3.5f); string_v = vec2_v; CHECK(string_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); string_v = vec2_v; CHECK(string_v.get_type() == Variant::VECTOR2); Variant vec2i_v = Vector2i(0, 0); vec2_v = Vector2(2.2f, 3.5f); vec2i_v = vec2_v; CHECK(vec2i_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); vec2i_v = vec2_v; CHECK(vec2i_v.get_type() == Variant::VECTOR2); Variant vec3_v = Vector3(0, 0, 0); vec2_v = Vector2(2.2f, 3.5f); vec3_v = vec2_v; CHECK(vec3_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); vec3_v = vec2_v; CHECK(vec3_v.get_type() == Variant::VECTOR2); Variant vec3i_v = Vector3i(0, 0, 0); vec2_v = Vector2(2.2f, 3.5f); vec3i_v = vec2_v; CHECK(vec3i_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); vec3i_v = vec2_v; CHECK(vec3i_v.get_type() == Variant::VECTOR2); Variant col_v = Color(0.5f, 0.2f, 0.75f); vec2_v = Vector2(2.2f, 3.5f); col_v = vec2_v; CHECK(col_v == Variant(Vector2(2.2f, 3.5f))); vec2_v = Vector2(-5.4f, -7.9f); col_v = vec2_v; CHECK(col_v.get_type() == Variant::VECTOR2); } TEST_CASE("[Variant] Assignment To Vec2i from Bool,Int,Float,String,Vec2,Vec3,Vec3i and Color") { Variant bool_v = false; Variant vec2i_v = Vector2i(2, 3); bool_v = vec2i_v; // Now bool_v is Vector2i CHECK(bool_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); bool_v = vec2i_v; CHECK(bool_v.get_type() == Variant::VECTOR2I); Variant int_v = 0; vec2i_v = Vector2i(2, 3); int_v = vec2i_v; CHECK(int_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); int_v = vec2i_v; CHECK(int_v.get_type() == Variant::VECTOR2I); Variant float_v = 0.0f; vec2i_v = Vector2i(2, 3); float_v = vec2i_v; CHECK(float_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); float_v = vec2i_v; CHECK(float_v.get_type() == Variant::VECTOR2I); Variant string_v = ""; vec2i_v = Vector2i(2, 3); string_v = vec2i_v; CHECK(string_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); string_v = vec2i_v; CHECK(string_v.get_type() == Variant::VECTOR2I); Variant vec2_v = Vector2(0, 0); vec2i_v = Vector2i(2, 3); vec2_v = vec2i_v; CHECK(vec2_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); vec2_v = vec2i_v; CHECK(vec2i_v.get_type() == Variant::VECTOR2I); Variant vec3_v = Vector3(0, 0, 0); vec2i_v = Vector2i(2, 3); vec3_v = vec2i_v; CHECK(vec3_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); vec3_v = vec2i_v; CHECK(vec3_v.get_type() == Variant::VECTOR2I); Variant vec3i_v = Vector3i(0, 0, 0); vec2i_v = Vector2i(2, 3); vec3i_v = vec2i_v; CHECK(vec3i_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); vec3i_v = vec2i_v; CHECK(vec3i_v.get_type() == Variant::VECTOR2I); Variant col_v = Color(0.5f, 0.2f, 0.75f); vec2i_v = Vector2i(2, 3); col_v = vec2i_v; CHECK(col_v == Variant(Vector2i(2, 3))); vec2i_v = Vector2i(-5, -7); col_v = vec2i_v; CHECK(col_v.get_type() == Variant::VECTOR2I); } TEST_CASE("[Variant] Assignment To Vec3 from Bool,Int,Float,String,Vec2,Vec2i,Vec3i and Color") { Variant bool_v = false; Variant vec3_v = Vector3(2.2f, 3.5f, 5.3f); bool_v = vec3_v; // Now bool_v is Vector3 CHECK(bool_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); bool_v = vec3_v; CHECK(bool_v.get_type() == Variant::VECTOR3); Variant int_v = 0; vec3_v = Vector3(2.2f, 3.5f, 5.3f); int_v = vec3_v; CHECK(int_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); int_v = vec3_v; CHECK(int_v.get_type() == Variant::VECTOR3); Variant float_v = 0.0f; vec3_v = Vector3(2.2f, 3.5f, 5.3f); float_v = vec3_v; CHECK(float_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); float_v = vec3_v; CHECK(float_v.get_type() == Variant::VECTOR3); Variant string_v = ""; vec3_v = Vector3(2.2f, 3.5f, 5.3f); string_v = vec3_v; CHECK(string_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); string_v = vec3_v; CHECK(string_v.get_type() == Variant::VECTOR3); Variant vec2_v = Vector2(0, 0); vec3_v = Vector3(2.2f, 3.5f, 5.3f); vec2_v = vec3_v; CHECK(vec2_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); vec2_v = vec3_v; CHECK(vec2_v.get_type() == Variant::VECTOR3); Variant vec2i_v = Vector2i(0, 0); vec3_v = Vector3(2.2f, 3.5f, 5.3f); vec2i_v = vec3_v; CHECK(vec2i_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); vec2i_v = vec3_v; CHECK(vec2i_v.get_type() == Variant::VECTOR3); Variant vec3i_v = Vector3i(0, 0, 0); vec3_v = Vector3(2.2f, 3.5f, 5.3f); vec3i_v = vec3_v; CHECK(vec3i_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); vec3i_v = vec3_v; CHECK(vec3i_v.get_type() == Variant::VECTOR3); Variant col_v = Color(0.5f, 0.2f, 0.75f); vec3_v = Vector3(2.2f, 3.5f, 5.3f); col_v = vec3_v; CHECK(col_v == Variant(Vector3(2.2f, 3.5f, 5.3f))); vec3_v = Vector3(-5.4f, -7.9f, -2.1f); col_v = vec3_v; CHECK(col_v.get_type() == Variant::VECTOR3); } TEST_CASE("[Variant] Assignment To Vec3i from Bool,Int,Float,String,Vec2,Vec2i,Vec3 and Color") { Variant bool_v = false; Variant vec3i_v = Vector3i(2, 3, 5); bool_v = vec3i_v; // Now bool_v is Vector3i CHECK(bool_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); bool_v = vec3i_v; CHECK(bool_v.get_type() == Variant::VECTOR3I); Variant int_v = 0; vec3i_v = Vector3i(2, 3, 5); int_v = vec3i_v; CHECK(int_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); int_v = vec3i_v; CHECK(int_v.get_type() == Variant::VECTOR3I); Variant float_v = 0.0f; vec3i_v = Vector3i(2, 3, 5); float_v = vec3i_v; CHECK(float_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); float_v = vec3i_v; CHECK(float_v.get_type() == Variant::VECTOR3I); Variant string_v = ""; vec3i_v = Vector3i(2, 3, 5); string_v = vec3i_v; CHECK(string_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); string_v = vec3i_v; CHECK(string_v.get_type() == Variant::VECTOR3I); Variant vec2_v = Vector2(0, 0); vec3i_v = Vector3i(2, 3, 5); vec2_v = vec3i_v; CHECK(vec2_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); vec2_v = vec3i_v; CHECK(vec2_v.get_type() == Variant::VECTOR3I); Variant vec2i_v = Vector2i(0, 0); vec3i_v = Vector3i(2, 3, 5); vec2i_v = vec3i_v; CHECK(vec2i_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); vec2i_v = vec3i_v; CHECK(vec2i_v.get_type() == Variant::VECTOR3I); Variant vec3_v = Vector3(0, 0, 0); vec3i_v = Vector3i(2, 3, 5); vec3_v = vec3i_v; CHECK(vec3_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); vec3_v = vec3i_v; CHECK(vec3_v.get_type() == Variant::VECTOR3I); Variant col_v = Color(0.5f, 0.2f, 0.75f); vec3i_v = Vector3i(2, 3, 5); col_v = vec3i_v; CHECK(col_v == Variant(Vector3i(2, 3, 5))); vec3i_v = Vector3i(-5, -7, -2); col_v = vec3i_v; CHECK(col_v.get_type() == Variant::VECTOR3I); } TEST_CASE("[Variant] Assignment To Color from Bool,Int,Float,String,Vec2,Vec2i,Vec3 and Vec3i") { Variant bool_v = false; Variant col_v = Color(0.25f, 0.4f, 0.78f); bool_v = col_v; // Now bool_v is Color CHECK(bool_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); bool_v = col_v; CHECK(bool_v.get_type() == Variant::COLOR); Variant int_v = 0; col_v = Color(0.25f, 0.4f, 0.78f); int_v = col_v; CHECK(int_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); int_v = col_v; CHECK(int_v.get_type() == Variant::COLOR); Variant float_v = 0.0f; col_v = Color(0.25f, 0.4f, 0.78f); float_v = col_v; CHECK(float_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); float_v = col_v; CHECK(float_v.get_type() == Variant::COLOR); Variant string_v = ""; col_v = Color(0.25f, 0.4f, 0.78f); string_v = col_v; CHECK(string_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); string_v = col_v; CHECK(string_v.get_type() == Variant::COLOR); Variant vec2_v = Vector2(0, 0); col_v = Color(0.25f, 0.4f, 0.78f); vec2_v = col_v; CHECK(vec2_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); vec2_v = col_v; CHECK(vec2_v.get_type() == Variant::COLOR); Variant vec2i_v = Vector2i(0, 0); col_v = Color(0.25f, 0.4f, 0.78f); vec2i_v = col_v; CHECK(vec2i_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); vec2i_v = col_v; CHECK(vec2i_v.get_type() == Variant::COLOR); Variant vec3_v = Vector3(0, 0, 0); col_v = Color(0.25f, 0.4f, 0.78f); vec3_v = col_v; CHECK(vec3_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); vec3_v = col_v; CHECK(vec3_v.get_type() == Variant::COLOR); Variant vec3i_v = Vector3i(0, 0, 0); col_v = Color(0.25f, 0.4f, 0.78f); vec3i_v = col_v; CHECK(vec3i_v == Variant(Color(0.25f, 0.4f, 0.78f))); col_v = Color(0.33f, 0.75f, 0.21f); vec3i_v = col_v; CHECK(vec3i_v.get_type() == Variant::COLOR); } TEST_CASE("[Variant] Writer and parser array") { Array a = build_array(1, String("hello"), build_array(Variant())); String a_str; VariantWriter::write_to_string(a, a_str); CHECK_EQ(a_str, "[1, \"hello\", [null]]"); VariantParser::StreamString ss; String errs; int line; Variant a_parsed; ss.s = a_str; VariantParser::parse(&ss, a_parsed, errs, line); CHECK_MESSAGE(a_parsed == Variant(a), "Should parse back."); } TEST_CASE("[Variant] Writer recursive array") { // There is no way to accurately represent a recursive array, // the only thing we can do is make sure the writer doesn't blow up // Self recursive Array a; a.push_back(a); // Writer should it recursion limit while visiting the array ERR_PRINT_OFF; String a_str; VariantWriter::write_to_string(a, a_str); ERR_PRINT_ON; // Nested recursive Array a1; Array a2; a1.push_back(a2); a2.push_back(a1); // Writer should it recursion limit while visiting the array ERR_PRINT_OFF; String a1_str; VariantWriter::write_to_string(a1, a1_str); ERR_PRINT_ON; // Break the recursivity otherwise Dictionary tearndown will leak memory a.clear(); a1.clear(); a2.clear(); } TEST_CASE("[Variant] Writer and parser dictionary") { // d = {{1: 2}: 3, 4: "hello", 5: {null: []}} Dictionary d = build_dictionary(build_dictionary(1, 2), 3, 4, String("hello"), 5, build_dictionary(Variant(), build_array())); String d_str; VariantWriter::write_to_string(d, d_str); CHECK_EQ(d_str, "{\n4: \"hello\",\n5: {\nnull: []\n},\n{\n1: 2\n}: 3\n}"); VariantParser::StreamString ss; String errs; int line; Variant d_parsed; ss.s = d_str; VariantParser::parse(&ss, d_parsed, errs, line); CHECK_MESSAGE(d_parsed == Variant(d), "Should parse back."); } TEST_CASE("[Variant] Writer recursive dictionary") { // There is no way to accurately represent a recursive dictionary, // the only thing we can do is make sure the writer doesn't blow up // Self recursive Dictionary d; d[1] = d; // Writer should it recursion limit while visiting the dictionary ERR_PRINT_OFF; String d_str; VariantWriter::write_to_string(d, d_str); ERR_PRINT_ON; // Nested recursive Dictionary d1; Dictionary d2; d1[2] = d2; d2[1] = d1; // Writer should it recursion limit while visiting the dictionary ERR_PRINT_OFF; String d1_str; VariantWriter::write_to_string(d1, d1_str); ERR_PRINT_ON; // Break the recursivity otherwise Dictionary tearndown will leak memory d.clear(); d1.clear(); d2.clear(); } #if 0 // TODO: recursion in dict key is currently buggy TEST_CASE("[Variant] Writer recursive dictionary on keys") { // There is no way to accurately represent a recursive dictionary, // the only thing we can do is make sure the writer doesn't blow up // Self recursive Dictionary d; d[d] = 1; // Writer should it recursion limit while visiting the dictionary ERR_PRINT_OFF; String d_str; VariantWriter::write_to_string(d, d_str); ERR_PRINT_ON; // Nested recursive Dictionary d1; Dictionary d2; d1[d2] = 2; d2[d1] = 1; // Writer should it recursion limit while visiting the dictionary ERR_PRINT_OFF; String d1_str; VariantWriter::write_to_string(d1, d1_str); ERR_PRINT_ON; // Break the recursivity otherwise Dictionary tearndown will leak memory d.clear(); d1.clear(); d2.clear(); } #endif TEST_CASE("[Variant] Basic comparison") { CHECK_EQ(Variant(1), Variant(1)); CHECK_FALSE(Variant(1) != Variant(1)); CHECK_NE(Variant(1), Variant(2)); CHECK_EQ(Variant(String("foo")), Variant(String("foo"))); CHECK_NE(Variant(String("foo")), Variant(String("bar"))); // Check "empty" version of different types are not equivalents CHECK_NE(Variant(0), Variant()); CHECK_NE(Variant(String()), Variant()); CHECK_NE(Variant(Array()), Variant()); CHECK_NE(Variant(Dictionary()), Variant()); } TEST_CASE("[Variant] Identity comparison") { // Value types are compared by value Variant aabb = AABB(); CHECK(aabb.identity_compare(aabb)); CHECK(aabb.identity_compare(AABB())); CHECK_FALSE(aabb.identity_compare(AABB(Vector3(1, 2, 3), Vector3(1, 2, 3)))); Variant basis = Basis(); CHECK(basis.identity_compare(basis)); CHECK(basis.identity_compare(Basis())); CHECK_FALSE(basis.identity_compare(Basis(Quaternion(Vector3(1, 2, 3).normalized(), 45)))); Variant bool_var = true; CHECK(bool_var.identity_compare(bool_var)); CHECK(bool_var.identity_compare(true)); CHECK_FALSE(bool_var.identity_compare(false)); Variant callable = Callable(); CHECK(callable.identity_compare(callable)); CHECK(callable.identity_compare(Callable())); CHECK_FALSE(callable.identity_compare(Callable(ObjectID(), StringName("lambda")))); Variant color = Color(); CHECK(color.identity_compare(color)); CHECK(color.identity_compare(Color())); CHECK_FALSE(color.identity_compare(Color(255, 0, 255))); Variant float_var = 1.0; CHECK(float_var.identity_compare(float_var)); CHECK(float_var.identity_compare(1.0)); CHECK_FALSE(float_var.identity_compare(2.0)); Variant int_var = 1; CHECK(int_var.identity_compare(int_var)); CHECK(int_var.identity_compare(1)); CHECK_FALSE(int_var.identity_compare(2)); Variant nil = Variant(); CHECK(nil.identity_compare(nil)); CHECK(nil.identity_compare(Variant())); CHECK_FALSE(nil.identity_compare(true)); Variant node_path = NodePath("godot"); CHECK(node_path.identity_compare(node_path)); CHECK(node_path.identity_compare(NodePath("godot"))); CHECK_FALSE(node_path.identity_compare(NodePath("waiting"))); Variant plane = Plane(); CHECK(plane.identity_compare(plane)); CHECK(plane.identity_compare(Plane())); CHECK_FALSE(plane.identity_compare(Plane(Vector3(1, 2, 3), 42))); Variant projection = Projection(); CHECK(projection.identity_compare(projection)); CHECK(projection.identity_compare(Projection())); CHECK_FALSE(projection.identity_compare(Projection(Transform3D(Basis(Vector3(1, 2, 3).normalized(), 45), Vector3(1, 2, 3))))); Variant quaternion = Quaternion(); CHECK(quaternion.identity_compare(quaternion)); CHECK(quaternion.identity_compare(Quaternion())); CHECK_FALSE(quaternion.identity_compare(Quaternion(Vector3(1, 2, 3).normalized(), 45))); Variant rect2 = Rect2(); CHECK(rect2.identity_compare(rect2)); CHECK(rect2.identity_compare(Rect2())); CHECK_FALSE(rect2.identity_compare(Rect2(Point2(Vector2(1, 2)), Size2(Vector2(1, 2))))); Variant rect2i = Rect2i(); CHECK(rect2i.identity_compare(rect2i)); CHECK(rect2i.identity_compare(Rect2i())); CHECK_FALSE(rect2i.identity_compare(Rect2i(Point2i(Vector2i(1, 2)), Size2i(Vector2i(1, 2))))); Variant rid = RID(); CHECK(rid.identity_compare(rid)); CHECK(rid.identity_compare(RID())); CHECK_FALSE(rid.identity_compare(RID::from_uint64(123))); Variant signal = Signal(); CHECK(signal.identity_compare(signal)); CHECK(signal.identity_compare(Signal())); CHECK_FALSE(signal.identity_compare(Signal(ObjectID(), StringName("lambda")))); Variant str = "godot"; CHECK(str.identity_compare(str)); CHECK(str.identity_compare("godot")); CHECK_FALSE(str.identity_compare("waiting")); Variant str_name = StringName("godot"); CHECK(str_name.identity_compare(str_name)); CHECK(str_name.identity_compare(StringName("godot"))); CHECK_FALSE(str_name.identity_compare(StringName("waiting"))); Variant transform2d = Transform2D(); CHECK(transform2d.identity_compare(transform2d)); CHECK(transform2d.identity_compare(Transform2D())); CHECK_FALSE(transform2d.identity_compare(Transform2D(45, Vector2(1, 2)))); Variant transform3d = Transform3D(); CHECK(transform3d.identity_compare(transform3d)); CHECK(transform3d.identity_compare(Transform3D())); CHECK_FALSE(transform3d.identity_compare(Transform3D(Basis(Quaternion(Vector3(1, 2, 3).normalized(), 45)), Vector3(1, 2, 3)))); Variant vect2 = Vector2(); CHECK(vect2.identity_compare(vect2)); CHECK(vect2.identity_compare(Vector2())); CHECK_FALSE(vect2.identity_compare(Vector2(1, 2))); Variant vect2i = Vector2i(); CHECK(vect2i.identity_compare(vect2i)); CHECK(vect2i.identity_compare(Vector2i())); CHECK_FALSE(vect2i.identity_compare(Vector2i(1, 2))); Variant vect3 = Vector3(); CHECK(vect3.identity_compare(vect3)); CHECK(vect3.identity_compare(Vector3())); CHECK_FALSE(vect3.identity_compare(Vector3(1, 2, 3))); Variant vect3i = Vector3i(); CHECK(vect3i.identity_compare(vect3i)); CHECK(vect3i.identity_compare(Vector3i())); CHECK_FALSE(vect3i.identity_compare(Vector3i(1, 2, 3))); Variant vect4 = Vector4(); CHECK(vect4.identity_compare(vect4)); CHECK(vect4.identity_compare(Vector4())); CHECK_FALSE(vect4.identity_compare(Vector4(1, 2, 3, 4))); Variant vect4i = Vector4i(); CHECK(vect4i.identity_compare(vect4i)); CHECK(vect4i.identity_compare(Vector4i())); CHECK_FALSE(vect4i.identity_compare(Vector4i(1, 2, 3, 4))); // Reference types are compared by reference Variant array = Array(); CHECK(array.identity_compare(array)); CHECK_FALSE(array.identity_compare(Array())); Variant dictionary = Dictionary(); CHECK(dictionary.identity_compare(dictionary)); CHECK_FALSE(dictionary.identity_compare(Dictionary())); Variant packed_byte_array = PackedByteArray(); CHECK(packed_byte_array.identity_compare(packed_byte_array)); CHECK_FALSE(packed_byte_array.identity_compare(PackedByteArray())); Variant packed_color_array = PackedColorArray(); CHECK(packed_color_array.identity_compare(packed_color_array)); CHECK_FALSE(packed_color_array.identity_compare(PackedColorArray())); Variant packed_float32_array = PackedFloat32Array(); CHECK(packed_float32_array.identity_compare(packed_float32_array)); CHECK_FALSE(packed_float32_array.identity_compare(PackedFloat32Array())); Variant packed_float64_array = PackedFloat64Array(); CHECK(packed_float64_array.identity_compare(packed_float64_array)); CHECK_FALSE(packed_float64_array.identity_compare(PackedFloat64Array())); Variant packed_int32_array = PackedInt32Array(); CHECK(packed_int32_array.identity_compare(packed_int32_array)); CHECK_FALSE(packed_int32_array.identity_compare(PackedInt32Array())); Variant packed_int64_array = PackedInt64Array(); CHECK(packed_int64_array.identity_compare(packed_int64_array)); CHECK_FALSE(packed_int64_array.identity_compare(PackedInt64Array())); Variant packed_string_array = PackedStringArray(); CHECK(packed_string_array.identity_compare(packed_string_array)); CHECK_FALSE(packed_string_array.identity_compare(PackedStringArray())); Variant packed_vector2_array = PackedVector2Array(); CHECK(packed_vector2_array.identity_compare(packed_vector2_array)); CHECK_FALSE(packed_vector2_array.identity_compare(PackedVector2Array())); Variant packed_vector3_array = PackedVector3Array(); CHECK(packed_vector3_array.identity_compare(packed_vector3_array)); CHECK_FALSE(packed_vector3_array.identity_compare(PackedVector3Array())); Object obj_one = Object(); Variant obj_one_var = &obj_one; Object obj_two = Object(); Variant obj_two_var = &obj_two; CHECK(obj_one_var.identity_compare(obj_one_var)); CHECK_FALSE(obj_one_var.identity_compare(obj_two_var)); Variant obj_null_one_var = Variant((Object *)nullptr); Variant obj_null_two_var = Variant((Object *)nullptr); CHECK(obj_null_one_var.identity_compare(obj_null_one_var)); CHECK(obj_null_one_var.identity_compare(obj_null_two_var)); } TEST_CASE("[Variant] Nested array comparison") { Array a1 = build_array(1, build_array(2, 3)); Array a2 = build_array(1, build_array(2, 3)); Array a_other = build_array(1, build_array(2, 4)); Variant v_a1 = a1; Variant v_a1_ref2 = a1; Variant v_a2 = a2; Variant v_a_other = a_other; // test both operator== and operator!= CHECK_EQ(v_a1, v_a1); CHECK_FALSE(v_a1 != v_a1); CHECK_EQ(v_a1, v_a1_ref2); CHECK_FALSE(v_a1 != v_a1_ref2); CHECK_EQ(v_a1, v_a2); CHECK_FALSE(v_a1 != v_a2); CHECK_NE(v_a1, v_a_other); CHECK_FALSE(v_a1 == v_a_other); } TEST_CASE("[Variant] Nested dictionary comparison") { Dictionary d1 = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 4)); Dictionary d2 = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 4)); Dictionary d_other_key = build_dictionary(build_dictionary(1, 0), build_dictionary(3, 4)); Dictionary d_other_val = build_dictionary(build_dictionary(1, 2), build_dictionary(3, 0)); Variant v_d1 = d1; Variant v_d1_ref2 = d1; Variant v_d2 = d2; Variant v_d_other_key = d_other_key; Variant v_d_other_val = d_other_val; // test both operator== and operator!= CHECK_EQ(v_d1, v_d1); CHECK_FALSE(v_d1 != v_d1); CHECK_EQ(v_d1, v_d1_ref2); CHECK_FALSE(v_d1 != v_d1_ref2); CHECK_EQ(v_d1, v_d2); CHECK_FALSE(v_d1 != v_d2); CHECK_NE(v_d1, v_d_other_key); CHECK_FALSE(v_d1 == v_d_other_key); CHECK_NE(v_d1, v_d_other_val); CHECK_FALSE(v_d1 == v_d_other_val); } struct ArgumentData { Variant::Type type; String name; bool has_defval = false; Variant defval; int position; }; struct MethodData { StringName name; Variant::Type return_type; List arguments; bool is_virtual = false; bool is_vararg = false; }; TEST_CASE("[Variant] Utility functions") { List functions; List function_names; Variant::get_utility_function_list(&function_names); function_names.sort_custom(); for (const StringName &E : function_names) { MethodData md; md.name = E; // Utility function's return type. if (Variant::has_utility_function_return_value(E)) { md.return_type = Variant::get_utility_function_return_type(E); } // Utility function's arguments. if (Variant::is_utility_function_vararg(E)) { md.is_vararg = true; } else { for (int i = 0; i < Variant::get_utility_function_argument_count(E); i++) { ArgumentData arg; arg.type = Variant::get_utility_function_argument_type(E, i); arg.name = Variant::get_utility_function_argument_name(E, i); arg.position = i; md.arguments.push_back(arg); } } functions.push_back(md); } SUBCASE("[Variant] Validate utility functions") { for (const MethodData &E : functions) { for (const ArgumentData &F : E.arguments) { const ArgumentData &arg = F; TEST_COND((arg.name.is_empty() || arg.name.begins_with("_unnamed_arg")), vformat("Unnamed argument in position %d of function '%s'.", arg.position, E.name)); } } } } } // namespace TestVariant #endif // TEST_VARIANT_H